Hans Rosling: Debunking third-world myths with the best stats you've ever seen

2,181,637 views ใƒป 2007-01-14

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:25
About 10 years ago, I took on the task to teach global development
0
25626
4355
ืœืคื ื™ ื›ืขืฉืจ ืฉื ื™ื ืœืงื—ืชื™ ืœืขืฆืžื™ ืืช ื”ืžืฉื™ืžื” ืœืœืžื“
ืกื˜ื•ื“ื ื˜ื™ื ืฉื•ื•ื“ื™ื ืœืชื•ืืจ ืจืืฉื•ืŸ ืขืœ ื”ืชืคืชื—ื•ืช ื’ืœื•ื‘ืœื™ืช. ื–ื” ื”ื™ื” ืœืคื ื™
00:30
to Swedish undergraduate students.
1
30005
2146
00:32
That was after having spent about 20 years,
2
32175
2881
ืฉื‘ื™ืœื™ืชื™ ื›ืขืฉืจื™ื ืฉื ื” ืขื ืžื•ืกื“ื•ืช ืืคืจื™ืงื ื™ื™ื ื‘ื—ืงืจ
00:35
together with African institutions,
3
35080
1877
00:36
studying hunger in Africa.
4
36981
1598
ื”ืจืขื‘ ื‘ืืคืจื™ืงื”. ื›ืš ืฉืฆื™ืคื• ืฉืื“ืข ืžืฉื”ื• ืขืœ ื”ืขื•ืœื.
00:38
So I was sort of expected to know a little about the world.
5
38603
3998
ื”ืชื—ืœืชื™ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ื” ืฉืœื ื• ืœืจืคื•ืื”, ืžื›ื•ืŸ ืงืจื•ืœื™ื ืกืงื”,
00:42
And I started, in our medical university, Karolinska Institute,
6
42625
3351
00:46
an undergraduate course called Global Health.
7
46000
3530
ืงื•ืจืก ืฉื ืงืจื 'ื‘ืจื™ืื•ืช ื’ืœื•ื‘ืœื™ืช'. ืื‘ืœ ื›ืฉืžืงื‘ืœื™ื
00:49
But when you get that opportunity, you get a little nervous.
8
49554
2822
ื”ื–ื“ืžื ื•ืช ื›ื–ืืช, ื ืขืฉื™ื ืงืฆืช ืขืฆื‘ื ื™ื™ื. ื—ืฉื‘ืชื™,
00:52
I thought, these students coming to us actually have the highest grade
9
52400
3334
ืœืกื˜ื•ื“ื ื˜ื™ื ืฉื‘ืื™ื ืœื›ืืŸ ื™ืฉ ื”ืฆื™ื•ื ื™ื ื”ื›ื™ ื’ื‘ื•ื”ื™ื
00:55
you can get in the Swedish college system,
10
55758
2023
ื‘ืืงื“ืžื™ื” ืฉืœ ืฉื•ื•ื“ื™ื”. ืื– ืื•ืœื™ ื”ื ื›ื‘ืจ ื™ื•ื“ืขื™ื
00:57
so I thought, maybe they know everything I'm going to teach them about.
11
57805
3365
ืืช ื›ืœ ืžื” ืฉืืœืžื“ ืื•ืชื. ืื– ืขืฉื™ืชื™ ืœื”ื ืžื‘ื—ืŸ ืžืงื“ื™ื.
01:01
So I did a pretest when they came.
12
61194
1997
01:03
And one of the questions from which I learned a lot was this one:
13
63215
3493
ื•ื–ื• ื”ื™ื™ืชื” ืื—ืช ื”ืฉืืœื•ืช ืฉืžื”ืŸ ืœืžื“ืชื™ ืจื‘ื•ืช:
01:06
"Which country has the highest child mortality of these five pairs?"
14
66732
4269
"ืžื‘ื™ืŸ ื—ืžืฉืช ื”ื–ื•ื’ื•ืช, ื‘ืื™ื–ื• ืžื“ื™ื ื” ืชืžื•ืชืช ื”ืชื™ื ื•ืงื•ืช ื”ื›ื™ ื’ื‘ื•ื”ื”"?
ื•ื—ื™ืœืงืชื™ ืื•ืชืŸ ื›ืš ืฉื‘ื›ืœ ื–ื•ื’ ืžื“ื™ื ื•ืช,
01:11
And I put them together so that in each pair of countries,
15
71890
3070
01:14
one has twice the child mortality of the other.
16
74984
3445
ืชืžื•ืชืช ื”ืชื™ื ื•ืงื•ืช ื‘ืื—ืช ื’ื‘ื•ื”ื” ืคื™ ืฉื ื™ื™ื ืžื‘ืฉื ื™ื™ื”,
01:18
And this means that it's much bigger, the difference,
17
78453
4245
ื•ื–ื” ืื•ืžืจ ืฉื”ื”ื‘ื“ืœ ื’ื“ื•ืœ ื‘ื”ืจื‘ื” ืžื—ื•ืกืจ ื”ื•ื•ื“ืื•ืช ืฉืœ ื”ื ืชื•ื ื™ื.
01:22
than the uncertainty of the data.
18
82722
1802
01:24
I won't put you at a test here, but it's Turkey,
19
84548
2311
ืื ื™ ืœื ืื‘ื—ืŸ ืืชื›ื ืขื›ืฉื™ื•, ืื‘ืœ ื–ื• ื˜ื•ืจืงื™ื”,
01:26
which is highest there, Poland, Russia, Pakistan and South Africa.
20
86883
4327
ืฉื”ื›ื™ ื’ื‘ื•ื”ื” ืฉื, ืคื•ืœื™ืŸ, ืจื•ืกื™ื”, ืคืงื™ืกื˜ืŸ ื•ื“ืจื•ื ืืคืจื™ืงื”.
01:31
And these were the results of the Swedish students.
21
91234
2422
ื•ืืœื” ื”ืชื•ืฆืื•ืช ืฉืœ ื”ืกื˜ื•ื“ื ื˜ื™ื ืžืฉื•ื•ื“ื™ื”. ืกื™ื“ืจืชื™ ื›ืš ืฉื™ื”ื™ื”
01:33
I did it so I got the confidence interval, which is pretty narrow.
22
93680
3170
ืจื•ื•ื— ื‘ืจ ืกืžืš, ืฉื”ื•ื ื“ื™ ืฆืจ, ื•ืžื•ื‘ืŸ ืฉืฉืžื—ืชื™:
01:36
And I got happy, of course -- a 1.8 right answer out of five possible.
23
96874
3985
ื”ื™ื• 1.8 ืชืฉื•ื‘ื•ืช ื ื›ื•ื ื•ืช ืžืชื•ืš ื—ืžืฉ ืืคืฉืจื™ื•ืช. ืคื™ืจื•ืฉ ื”ื“ื‘ืจ
01:40
That means there was a place for a professor of international health
24
100883
3211
ื”ื•ื ืฉื™ืฉ ืฆื•ืจืš ื‘ืคืจื•ืคืกื•ืจ ืœื‘ืจื™ืื•ืช ืขื•ืœืžื™ืช ื•ื‘ืงื•ืจืก ืฉืœื™--
01:44
and for my course.
25
104118
1166
ื•ื‘ืงื•ืจืก ืฉืœื™ (ืฆื—ื•ืง)
01:45
(Laughter)
26
105308
1033
01:46
But one late night, when I was compiling the report,
27
106365
4039
ืืš ืœื™ืœื” ืื—ื“, ื›ืฉืขืจื›ืชื™ ืืช ื”ื“ื•"ื—,
01:50
I really realized my discovery.
28
110428
2566
ื”ื‘ื ืชื™ ืืช ื”ืชื’ืœื™ืช ืฉืœื™ ื‘ืืžืช.
01:53
I have shown that Swedish top students know, statistically,
29
113018
4925
ื”ืจืื™ืชื™ ืฉืกื˜ื•ื“ื ื˜ื™ื ืžืฆื˜ื™ื™ื ื™ื ืžืฉื•ื•ื“ื™ื” ื™ื•ื“ืขื™ื ื”ืจื‘ื” ืคื—ื•ืช ืžื‘ื—ื™ื ื” ืกื˜ื˜ื™ืกื˜ื™ืช
01:57
significantly less about the world than the chimpanzees.
30
117967
3009
ืขืœ ื”ืขื•ืœื ืžืืฉืจ ืฉื™ืžืคื ื–ื™ื.
02:01
(Laughter)
31
121000
1976
(ืฆื—ื•ืง)
02:03
Because the chimpanzee would score half right
32
123000
3459
ื›ื™ ืฉื™ืžืคื ื–ื™ื ื”ื™ื• ืขื•ื ื™ื ืขืœ ื—ืฆื™ ืžื”ืชืฉื•ื‘ื•ืช ื ื›ื•ืŸ,
02:06
if I gave them two bananas with Sri Lanka and Turkey.
33
126483
2630
ืื ื”ื™ื™ืชื™ ื ื•ืชืŸ ืœื”ื ืฉืชื™ ื‘ื ื ื•ืช ืขื ืกืจื™ ืœื ืงื” ื•ื˜ื•ืจืงื™ื”. ื”ื .ื”ื™ื• ืขื•ื ื™ื ื ื›ื•ืŸ ืขืœ ื—ืฆื™.
02:09
They would be right half of the cases. But the students are not there.
34
129137
3422
ืื‘ืœ ื”ืกื˜ื•ื“ื ื˜ื™ื ืขื•ื“ ืœื ืฉื. ื”ื‘ืขื™ื” ืฉื ืœื ื”ื™ื™ืชื” ื‘ื•ืจื•ืช:
02:12
The problem for me was not ignorance; it was preconceived ideas.
35
132583
4215
ื”ื‘ืขื™ื” ื”ื™ื™ืชื” ืจืขื™ื•ื ื•ืช ืžืขื•ืฆื‘ื™ื ืžืจืืฉ.
02:16
I did also an unethical study
36
136822
2737
ืขืจื›ืชื™ ืžื—ืงืจ ืœื ืžื•ืกืจื™ ื’ื ื‘ืคืจื•ืคืกื•ืจื™ื ืฉืœ ืžื›ื•ืŸ ืงืจื•ืœื™ื ืกืงื”
02:19
of the professors of the Karolinska Institute,
37
139583
2527
(ืฆื—ื•ืง)
02:22
which hands out the Nobel Prize in Medicine,
38
142134
2541
ื–ื” ืฉืžืขื ื™ืง ืืช ืคืจืก ื ื•ื‘ืœ ืœืจืคื•ืื”,
02:24
and they are on par with the chimpanzee there.
39
144699
2296
ื•ื”ื ื‘ืจืžื” ืฉืœ ื”ืฉื™ืžืคื ื–ื•ืช.
(ืฆื—ื•ืง)
02:27
(Laughter)
40
147019
2435
02:29
This is where I realized that there was really a need to communicate,
41
149478
4183
ืื– ื”ื‘ื ืชื™ ืฉื™ืฉ ืฆื•ืจืš ืืžื™ืชื™ ื‘ืชืงืฉื•ืจืช,
02:33
because the data of what's happening in the world
42
153685
2904
ื›ื™ื•ื•ืŸ ืฉื”ื ืชื•ื ื™ื ืขืœ ืžื” ืฉืงื•ืจื” ื‘ืขื•ืœื
02:36
and the child health of every country
43
156613
1961
ื•ืขืœ ื‘ืจื™ืื•ืช ื”ื™ืœื“ ื‘ื›ืœ ืžื“ื™ื ื” ื™ื›ื•ืœื™ื ืœืกืคืจ ื”ืžื•ืŸ.
02:38
is very well aware.
44
158598
1337
02:39
So we did this software, which displays it like this.
45
159959
2767
ื‘ื ื™ื ื• ืชื•ื›ื ื” ืฉืžืฆื™ื’ื” ื–ืืช ื›ืš: ื›ืœ ื‘ื•ืขื” ื”ื™ื ืžื“ื™ื ื”.
02:42
Every bubble here is a country.
46
162750
1958
02:44
This country over here is China.
47
164732
4989
ื”ืžื“ื™ื ื” ื”ื–ืืช ื”ื™ื ืกื™ืŸ. ื–ื• ื”ื•ื“ื•.
02:49
This is India.
48
169745
1163
02:50
The size of the bubble is the population,
49
170932
2247
ื’ื•ื“ืœ ื”ื‘ื•ืขื” ื”ื•ื ื”ืื•ื›ืœื•ืกื™ื™ื”, ื•ืขืœ ื”ืฆื™ืจ ื”ื–ื” ืžื•ืฆื‘ ืฉื™ืขื•ืจ ื”ืคืจื™ื•ืŸ.
02:53
and on this axis here, I put fertility rate.
50
173203
3556
02:56
Because my students, what they said
51
176783
2443
ื›ื™ ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™, ืžื” ืฉื”ื ืืžืจื•
02:59
when they looked upon the world, and I asked them,
52
179250
2559
ื›ืฉื”ื ื”ื‘ื™ื˜ื• ื‘ืขื•ืœื ื•ืฉืืœืชื™ ืื•ืชื,
03:01
"What do you really think about the world?"
53
181833
2723
"ืžื” ืืชื ื‘ืืžืช ื—ื•ืฉื‘ื™ื ืขืœ ื”ืขื•ืœื"?
ื“ื‘ืจ ืจืืฉื•ืŸ, ื’ื™ืœื™ืชื™ ืฉืกืคืจ ื”ืœื™ืžื•ื“ ื”ื™ื” ื‘ืขื™ืงืจ ื˜ื™ื ื˜ื™ืŸ.
03:04
Well, I first discovered that the textbook was Tintin, mainly.
54
184580
3269
03:07
(Laughter)
55
187873
1045
(ืฆื—ื•ืง)
03:08
And they said, "The world is still 'we' and 'them.'
56
188942
2515
ื•ื”ื ืืžืจื•: "ื”ืขื•ืœื ื”ื•ื ืขื“ื™ื™ืŸ 'ืื ื—ื ื•' ื•'ื”ื'.
03:11
And 'we' is the Western world and 'them' is the Third World."
57
191481
3453
"ื•ืื ื—ื ื• ื”ืขื•ืœื ื”ืžืขืจื‘ื™ ื•ื”ื ื”ืขื•ืœื ื”ืฉืœื™ืฉื™".
"ื•ืœืžื” ืืชื ืžืชื›ื•ื•ื ื™ื ื‘ืขื•ืœื ื”ืžืขืจื‘ื™?" ืืžืจืชื™.
03:15
"And what do you mean with 'Western world?'" I said.
58
195381
2510
03:17
"Well, that's long life and small family.
59
197915
1977
"ื•ื‘ื›ืŸ, ื—ื™ื™ื ืืจื•ื›ื™ื ื•ืžืฉืคื—ื” ืงื˜ื ื”, ื•ื‘ืขื•ืœื ื”ืฉืœื™ืฉื™ ื™ืฉ ื—ื™ื™ื ืงืฆืจื™ื ื•ืžืฉืคื—ื” ื’ื“ื•ืœื”".
03:19
And 'Third World' is short life and large family."
60
199916
2388
ืื– ื–ื” ืžื” ืฉืืคืฉืจ ืœื”ืฆื™ื’ ืคื”. ืฉื™ืขื•ืจ ื”ืคืจื™ื•ืŸ ืžื•ืฆื‘ ื›ืืŸ ,ืžืกืคืจ ื™ืœื“ื™ื ืœืื™ืฉื”,
03:23
So this is what I could display here.
61
203058
2385
03:25
I put fertility rate here --
62
205467
1657
03:27
number of children per woman: one, two, three, four,
63
207148
3138
ืื—ื“, ืฉื ื™ื™ื, ืฉืœื•ืฉื”, ืืจื‘ืขื”, ืขื“ ืฉืžื•ื ื” ื™ืœื“ื™ื ืœืื™ืฉื”.
03:30
up to about eight children per woman.
64
210310
2031
03:32
We have very good data since 1962, 1960, about,
65
212365
3980
ื™ืฉ ืœื ื• ื ืชื•ื ื™ื ื˜ื•ื‘ื™ื ืžืื•ื“ ืž-1962, 1960, ืขืœ ื’ื•ื“ืœ ื”ืžืฉืคื—ื” ื‘ื›ืœ ื”ืžื“ื™ื ื•ืช.
03:36
on the size of families in all countries.
66
216369
2033
03:38
The error margin is narrow.
67
218426
1375
ืžืจื•ื•ื— ื”ื˜ืขื•ืช ืงื˜ืŸ. ื›ืืŸ ืžื•ืฆื‘ืช ืชื•ื—ืœืช ื”ื—ื™ื™ื ื‘ืขืช ื”ืœื™ื“ื”,
03:39
Here, I put life expectancy at birth,
68
219825
2008
03:41
from 30 years in some countries, up to about 70 years.
69
221857
3467
ืžื’ื™ืœ 30 ื‘ืžื“ื™ื ื•ืช ืžืกื•ื™ืžื•ืช ืขื“ ื’ื™ืœ 70 ื‘ืขืจืš.
03:45
And in 1962, there was really a group of countries here
70
225348
3403
ื•ื‘-1962, ืžืžืฉ ื”ื™ื™ืชื” ืงื‘ื•ืฆื” ืฉืœ ืžื“ื™ื ื•ืช ื›ืืŸ
03:48
that were industrialized countries,
71
228775
1857
ืฉื”ืŸ ืžื“ื™ื ื•ืช ืžืชื•ืขืฉื•ืช, ืขื ืžืฉืคื—ื•ืช ืงื˜ื ื•ืช ื•ื—ื™ื™ื ืืจื•ื›ื™ื.
03:50
and they had small families and long lives.
72
230656
3094
03:53
And these were the developing countries.
73
233774
2100
ื•ืืœื” ื”ื™ื• ื”ืžื“ื™ื ื•ืช ื”ืžืชืคืชื—ื•ืช:
03:55
They had large families and they had relatively short lives.
74
235898
3041
ื”ื™ื• ืœื”ืŸ ืžืฉืคื—ื•ืช ื’ื“ื•ืœื•ืช ื•ื—ื™ื™ื ืงืฆืจื™ื ื™ื—ืกื™ืช.
03:58
Now, what has happened since 1962? We want to see the change.
75
238963
3681
ืื– ืžื” ืงืจื” ืžืื– 1962? ืื ื—ื ื• ืจื•ืฆื™ื ืœืจืื•ืช ืฉื™ื ื•ื™.
04:02
Are the students right? It's still two types of countries?
76
242668
2937
ื”ืื ื”ืกื˜ื•ื“ื ื˜ื™ื ืฆื•ื“ืงื™ื? ื”ืื ืขื“ื™ื™ืŸ ื™ืฉ ืฉื ื™ ืกื•ื’ื™ื ืฉืœ ืืจืฆื•ืช?
04:05
Or have these developing countries got smaller families and they live here?
77
245629
3736
ืื• ืฉื”ืžืฉืคื—ื•ืช ื‘ืžื“ื™ื ื•ืช ื”ืžืชืคืชื—ื•ืช ื”ืชื›ื•ื•ืฆื• ื•ื”ืŸ ื ืžืฆืื•ืช ื›ืืŸ?
04:09
Or have they got longer lives and live up there?
78
249389
2298
ืื• ืฉื”ื—ื™ื™ื ื”ืชืืจื›ื• ื•ื”ืŸ ื ืžืฆืื•ืช ืฉื ืœืžืขืœื”?
04:11
Let's see. We start the world, eh?
79
251711
1841
ื‘ื•ืื• ื ืจืื”. ืขืฆืจื ื• ืืช ื”ืขื•ืœื ื›ืืŸ. ื›ืœ ืืœื” ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ืฉืœ ื”ืื•"ื
04:13
This is all UN statistics that have been available.
80
253576
2486
ืฉื”ื™ื• ื–ืžื™ื ื•ืช ืœื ื•. ื”ื ื”. ืืชื ืจื•ืื™ื ืฉื?
04:16
Here we go. Can you see there?
81
256086
1501
04:17
It's China there, moving against better health there, improving there.
82
257611
3287
ื”ื ื” ืกื™ืŸ, ื ืขื” ื ื’ื“ ื‘ืจื™ืื•ืช ื˜ื•ื‘ื” ื™ื•ืชืจ, ืžืฉืชืคืจืช ืฉื.
04:20
All the green Latin American countries are moving towards smaller families.
83
260922
3645
ื›ืœ ื”ืืจืฆื•ืช ื”ืœื˜ื™ื ื™ื•ืช ื”ื™ืจื•ืงื•ืช ื ืขื•ืช ืœื›ื™ื•ื•ืŸ ืžืฉืคื—ื•ืช ืงื˜ื ื•ืช ื™ื•ืชืจ.
ื”ืฆื”ื•ื‘ื•ืช ื”ืŸ ืžื“ื™ื ื•ืช ืขืจื‘ื™ื•ืช,
04:24
Your yellow ones here are the Arabic countries,
84
264591
2422
ื•ื”ืžืฉืคื—ื•ืช ื’ื“ืœื•ืช, ืœื, ื”ื—ื™ื™ื ืžืชืืจื›ื™ื, ืื‘ืœ ื”ืžืฉืคื—ื•ืช ืœื ื’ื“ืœื•ืช.
04:27
and they get longer life, but not larger families.
85
267037
3901
04:30
The Africans are the green here. They still remain here.
86
270962
2622
ื”ืืคืจื™ืงืื™ื ื”ื ื”ื™ืจื•ืงื™ื ืฉื. ื”ื ื ืฉืืจื™ื ืฉื.
04:33
This is India; Indonesia is moving on pretty fast.
87
273608
2641
ื”ื ื” ื”ื•ื“ื•. ืื™ื ื“ื•ื ื–ื™ื” ืžืชืงื“ืžืช ืžืžืฉ ืžื”ืจ.
04:36
In the '80s here, you have Bangladesh still among the African countries.
88
276273
4106
(ืฆื—ื•ืง)
ื•ื‘ืฉื ื•ืช ื”ืฉืžื•ื ื™ื, ื‘ื ื’ืœื“ืฉ ืขื“ื™ื™ืŸ ืขื ื”ืžื“ื™ื ื•ืช ื”ืืคืจื™ืงืื™ื•ืช ืฉื.
04:40
But now, Bangladesh -- it's a miracle that happens in the '80s --
89
280403
3228
ืื‘ืœ ืขื›ืฉื™ื• ื‘ื ื’ืœื“ืฉ, ื–ื” ื ืก ืฉื”ืชืจื—ืฉ ื‘ืฉื ื•ืช ื”ืฉืžื•ื ื™ื:
04:43
the imams start to promote family planning,
90
283655
2413
ื”ืื™ืžืืžื™ื ื”ืชื—ื™ืœื• ืœืงื“ื ืชื›ื ื•ืŸ ืžืฉืคื—ื”.
04:46
and they move up into that corner.
91
286092
1747
ื”ื ื ืขื™ื ืœืคื™ื ื” ืฉื ืœืžืขืœื”. ื•ื‘ืฉื ื•ืช ื”ืชืฉืขื™ื, ืžื’ื™ืคืช ,ื”ืื™ื™ื“ืก ื”ืื™ื•ืžื”
04:47
And in the '90s, we have the terrible HIV epidemic
92
287863
3298
04:51
that takes down the life expectancy of the African countries.
93
291185
3509
ืฉืžื•ืจื™ื“ื” ืืช ืชื•ื—ืœืช ื”ื—ื™ื™ื ื‘ืžื“ื™ื ื•ืช ื”ืืคืจื™ืงืื™ื•ืช
04:54
And the rest of them all move up into the corner,
94
294718
3648
ื•ื›ืœ ื”ืฉืืจ ื ืขื•ืช ืœืคื™ื ื” ื”ืขืœื™ื•ื ื”,
04:58
where we have long lives and small family,
95
298390
2386
ื•ื”ื ื” ืงื™ื‘ืœื ื• ื—ื™ื™ื ืืจื•ื›ื™ื ื•ืžืฉืคื—ื” ืงื˜ื ื”, ื•ืขื•ืœื ื—ื“ืฉ ืœื’ืžืจื™.
05:00
and we have a completely new world.
96
300800
2114
05:02
(Applause)
97
302938
3214
(ื›ืคื™ื™ื)
05:13
(Applause ends)
98
313561
1097
05:15
Let me make a comparison directly
99
315567
1813
ื”ืจืฉื• ืœื™ ืœื”ืฉื•ื•ืช ื‘ืื•ืคืŸ ื™ืฉื™ืจ ื‘ื™ืŸ ืืจืฆื•ืช ื”ื‘ืจื™ืช ืœื•ื™ื˜ื ืื.
05:17
between the United States of America and Vietnam.
100
317404
3014
05:20
1964:
101
320442
1199
ื‘-1964, ื‘ืืžืจื™ืงื” ื™ืฉ ืžืฉืคื—ื•ืช ืงื˜ื ื•ืช ื•ื—ื™ื™ื ืืจื•ื›ื™ื.
05:22
America had small families and long life;
102
322538
2611
05:25
Vietnam had large families and short lives.
103
325173
3349
ื‘ื•ื™ื˜ื ืื ื™ืฉ ืžืฉืคื—ื•ืช ื’ื“ื•ืœื•ืช ื•ื—ื™ื™ื ืงืฆืจื™ื. ื•ื–ื” ืžื” ืฉืงื•ืจื”:
05:28
And this is what happens.
104
328546
1283
05:29
The data during the war indicate that even with all the death,
105
329853
5341
ื”ื ืชื•ื ื™ื ืœืื•ืจืš ื”ืžืœื—ืžื” ืžืจืื™ื ืฉืœืžืจื•ืช ื›ืœ ื”ื”ืจื’,
05:35
there was an improvement of life expectancy.
106
335218
2229
ื—ืœ ืฉื™ืคื•ืจ ื‘ืชื•ื—ืœืช ื”ื—ื™ื™ื. ื‘ืกื•ืฃ ื”ืฉื ื”,
05:37
By the end of the year, family planning started in Vietnam,
107
337471
2784
ื”ืชื—ื™ืœ ืชื›ื ื•ืŸ ื”ืžืฉืคื—ื” ื‘ื•ื™ื˜ื ืื, ื•ื”ื ืขื‘ืจื• ืœืžืฉืคื—ื•ืช ืงื˜ื ื•ืช.
05:40
and they went for smaller families.
108
340279
1694
05:41
And the United States up there is getting longer life,
109
341997
2569
ื•ืœืžืขืœื” ืืจืฆื•ืช ื”ื‘ืจื™ืช ืžืฉื™ื’ื” ื—ื™ื™ื ืืจื•ื›ื™ื ื™ื•ืชืจ,
05:44
keeping family size.
110
344590
1188
ื•ืฉื•ืžืจืช ืขืœ ื’ื•ื“ืœ ื”ืžืฉืคื—ื”. ื•ืขื›ืฉื™ื• ื‘ืฉื ื•ืช ื”ืฉืžื•ื ื™ื,
05:45
And in the '80s now, they give up Communist planning
111
345802
3605
ื”ื ืžื•ื•ืชืจื™ื ืขืœ ืชื›ื ื•ืŸ ืงื•ืžื•ื ื™ืกื˜ื™ ื•ืขื•ื‘ืจื™ื ืœื›ืœื›ืœืช ืฉื•ืง,
05:49
and they go for market economy,
112
349431
1507
05:50
and it moves faster even than social life.
113
350962
2010
ื•ื–ื” ื–ื– ืขื•ื“ ื™ื•ืชืจ ืžื”ืจ ืžื”ื—ื™ื™ื ื”ื—ื‘ืจืชื™ื™ื. ื•ื›ื™ื•ื
05:52
And today, we have in Vietnam
114
352996
2336
ื™ืฉ ื‘ื•ื™ื˜ื ืื ืื•ืชื” ืชื•ื—ืœืช ื—ื™ื™ื ื•ืื•ืชื• ื’ื•ื“ืœ ืžืฉืคื—ื”,
05:55
the same life expectancy and the same family size
115
355356
4802
ื›ืืŸ ื‘ื•ื™ื˜ื ืื ื‘-2003, ื›ืžื• ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช ื‘-1974, ื‘ืกื•ืฃ ื”ืžืœื—ืžื”.
06:00
here in Vietnam, 2003,
116
360182
2763
06:02
as in United States, 1974, by the end of the war.
117
362969
4067
ืื ื™ ื—ื•ืฉื‘ ืฉื›ื•ืœื ื•, ืื ืœื ืžืกืชื›ืœื™ื ื‘ื ืชื•ื ื™ื,
06:07
I think we all, if we don't look at the data,
118
367513
3296
06:10
we underestimate the tremendous change in Asia,
119
370833
3221
ืžืžืขื™ื˜ื™ื ื‘ืขืจืš ื”ืฉื™ื ื•ื™ ื”ืขืฆื•ื ื‘ืืกื™ื”,
06:14
which was in social change before we saw the economic change.
120
374078
4691
ืฉื”ื™ื” ืฉื™ื ื•ื™ ื—ื‘ืจืชื™ ืœืคื ื™ ืฉืจืื™ื ื• ืืช ื”ืฉื™ื ื•ื™ ื”ื›ืœื›ืœื™.
06:18
So let's move over to another way here
121
378793
2367
ื‘ื•ืื• ื ืžืฉื™ืš ื‘ื“ืจืš ืื—ืจืช ืœื”ืฆื’ืช
06:21
in which we could display the distribution in the world
122
381184
4487
ื”ื—ืœื•ืงื” ื‘ื”ื›ื ืกืช ื”ืขื•ืœื. ื–ื• ื—ืœื•ืงืช ื”ื”ื›ื ืกื” ืฉืœ ืื ืฉื™ื ื‘ืขื•ืœื.
06:25
of income.
123
385695
1280
06:26
This is the world distribution of income of people.
124
386999
3696
ื“ื•ืœืจ ืื—ื“, ืขืฉืจื” ื“ื•ืœืจ, ืžืื” ื“ื•ืœืจ ืœื™ื•ื.
06:31
One dollar, 10 dollars or 100 dollars per day.
125
391499
3846
ืื™ืŸ ืคืขืจ ื‘ื™ืŸ ืขืฉื™ืจื™ื ืœืขื ื™ื™ื ื™ื•ืชืจ. ื–ื” ืžื™ืชื•ืก.
06:36
There's no gap between rich and poor any longer. This is a myth.
126
396071
3412
06:39
There's a little hump here.
127
399507
2015
ื™ืฉ ื’ื‘ืขื” ืงื˜ื ื” ื›ืืŸ. ืื‘ืœ ื™ืฉ ืื ืฉื™ื ื‘ื›ืœ ื”ืฉืœื‘ื™ื.
06:42
But there are people all the way.
128
402195
1640
06:43
And if we look where the income ends up,
129
403859
4386
ื•ืื ื ืจืื” ืœืืŸ ื”ื”ื›ื ืกื” ื”ื•ืœื›ืช,
06:48
this is 100 percent of the world's annual income.
130
408269
4195
ืืœื” ืžืื” ืื—ื•ื– ืžื”ื”ื›ื ืกื•ืช ื”ืฉื ืชื™ื•ืช ื‘ืขื•ืœื. ื•ืขืฉืจื™ื ื”ืื—ื•ื– ื”ืขืฉื™ืจื™ื,
06:52
And the richest 20 percent,
131
412488
2465
06:54
they take out of that about 74 percent.
132
414977
4119
ื”ื ืžืงื‘ืœื™ื ื›-74 ืื—ื•ื–. ื•ืขืฉืจื™ื ื”ืื—ื•ื– ื”ืขื ื™ื™ื
06:59
And the poorest 20 percent, they take about two percent.
133
419120
4916
ืžืงื‘ืœื™ื ื›ืฉื ื™ ืื—ื•ื–ื™ื. ื•ื–ื” ืžืจืื” ืฉื”ืžื•ืฉื’
07:04
And this shows that the concept of developing countries
134
424060
2755
07:06
is extremely doubtful.
135
426839
1567
ืฉืœ ืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช ื”ื•ื ืžืื•ื“ ืžืคื•ืงืคืง. ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืกื™ื•ืข,
07:08
We think about aid,
136
428430
1881
07:10
like these people here giving aid to these people here.
137
430335
3613
ื›ืื™ืœื• ื”ืื ืฉื™ื ืฉื›ืืŸ ืžืกื™ื™ืขื™ื ืœืื ืฉื™ื ืฉื›ืืŸ. ืื‘ืœ ื‘ืืžืฆืข,
07:13
But in the middle, we have most of the world population,
138
433972
3120
ื ืžืฆืืช ืจื•ื‘ ืื•ื›ืœื•ืกื™ื™ืช ื”ืขื•ืœื, ื•ื”ื™ื ืžืงื‘ืœืช 24 ืื—ื•ื– ืžื”ื”ื›ื ืกื•ืช.
07:17
and they have now 24 percent of the income.
139
437116
2609
07:19
We heard it in other forms.
140
439749
1656
ืฉืžืขื ื• ืืช ื–ื” ื‘ืฆื•ืจื•ืช ืื—ืจื•ืช. ื•ื‘ืžื™ ืžื“ื•ื‘ืจ?
07:21
And who are these?
141
441429
2701
ืื™ืคื” ื”ืžื“ื™ื ื•ืช ื”ืฉื•ื ื•ืช? ืืจืื” ืœื›ื ืืช ืืคืจื™ืงื”.
07:24
Where are the different countries?
142
444154
2220
07:26
I can show you Africa.
143
446398
1546
07:27
This is Africa.
144
447968
1591
ื”ื ื” ืืคืจื™ืงื”. ืขืฉืจื” ืื—ื•ื– ืžืื•ื›ืœื•ืกื™ื™ืช ื”ืขื•ืœื, ืจื•ื‘ื ืขื ื™ื™ื.
07:30
Ten percent of the world population,
145
450078
1763
07:31
most in poverty.
146
451865
1166
ื–ื” ื”ืืจื’ื•ืŸ ืœืฉื™ืชื•ืฃ ืคืขื•ืœื” ื›ืœื›ืœื™ ื•ืคื™ืชื•ื—. ื”ืžื“ื™ื ื•ืช ื”ืขืฉื™ืจื•ืช ืฉืœ ื”ืื•"ื.
07:33
This is OECD -- the rich countries, the country club of the UN.
147
453055
4375
07:37
And they are over here on this side. Quite an overlap between Africa and OECD.
148
457454
5416
ื•ื”ืŸ ื ืžืฆืื•ืช ื‘ืฆื“ ื”ื–ื”. ื™ืฉ ื—ืคื™ืคื” ืฉืœ ืžืžืฉ ื‘ื™ืŸ ืืคืจื™ืงื” ืœืืจื’ื•ืŸ ืœืฉื™ืชื•ืฃ ืคืขื•ืœื”.
07:42
And this is Latin America.
149
462894
1348
ื•ื”ื ื” ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช. ื™ืฉ ื‘ื” ื”ื›ื•ืœ,
07:44
It has everything on this earth, from the poorest to the richest
150
464266
3355
ืžื”ืขื ื™ ื‘ื™ื•ืชืจ ืœืขืฉื™ืจ ื‘ื™ื•ืชืจ, ื‘ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช.
07:47
in Latin America.
151
467645
1373
ื•ืžืขืœื™ื”ืŸ ื ื•ื›ืœ ืœืฉื™ื ืืช ืžื–ืจื— ืื™ืจื•ืคื”, ืืช ืžื–ืจื— ืืกื™ื”,
07:49
And on top of that, we can put East Europe,
152
469042
3107
07:52
we can put East Asia, and we put South Asia.
153
472173
3175
ื•ื ืฉื™ื ืืช ื“ืจื•ื ืืกื™ื”. ื•ืื™ืš ื–ื” ื ืจืื”
07:55
And what did it look like if we go back in time,
154
475372
3130
07:58
to about 1970?
155
478526
2093
ืื ื—ื•ื–ืจื™ื ื‘ื–ืžืŸ ืœืฉื ืช 1970? ื™ืฉ ื›ืืŸ ื’ื‘ืขื”.
08:00
Then, there was more of a hump.
156
480643
2522
ื•ืจื•ื‘ ืžื™ ืฉื—ื™ ื‘ืขื•ื ื™ ืžื•ื—ืœื˜ ื—ื™ ื‘ืืกื™ื”.
08:04
And most who lived in absolute poverty were Asians.
157
484242
3759
ื”ื‘ืขื™ื” ื”ืขื•ืœืžื™ืช ื”ื™ื™ืชื” ื”ืขื•ื ื™ ื‘ืืกื™ื”. ื•ืื ื ื–ื™ื– ืืช ื”ืขื•ืœื ืงื“ื™ืžื”,
08:08
The problem in the world was the poverty in Asia.
158
488025
2947
08:10
And if I now let the world move forward,
159
490996
3118
08:14
you will see that while population increases,
160
494138
2612
ืชืจืื• ืฉื™ื—ื“ ืขื ื’ื“ื™ืœืช ื”ืื•ื›ืœื•ืกื™ื™ื”,
08:16
there are hundreds of millions in Asia getting out of poverty,
161
496774
3313
ืžืื•ืช ืžื™ืœื™ื•ื ื™ื ื‘ืืกื™ื” ื™ื•ืฆืื™ื ืžื”ืขื•ื ื™, ื•ืื—ืจื™ื ื ื›ื ืกื™ื ืœืขื•ื ื™,
08:20
and some others getting into poverty,
162
500111
1965
ื•ื–ื” ื”ื“ืคื•ืก ืฉืงื™ื™ื ื”ื™ื•ื.
08:22
and this is the pattern we have today.
163
502100
1901
ื•ื”ืชื—ื–ื™ืช ื”ื›ื™ ื˜ื•ื‘ื” ืฉืœ ื”ื‘ื ืง ื”ืขื•ืœืžื™ ื”ื™ื ืฉื–ื” ืžื” ืฉื™ืงืจื”,
08:24
And the best projection from the World Bank
164
504025
2071
08:26
is that this will happen,
165
506120
1914
ื•ื”ืขื•ืœื ืœื ื™ื”ื™ื” ืžื—ื•ืœืง ื™ื•ืชืจ. ืจื•ื‘ ื”ืื ืฉื™ื ื™ื”ื™ื• ื‘ืžืจื›ื–.
08:28
and we will not have a divided world.
166
508058
1848
08:29
We'll have most people in the middle.
167
509930
1895
08:31
Of course it's a logarithmic scale here,
168
511849
2027
ืžื•ื‘ืŸ ืฉื–ื•ื”ื™ ืกืงืืœื” ืœื•ื’ืจื™ืชืžื™ืช,
08:33
but our concept of economy is growth with percent.
169
513900
3397
ืื‘ืœ ื”ืจืขื™ื•ืŸ ื‘ื›ืœื›ืœื” ื”ื•ื ืฆืžื™ื—ื” ืœืคื™ ืื—ื•ื–ื™ื. ืื ื• ืจื•ืื™ื ื‘ื–ื”
08:37
We look upon it as a possibility of percentile increase.
170
517321
5285
ืืคืฉืจื•ืช ืฉืœ ืฆืžื™ื—ื” ืœืคื™ ืื—ื•ื–ื™ื. ืื ื ืฉื ื” ื–ืืช,
08:42
If I change this and take GDP per capita instead of family income,
171
522630
4824
ื•ื ื™ืงื— ืชืœ"ื’ ืœื ืคืฉ ื‘ืžืงื•ื ื”ื›ื ืกื” ืžืฉืคื—ืชื™ืช,
08:47
and I turn these individual data
172
527478
3771
ื•ื ื”ืคื•ืš ื ืชื•ื ื™ื ืื™ืฉื™ื™ื ืœื ืชื•ื ื™ื ืื–ื•ืจื™ื™ื ืฉืœ ืชื•ืฆืจ ืœืื•ืžื™ ื’ื•ืœืžื™,
08:51
into regional data of gross domestic product,
173
531273
3276
08:54
and I take the regions down here,
174
534573
1888
ื•ื ื™ืงื— ืืช ื”ืื–ื•ืจื™ื ืฉื›ืืŸ ืœืžื˜ื”, ื’ื•ื“ืœ ื”ื‘ื•ืขื” ื”ื•ื ืขื“ื™ื™ืŸ ืื•ื›ืœื•ืกื™ื™ื”.
08:56
the size of the bubble is still the population.
175
536485
2239
08:58
And you have the OECD there, and you have sub-Saharan Africa there,
176
538748
3198
ื•ื”ืืจื’ื•ืŸ ืœืฉื™ืชื•ืฃ ืคืขื•ืœื” ื›ืืŸ, ื•ืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื” ื›ืืŸ,
09:01
and we take off the Arab states there,
177
541970
2241
ื•ื ื™ืงื— ืืช ื”ืžื“ื™ื ื•ืช ื”ืขืจื‘ื™ื•ืช ื›ืืŸ,
09:04
coming both from Africa and from Asia,
178
544235
2218
ืฉื™ื•ืฆืื•ืช ืžืืคืจื™ืงื” ื•ืžืืกื™ื”, ื•ื ืฆื™ื‘ ืื•ืชืŸ ื‘ื ืคืจื“,
09:06
and we put them separately,
179
546477
1666
09:08
and we can expand this axis, and I can give it a new dimension here,
180
548167
5097
ื•ื ื•ื›ืœ ืœื”ืจื—ื™ื‘ ืืช ื”ืฆื™ืจ, ื•ืืคืฉืจ ืœืชืช ืœื• ื›ืืŸ ืžืžื“ ื—ื“ืฉ,
09:13
by adding the social values there, child survival.
181
553288
3349
ืขืœ-ื™ื“ื™ ื”ื•ืกืคืช ืขืจื›ื™ื ื—ื‘ืจืชื™ื™ื ื›ืืŸ, ื”ื™ืฉืจื“ื•ืช ื™ืœื“ื™ื.
09:16
Now I have money on that axis,
182
556661
1728
ืขื›ืฉื™ื• ื”ื›ืกืฃ ื ืžืฆื ืขืœ ื”ืฆื™ืจ ื”ื–ื”, ื•ื”ืกื™ื›ื•ื™ ืœื”ื™ืฉืจื“ื•ืช ื™ืœื“ื™ื ื ืžืฆื ื›ืืŸ.
09:18
and I have the possibility of children to survive there.
183
558413
2743
09:21
In some countries, 99.7% of children survive to five years of age;
184
561180
4257
ื‘ื—ืœืง ืžื”ืžื“ื™ื ื•ืช, 99.7 ืื—ื•ื– ืžื”ื™ืœื“ื™ื ืฉื•ืจื“ื™ื ืขื“ ื’ื™ืœ ื—ืžืฉ.
09:25
others, only 70.
185
565461
1725
ื‘ืื—ืจื•ืช, ืจืง ืฉื‘ืขื™ื ืื—ื•ื–. ื•ื›ืืŸ ื ืจืื” ืฉื™ืฉ ืคืขืจ
09:27
And here, it seems, there is a gap between OECD,
186
567210
3268
ื‘ื™ืŸ ื”ืืจื’ื•ืŸ ืœืฉื™ืชื•ืฃ ืคืขื•ืœื”, ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช, ืžื–ืจื— ืื™ืจื•ืคื”, ืžื–ืจื— ืืกื™ื”,
09:30
Latin America, East Europe, East Asia,
187
570502
3254
09:33
Arab states, South Asia and sub-Saharan Africa.
188
573780
3885
ืžื“ื™ื ื•ืช ืขืจื‘ื™ื•ืช, ื“ืจื•ื ืืกื™ื” ื•ืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื”.
09:37
The linearity is very strong between child survival and money.
189
577689
4908
ื™ืฉ ื™ื—ืก ืžืื•ื“ ื™ืฉื™ืจ ื‘ื™ืŸ ื”ื™ืฉืจื“ื•ืช ื™ืœื“ื™ื ืœื›ืกืฃ.
09:42
But let me split sub-Saharan Africa.
190
582621
3296
ืื‘ืœ ืขื›ืฉื™ื• ื ืคืฆืœ ืืช ืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื”. ื”ื‘ืจื™ืื•ืช ื›ืืŸ ื˜ื•ื‘ื” ืžื”ื‘ืจื™ืื•ืช ืฉื›ืืŸ.
09:45
Health is there and better health is up there.
191
585941
4924
09:50
I can go here, and I can split sub-Saharan Africa into its countries.
192
590889
4462
ืืคืฉืจ ืœืขื‘ื•ืจ ืœื›ืืŸ ื•ืœืคืฆืœ ืืช ืืคืจื™ืงื” ืฉืžื“ืจื•ื ื”ืกื”ืจื” ืœืžื“ื™ื ื•ืช.
09:55
And when it bursts,
193
595375
1202
ื•ื›ืฉื”ื™ื ื ืคืชื—ืช, ื”ื’ื•ื“ืœ ืฉืœ ื‘ื•ืขืช ื”ืžื“ื™ื ื” ื”ื•ื ื’ื•ื“ืœ ื”ืื•ื›ืœื•ืกื™ื™ื”.
09:56
the size of each country bubble is the size of the population.
194
596601
3646
10:00
Sierra Leone down there, Mauritius is up there.
195
600271
2540
ืกื™ื™ืจื” ืœืื•ื ื” ืฉื ืœืžื˜ื”. ืžืื•ืจื™ืฆื™ื•ืก ืฉื ืœืžืขืœื”. ืžืื•ืจื™ืฆื™ื•ืก ื”ื™ื ื”ืจืืฉื•ื ื”
10:02
Mauritius was the first country to get away with trade barriers,
196
602835
3656
ืฉื ืคื˜ืจื” ืžืžื—ืกื•ืžื™ ืกื—ืจ, ื•ื”ื ื™ื›ื•ืœื™ื ื”ื™ื• ืœืžื›ื•ืจ ืืช ื”ืกื•ื›ืจ ืฉืœื”ื
10:06
and they could sell their sugar, they could sell their textiles,
197
606515
3525
ื•ืœืžื›ื•ืจ ื˜ืงืกื˜ื™ืœ ื‘ืชื ืื™ื ื–ื”ื™ื ืœืืœื” ืฉืœ ื”ืื ืฉื™ื ื‘ืื™ืจื•ืคื” ื•ืฆืคื•ืŸ ืืžืจื™ืงื”.
10:10
on equal terms as the people in Europe and North America.
198
610064
3714
10:13
There's a huge difference [within] Africa.
199
613802
2132
ื™ืฉ ืคืขืจ ืขืฆื•ื ื‘ืชื•ืš ืืคืจื™ืงื”. ื•ื’ืื ื” ื ืžืฆืืช ื‘ืืžืฆืข.
10:15
And Ghana is here in the middle.
200
615958
1868
10:17
In Sierra Leone, humanitarian aid.
201
617850
2592
ื‘ืกื™ื™ืจื” ืœืื•ื ื”, ืกื™ื•ืข ื”ื•ืžื ื™ื˜ืืจื™.
10:20
Here in Uganda, development aid.
202
620466
3310
ื›ืืŸ ื‘ืื•ื’ื ื“ื”, ืกื™ื•ืข ื”ืชืคืชื—ื•ืชื™. ื›ืืŸ ืืคืฉืจ ืœื‘ืœื•ืช ื–ืžืŸ,
10:23
Here, time to invest; there, you can go for a holiday.
203
623800
3295
ืืคืฉืจ ืœืฆืืช ืœื—ื•ืคืฉื”. ื™ืฉ ืžื’ื•ื•ืŸ ืขืฆื•ื
10:27
There's tremendous variation within Africa,
204
627119
2742
ื‘ืชื•ืš ืืคืจื™ืงื”, ืฉื ื“ื™ืจ ืฉื ื‘ื—ื™ืŸ ื‘ื›ืš ืฉื”ื™ื ืœื ืฉื•ื•ื” ื‘ื›ื•ืœ.
10:29
which we very often make that it's equal everything.
205
629885
3091
10:33
I can split South Asia here. India's the big bubble in the middle.
206
633000
4239
ืืคืฉืจ ืœืคืฆืœ ืืช ื“ืจื•ื ืืกื™ื” ื›ืืŸ. ื”ื•ื“ื• ื”ื™ื ื”ื‘ื•ืขื” ื”ื’ื“ื•ืœื” ื‘ืžืจื›ื–.
10:37
But there's a huge difference between Afghanistan and Sri Lanka.
207
637263
4440
ืื‘ืœ ื”ื‘ื“ืœ ื‘ื™ืŸ ืืคื’ื ื™ืกื˜ืŸ ืœืกืจื™ ืœื ืงื” ื”ื•ื ืขืฆื•ื.
10:41
I can split Arab states. How are they?
208
641727
2135
ืืคืฉืจ ืœืคืฆืœ ืžื“ื™ื ื•ืช ืขืจื‘ื™ื•ืช. ืžื” ืื™ืชืŸ? ืื•ืชื ืืงืœื™ื ื•ืชืจื‘ื•ืช,
10:43
Same climate, same culture, same religion -- huge difference.
209
643886
4132
ืื•ืชื” ื“ืช. ื”ื‘ื“ืœ ืขืฆื•ื. ืืคื™ืœื• ื‘ื™ืŸ ืฉื›ื ื™ื.
10:48
Even between neighbors --
210
648042
1222
10:49
Yemen, civil war;
211
649288
1245
ืชื™ืžืŸ, ืžืœื—ืžืช ืื–ืจื—ื™ื. ื”ืืžื™ืจื•ื™ื•ืช ื”ืžืื•ื—ื“ื•ืช, ื›ืกืฃ ืฉื”ื•ืฉืงืข ื”ื™ื˜ื‘ ื•ื‘ืฉื•ื•ื™ื•ื ื™ื•ืช.
10:50
United Arab Emirates, money, which was quite equally and well-used.
212
650557
4166
10:54
Not as the myth is.
213
654747
1782
ืœื ื›ืžื• ื‘ืื’ื“ื”. ื•ื–ื” ื›ื•ืœืœ ืืช ื›ืœ ื™ืœื“ื™ ื”ืขื•ื‘ื“ื™ื ื”ื–ืจื™ื ื‘ืืจืฅ.
10:56
And that includes all the children of the foreign workers
214
656553
4109
11:00
who are in the country.
215
660686
1574
ืคืขืžื™ื ืจื‘ื•ืช, ื”ื ืชื•ื ื™ื ื˜ื•ื‘ื™ื ืžืฉื—ื•ืฉื‘ื™ื. ื”ืจื‘ื” ืื ืฉื™ื ืื•ืžืจื™ื ืฉื”ื ืชื•ื ื™ื ืœื ื˜ื•ื‘ื™ื.
11:02
Data is often better than you think. Many people say data is bad.
216
662284
3692
11:06
There is an uncertainty margin, but we can see the difference here:
217
666000
3143
ื™ืฉ ื˜ื•ื•ื— ืื™ ื•ื“ืื•ืช, ืืš ื ื™ืชืŸ ืœืจืื•ืช ืืช ื”ืคืขืจ ื›ืืŸ:
ืงืžื‘ื•ื“ื™ื”, ืกื™ื ื’ืคื•ืจ. ื”ืคืขืจื™ื ื”ืจื‘ื” ื™ื•ืชืจ ื’ื“ื•ืœื™ื
11:09
Cambodia, Singapore.
218
669167
1362
11:10
The differences are much bigger than the weakness of the data.
219
670553
2971
ืžื ืงื•ื“ื•ืช ื”ืชื•ืจืคื” ืฉืœ ื”ื ืชื•ื ื™ื. ืžื–ืจื— ืื™ืจื•ืคื”:
11:13
East Europe: Soviet economy for a long time,
220
673548
4647
ื›ืœื›ืœื” ืกื•ื‘ื™ื™ื˜ื™ืช ื‘ืžืฉืš ื–ืžืŸ ืจื‘, ืืš ืœืื—ืจ ืขืฉืจ ืฉื ื™ื,
11:18
but they come out after 10 years very, very differently.
221
678219
3212
ื”ืŸ ืžืื•ื“, ืžืื•ื“ ืฉื•ื ื•ืช. ื•ื”ื ื” ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช.
11:21
And there is Latin America.
222
681455
2733
ื›ื™ื•ื, ืœื ืฆืจื™ืš ืœืœื›ืช ืœืงื•ื‘ื” ื›ื“ื™ ืœืžืฆื•ื ืžื“ื™ื ื” ื‘ืจื™ืื” ื‘ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช.
11:24
Today, we don't have to go to Cuba
223
684212
1646
11:25
to find a healthy country in Latin America.
224
685882
2028
11:27
Chile will have a lower child mortality than Cuba within some few years from now.
225
687934
4634
ื‘ืขื•ื“ ื›ืžื” ืฉื ื™ื, ืœืฆ'ื™ืœื” ืชื”ื™ื” ืชืžื•ืชืช ื™ืœื“ื™ื ื ืžื•ื›ื” ืžืฉืœ ืงื•ื‘ื”.
11:32
Here, we have high-income countries in the OECD.
226
692592
3055
ื•ื”ื ื” ืžื“ื™ื ื•ืช ืขื ื”ื›ื ืกื” ื’ื‘ื•ื”ื” ื‘ืืจื’ื•ืŸ ืœืฉื™ืชื•ืฃ ืคืขื•ืœื” ื›ืœื›ืœื™ ื•ืคื™ืชื•ื—.
11:35
And we get the whole pattern here of the world,
227
695671
3792
ื•ื›ืืŸ ื”ื“ืคื•ืก ืฉืœ ื”ืขื•ืœื ื›ื•ืœื•,
11:39
which is more or less like this.
228
699487
2151
ืฉื”ื•ื ืคื—ื•ืช ืื• ื™ื•ืชืจ ื›ื–ื”. ื•ืื ื ื‘ื™ื˜ ื‘ื•,
11:41
And if we look at it, how the world looks,
229
701662
3940
ื‘ืื™ืš ืฉื”ื•ื ื ืจืื”, ื”ืขื•ืœื, ื‘-1960, ื”ื•ื ืžืชื—ื™ืœ ืœื”ืฉืชื ื•ืช. 1960.
11:46
in 1960, it starts to move.
230
706658
3318
11:50
This is Mao Zedong. He brought health to China.
231
710000
2632
ื”ื ื” ืžืื• ืฆื” ื˜ื•ื ื’. ื”ื•ื ื”ื‘ื™ื ื‘ืจื™ืื•ืช ืœืกื™ืŸ. ื•ืื– ื”ื•ื ืžืช.
11:52
And then he died.
232
712656
1166
11:53
And then Deng Xiaoping came and brought money to China,
233
713846
2612
ื•ืื– ื“ื ื’ ืฉื™ืื•ืคื™ื ื’ ื”ื’ื™ืข ื•ื”ื‘ื™ื ื›ืกืฃ ืœืกื™ืŸ, ื•ื”ื—ื–ื™ืจ ืื•ืชื ืœื–ืจื ื”ืžืจื›ื–ื™.
11:56
and brought them into the mainstream again.
234
716482
2054
11:58
And we have seen how countries move in different directions like this,
235
718560
4158
ื•ืจืื™ื ื• ืื™ืš ื”ืžื“ื™ื ื•ืช ื ืขื•ืช ื›ืš ื‘ื›ื™ื•ื•ื ื™ื ืฉื•ื ื™ื,
12:02
so it's sort of difficult to get an example country
236
722742
5905
ืื– ืงืฆืช ืงืฉื” ืœืงื‘ืœ ืžื“ื™ื ื” ืœื“ื•ื’ืžื”
ืฉืžืฆื™ื’ื” ืืช ื”ื“ืคื•ืก ื”ืขื•ืœืžื™.
12:08
which shows the pattern of the world.
237
728671
2145
12:10
But I would like to bring you back to about here, at 1960.
238
730840
6854
ืื ื™ ืจื•ืฆื” ืœื”ื—ื–ื™ืจ ืืชื›ื ืœ-1960.
ืื ื™ ืจื•ืฆื” ืœื”ืฉื•ื•ืช ื‘ื™ืŸ ื“ืจื•ื ืงื•ืจื™ืื”, ื”ื ื”, ืœื‘ืจื–ื™ืœ,
12:18
I would like to compare South Korea, which is this one,
239
738083
6991
12:25
with Brazil, which is this one.
240
745098
3358
ื”ื ื” ื”ื™ื. ื”ืชื•ื•ื™ืช ื‘ืจื—ื” ืœื™. ื•ืื ื™ ืจื•ืฆื” ืœื”ืฉื•ื•ืช ื‘ื™ืŸ ืื•ื’ื ื“ื”,
12:29
The label went away for me here.
241
749154
1782
12:30
And I would like to compare Uganda, which is there.
242
750960
2925
ื”ื ื” ื”ื™ื. ื•ืืคืฉืจ ืœื”ืจื™ืฅ ืงื“ื™ืžื”, ื›ืš.
12:34
I can run it forward, like this.
243
754699
3183
ื•ื ื™ืชืŸ ืœืจืื•ืช ืื™ืš ื“ืจื•ื ืงื•ืจื™ืื” ืžืชืงื“ืžืช ืžื”ืจ ืžืื•ื“,
12:39
And you can see how South Korea is making a very, very fast advancement,
244
759748
6996
12:46
whereas Brazil is much slower.
245
766768
2585
ื‘ืขื•ื“ ื‘ืจื–ื™ืœ ื”ืจื‘ื” ื™ื•ืชืจ ืื™ื˜ื™ืช.
12:49
And if we move back again, here, and we put trails on them, like this,
246
769377
6144
ื•ืื ื ื—ื–ื•ืจ ืื—ื•ืจื”, ื›ืš, ื•ื ืฆื™ื‘ ืžืขืงื‘ ืขืœื™ื”ืŸ, ื›ืš,
12:55
you can see again
247
775545
2403
ื ื™ืชืŸ ืฉื•ื‘ ืœืจืื•ืช ืฉืžื”ื™ืจื•ืช ื”ื”ืชืคืชื—ื•ืช
12:57
that the speed of development is very, very different,
248
777972
3332
ืฉื•ื ื” ืžืื•ื“, ื•ื”ืžื“ื™ื ื•ืช ื ืขื•ืช ืคื—ื•ืช ืื• ื™ื•ืชืจ
13:01
and the countries are moving more or less at the same rate
249
781328
5760
ื‘ืื•ืชื• ืงืฆื‘ ื›ืžื• ื›ืกืฃ ื•ื‘ืจื™ืื•ืช, ืืš ื ืจืื” ืฉื ื™ืชืŸ ืœื ื•ืข
13:07
as money and health,
250
787112
1427
13:08
but it seems you can move much faster
251
788563
1929
ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ืจ ืื ืืชื” ืงื•ื“ื ื‘ืจื™ื ืœืขื•ืžืช ืื ืืชื” ืงื•ื“ื ืขืฉื™ืจ.
13:10
if you are healthy first than if you are wealthy first.
252
790516
2918
13:14
And to show that, you can put on the way of United Arab Emirates.
253
794000
4158
ื•ื›ื“ื™ ืœื”ืฆื™ื’ ื–ืืช, ื ื™ืชืŸ ืœื”ืฆื™ื’ ืืช ื”ืžืกืœื•ืœ ืฉืœ ืื™ื—ื•ื“ ื”ืืžื™ืจื•ื™ื•ืช ื”ืขืจื‘ื™ื•ืช.
13:18
They came from here, a mineral country.
254
798182
2674
ื”ืŸ ืžื’ื™ืขื•ืช ืžื›ืืŸ, ืžื“ื™ื ืช ืžืฉืื‘ื™ื. ื”ื ืžื›ืจื• ืืช ื”ื ืคื˜,
13:20
They cached all the oil; they got all the money;
255
800880
2467
ืงื™ื‘ืœื• ืืช ื”ื›ืกืฃ, ืื‘ืœ ืื™ ืืคืฉืจ ืœืงื ื•ืช ื‘ืจื™ืื•ืช ื‘ืกื•ืคืจืžืจืงื˜.
13:23
but health cannot be bought at the supermarket.
256
803371
2436
ื‘ื‘ืจื™ืื•ืช ืฆืจื™ืš ืœื”ืฉืงื™ืข. ืฆืจื™ืš ืœืœืžื“ ืืช ื”ื™ืœื“ื™ื.
13:26
You have to invest in health. You have to get kids into schooling.
257
806516
3147
13:29
You have to train health staff. You have to educate the population.
258
809687
3190
ืฆืจื™ืš ืœื”ื›ืฉื™ืจ ืขื•ื‘ื“ื™ ืจืคื•ืื”. ืฆืจื™ืš ืœื—ื ืš ืืช ื”ืื•ื›ืœื•ืกื™ื™ื”.
13:32
And Sheikh Zayed did that in a fairly good way.
259
812901
2356
ื•ืฉื™ื™ื— ืกืื™ื™ื“ ื”ืฆืœื™ื— ื‘ื›ืš ืœื ืžืขื˜.
13:35
In spite of falling oil prices, he brought this country up here.
260
815281
3963
ื•ืœืžืจื•ืช ืฆื ื™ื—ืช ืžื—ื™ืจื™ ื”ื ืคื˜, ื”ื•ื ื”ืขืœื” ืืช ื”ืžื“ื™ื ื” ืฉืœื• ืœืฉื.
13:39
So we've got a much more mainstream appearance of the world,
261
819268
3708
ื›ืš ืฉื™ืฉ ืœื ื• ืžืจืื” ื”ืจื‘ื” ื™ื•ืชืจ ืžืื•ื–ืŸ ืฉืœ ื”ืขื•ืœื,
13:43
where all countries tend to use their money
262
823000
2527
ื›ืฉื›ืœ ื”ืžื“ื™ื ื•ืช ื ื•ื˜ื•ืช ืœื”ืฉืงื™ืข ืืช ื›ืกืคืŸ
13:45
better than they used it in the past.
263
825551
2295
ื˜ื•ื‘ ื™ื•ืชืจ ืžื‘ืขื‘ืจ. ื•ื‘ื›ืŸ, ื›ืš ื–ื” ื ืจืื”,
13:49
Now, this is, more or less, if you look at the average data of the countries --
264
829269
6978
ื›ืฉืžื‘ื™ื˜ื™ื ื‘ื ืชื•ื ื™ื ื”ืžืžื•ืฆืขื™ื ืฉืœ ื”ืžื“ื™ื ื•ืช. ื”ืŸ ื ืจืื•ืช ื›ืš.
13:56
they are like this.
265
836271
1194
13:57
That's dangerous, to use average data,
266
837489
3409
ื•ื–ื” ืžืกื•ื›ืŸ, ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ืžืžื•ืฆืขื™ื, ื›ื™ ื™ืฉ ืคืขืจื™ื ื’ื“ื•ืœื™ื ื‘ืชื•ืš ืžื“ื™ื ื•ืช.
14:00
because there is such a lot of difference within countries.
267
840922
3845
ืื– ืื ื ืกืชื›ืœ ื›ืืŸ, ื ื•ื›ืœ ืœืจืื•ืช
14:04
So if I go and look here,
268
844791
2494
14:07
we can see that Uganda today is where South Korea was in 1960.
269
847309
6545
ืฉืื•ื’ื ื“ื” ื”ื™ื•ื ื”ื™ื ื›ืคื™ ืฉืงื•ืจื™ืื” ื”ื™ื™ืชื” ื‘-1960. ืื ื ืคืฆืœ ืืช ืื•ื’ื ื“ื”,
14:13
If I split Uganda, there's quite a difference within Uganda.
270
853878
3788
ื™ืฉ ืคืขืจ ืžืฉืžืขื•ืชื™ ื‘ืชื•ืš ืื•ื’ื ื“ื”. ืืœื” ื—ืžื™ืฉื™ื•ืช ืžืื•ื’ื ื“ื”.
14:17
These are the quintiles of Uganda.
271
857690
1988
14:19
The richest 20 percent of Ugandans are there.
272
859702
2180
ื›ืืŸ ืขืฉืจื™ื ื”ืื—ื•ื–ื™ื ื”ืขืฉื™ืจื™ื ื‘ื™ื•ืชืจ ื‘ืื•ื’ื ื“ื”.
14:21
The poorest are down there.
273
861906
1471
ื”ืขื ื™ื™ื ื‘ื™ื•ืชืจ ื›ืืŸ ืœืžื˜ื”. ืื ื ืคืฆืœ ืืช ื“ืจื•ื ืืคืจื™ืงื”, ื”ื™ื ื ืจืื™ืช ื›ืš:
14:23
If I split South Africa, it's like this.
274
863401
2831
14:26
And if I go down and look at Niger,
275
866256
3009
ืื ื ื‘ื™ื˜ ื‘ื ื™ื’ืจื™ื”, ืฉื‘ื” ื”ื™ื” ืจืขื‘ ื ื•ืจืื™,
14:29
where there was such a terrible famine [recently],
276
869289
3493
ืœื‘ืกื•ืฃ, ื”ื™ื ื ืจืื™ืช ื›ืš. ืขืฉืจื™ื ื”ืื—ื•ื–ื™ื ื”ืขื ื™ื™ื ื‘ื ื™ื’ืจื™ื” ื ืžืฆืื™ื ื›ืืŸ,
14:32
it's like this.
277
872806
1151
14:33
The 20 percent poorest of Niger is out here,
278
873981
2757
14:36
and the 20 percent richest of South Africa is there,
279
876762
2769
ื•ืขืฉืจื™ื ื”ืื—ื•ื–ื™ื ื”ืขืฉื™ืจื™ื ืฉืœ ื“ืจื•ื ืืคืจื™ืงื” ื ืžืฆืื™ื ืฉื,
14:39
and yet we tend to discuss what solutions there should be in Africa.
280
879555
4421
ื•ืขื“ื™ื™ืŸ ืื ื• ื“ื ื™ื ื‘ืคืชืจื•ื ื•ืช ืฉื™ืชืื™ืžื• ืœืืคืจื™ืงื”.
14:44
Everything in this world exists in Africa.
281
884000
2567
ื‘ืืคืจื™ืงื” ืงื™ื™ื ื”ื›ื•ืœ. ืื™ ืืคืฉืจ ืœื“ื•ืŸ
14:46
And you can't discuss universal access to HIV [treatment]
282
886591
3275
ืขืœ ื’ื™ืฉื” ืขื•ืœืžื™ืช ืœื˜ื™ืคื•ืœ ื‘ืื™ื™ื“ืก ืขื‘ื•ืจ ื”ื—ืžื™ืฉื™ื™ื” ืฉืœืžืขืœื”
14:49
for that quintile up here
283
889890
1919
14:51
with the same strategy as down here.
284
891833
2625
ืขื ืื•ืชื” ืืกื˜ืจื˜ื’ื™ื” ื›ืžื• ื›ืืŸ ืœืžื˜ื”
14:54
The improvement of the world must be highly contextualized,
285
894482
3706
ืขืœ ืฉื™ืคื•ืจ ื”ืขื•ืœื ืœื”ื™ื•ืช ืชืœื•ื™ ื”ืงืฉืจ, ื•ืื™ืŸ ื–ื” ืจืœื•ื•ื ื˜ื™
14:58
and it's not relevant to have it on a regional level.
286
898212
3653
ืœื‘ืฆืข ืื•ืชื• ื‘ืจืžื” ื”ืื–ื•ืจื™ืช. ืฆืจื™ืš ื”ืจื‘ื” ื™ื•ืชืจ ืคื™ืจื•ื˜.
15:01
We must be much more detailed.
287
901889
1530
ืืคืฉืจ ืœืจืื•ืช ืฉืกื˜ื•ื“ื ื˜ื™ื ืžืื•ื“ ืžืชืจื’ืฉื™ื ืœื”ืฉืชืžืฉ ื‘ื–ื”.
15:04
We find that students get very excited when they can use this.
288
904070
3326
15:07
And even more, policy makers and the corporate sectors
289
907420
3618
ื•ืงื•ื‘ืขื™ ืžื“ื™ื ื™ื•ืช ื•ืื ืฉื™ ื”ืžื’ื–ืจ ื”ืขืกืงื™ ื™ืจืฆื• ืืฃ ื™ื•ืชืจ
15:11
would like to see how the world is changing.
290
911062
3661
ืœืจืื•ืช ืื™ืš ื”ืขื•ืœื ืžืฉืชื ื”. ืื– ืœืžื” ื–ื” ืœื ืงื•ืจื”?
15:14
Now, why doesn't this take place?
291
914747
1875
15:16
Why are we not using the data we have?
292
916646
2303
ืœืžื” ืื ื—ื ื• ืœื ืžืฉืชืžืฉื™ื ื‘ื ืชื•ื ื™ื ื”ืงื™ื™ืžื™ื? ื™ืฉ ืœื ื• ื ืชื•ื ื™ื ื‘ืื•"ื,
15:18
We have data in the United Nations, in the national statistical agencies
293
918973
3810
ื‘ืกื•ื›ื ื•ื™ื•ืช ื”ืกื˜ื˜ื™ืกื˜ื™ืงื” ื”ืœืื•ืžื™ื•ืช
15:22
and in universities and other nongovernmental organizations.
294
922807
3169
ื•ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ื•ื‘ืืจื’ื•ื ื™ื ืœื-ืžืžืฉืœืชื™ื™ื ืื—ืจื™ื.
15:26
Because the data is hidden down in the databases.
295
926000
2737
ืžืคื ื™ ืฉื”ื ืชื•ื ื™ื ื—ื‘ื•ื™ื™ื ื‘ืžืื’ืจื™ ื”ื ืชื•ื ื™ื.
15:28
And the public is there, and the internet is there,
296
928761
2530
ื•ื”ื ื” ื”ืฆื™ื‘ื•ืจ, ื•ื”ืื™ื ื˜ืจื ื˜ ืฉื, ืื‘ืœ ืขื“ื™ื™ืŸ ืœื ืขื•ืฉื™ื ื‘ื”ื ืฉื™ืžื•ืฉ ื™ืขื™ืœ.
15:31
but we have still not used it effectively.
297
931315
2160
15:33
All that information we saw changing in the world
298
933499
2675
ื›ืœ ื”ืžื™ื“ืข ื”ืžืฉืชื ื” ืฉืจืื™ื ื• ืขืœ ื”ืขื•ืœื
15:36
does not include publicly funded statistics.
299
936198
2941
ืœื ื›ื•ืœืœ ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ื‘ืžื™ืžื•ืŸ ืฆื™ื‘ื•ืจื™. ื™ืฉ ื›ืžื” ื“ืคื™ ืื™ื ื˜ืจื ื˜,
15:39
There are some web pages like this, you know,
300
939163
2371
ื›ืžื• ื”ื“ืฃ ื”ื–ื”, ืื‘ืœ ื”ื ืœื•ืงื—ื™ื ืงืฆืช ืชื–ื•ื ื” ืžืžืื’ืจื™ ื”ื ืชื•ื ื™ื,
15:41
but they take some nourishment down from the databases,
301
941558
4703
15:46
but people put prices on them, stupid passwords and boring statistics.
302
946285
4972
ืื‘ืœ ืื ืฉื™ื ืขื•ืจืžื™ื ืขืœื™ื”ื ืžื—ื™ืจื™ื, ืกื™ืกืžืื•ืช ืžื˜ื•ืคืฉื•ืช ื•ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ืžืฉืขืžืžื•ืช.
15:51
(Laughter)
303
951281
1108
(ืฆื—ื•ืง, ื›ืคื™ื™ื)
15:52
And this won't work.
304
952413
1422
15:53
(Applause)
305
953859
2556
ื•ื–ื” ืœื ื™ืขื‘ื•ื“. ืื– ืžื” ื“ืจื•ืฉ ืœื ื•? ื™ืฉ ืœื ื• ืžืื’ืจื™ ื ืชื•ื ื™ื.
15:56
So what is needed? We have the databases.
306
956439
2422
15:58
It's not a new database that you need.
307
958885
1867
ืœื ืฆืจื™ืš ืžืื’ืจ ื ืชื•ื ื™ื ื—ื“ืฉ. ื™ืฉ ืœื ื• ื›ืœื™ ืชื›ื ื•ืŸ ื ื”ื“ืจื™ื,
16:00
We have wonderful design tools and more and more are added up here.
308
960776
3805
ื•ื™ื•ืชืจ ื•ื™ื•ืชืจ ื ื•ืกืคื™ื ื›ืืŸ. ืื– ื”ืชื—ืœื ื•
16:04
So we started a nonprofit venture linking data to design,
309
964605
6130
ื™ื•ื–ืžื” ืœืœื ืžื˜ืจื•ืช ืจื•ื•ื—, ืฉืžื—ื‘ืจืช ื ืชื•ื ื™ื ืœืชื›ื ื•ืŸ,
16:10
we called "Gapminder,"
310
970759
1156
ื•ืงืจืื ื• ืœื” 'ื‘ื•ื—ืŸ ื”ืคืขืจื™ื', ืžื”ืจื›ื‘ืช ื”ืชื—ืชื™ืช ืฉืœ ืœื•ื ื“ื•ืŸ,
16:11
from the London Underground, where they warn you, "Mind the gap."
311
971939
3097
ื‘ื” ืžื–ื”ื™ืจื™ื "ืœืฉื™ื ืœื‘ ืœืคืขืจ". ืื– ื—ืฉื‘ื ื• ืฉื”ืฉื ืžืชืื™ื.
16:15
So we thought Gapminder was appropriate.
312
975060
1959
ื•ื”ืชื—ืœื ื• ืœื›ืชื•ื‘ ืชื•ื›ื ื” ืฉืชื•ื›ืœ ืœืงืฉืจ ื›ืš ื‘ื™ืŸ ื ืชื•ื ื™ื.
16:17
And we started to write software which could link the data like this.
313
977043
4181
ื•ื–ื” ืœื ื”ื™ื” ื›ืœ ื›ืš ืงืฉื”. ื–ื” ืœืงื— ื›ืžื” ืฉื ื•ืช ืขื•ื‘ื“, ื•ื™ืฆืจื ื• ื”ื ืคืฉื•ืช.
16:21
And it wasn't that difficult.
314
981248
1547
16:22
It took some person years, and we have produced animations.
315
982819
3723
16:26
You can take a data set and put it there.
316
986566
2233
ืืคืฉืจ ืœืงื—ืช ืื•ืกืฃ ื ืชื•ื ื™ื ื•ืœืฉื™ื ืื•ืชื• ื›ืืŸ.
16:28
We are liberating UN data, some few UN organization.
317
988823
4476
ืื ื—ื ื• ืžืฉื—ืจืจื™ื ื ืชื•ื ื™ื ืžื”ืื•"ื, ืžื›ืžื” ืืจื’ื•ื ื™ ืื•"ื.
16:33
Some countries accept that their databases can go out on the world.
318
993323
4278
ืžื“ื™ื ื•ืช ืžืกื•ื™ืžื•ืช ืžืกื›ื™ืžื•ืช ืœืฉื—ืจืจ ืžืื’ืจื™ ื ืชื•ื ื™ื ืœืขื•ืœื,
16:37
But what we really need is, of course, a search function,
319
997625
3245
ืื‘ืœ ืžื” ืฉืฆืจื™ืš ื‘ืืžืช, ื›ืžื•ื‘ืŸ, ื”ื•ื ืคืขื•ืœืช ื—ื™ืคื•ืฉ.
16:40
a search function where we can copy the data up to a searchable format
320
1000894
4502
ืคืขื•ืœืช ื—ื™ืคื•ืฉ ืฉืื™ืชื” ืืคืฉืจ ืœื”ืขืชื™ืง ื ืชื•ื ื™ื ื‘ืชื‘ื ื™ืช ืฉื ื™ืชืŸ ืœื—ืคืฉ
16:45
and get it out in the world.
321
1005420
1518
ื•ืœืฉื—ืจืจ ืื•ืชื ืืœ ื”ืขื•ืœื. ื•ืžื” ืื ื—ื ื• ืฉื•ืžืขื™ื ื›ืฉืื ื—ื ื• ืžื‘ืจืจื™ื?
16:46
And what do we hear when we go around?
322
1006962
2165
ื—ืงืจืชื™ ื‘ืฆื•ืจื” ืื ืชืจื•ืคื•ืœื•ื’ื™ืช ืืช ื™ื—ื™ื“ื•ืช ื”ืกื˜ื˜ื™ื˜ื™ืงื” ื”ืžืจื›ื–ื™ื•ืช. ื›ื•ืœื ืื•ืžืจื™ื,
16:49
I've done anthropology on the main statistical units.
323
1009151
3118
16:52
Everyone says, "It's impossible. This can't be done.
324
1012293
3009
"ื–ื” ื‘ืœืชื™ ืืคืฉืจื™. ืื™ ืืคืฉืจ ืœืขืฉื•ืช ื–ืืช. ื”ืžื™ื“ืข ืฉืœื ื• ื›ืœ ื›ืš ืžื™ื•ื—ื“
16:55
Our information is so peculiar in detail,
325
1015326
2510
16:57
so that cannot be searched as others can be searched.
326
1017860
3104
"ื‘ืจืžืช ื”ืคื™ืจื•ื˜ ืฉืœื•, ืื™ ืืคืฉืจ ืœื—ืคืฉ ื‘ื• ื›ืžื• ืฉืืคืฉืจ ื‘ืื—ืจื™ื.
17:00
We cannot give the data free to the students,
327
1020988
2355
"ืื™ ืืคืฉืจ ืœืชืช ืืช ื”ื ืชื•ื ื™ื ื‘ื—ื™ื ื ืœืกื˜ื•ื“ื ื˜ื™ื, ื‘ื—ื™ื ื ืœื—ื‘ืจื•ืช ื‘ืขื•ืœื".
17:03
free to the entrepreneurs of the world."
328
1023367
2126
ืื‘ืœ ื–ื” ืžื” ืฉื ืจืฆื” ืœืจืื•ืช, ื ื›ื•ืŸ?
17:06
But this is what we would like to see, isn't it?
329
1026256
2346
.ื”ื ืชื•ื ื™ื ื‘ืžื™ืžื•ืŸ ืฆื™ื‘ื•ืจื™ ื ืžืฆืื™ื ื›ืืŸ ืœืžื˜ื”
17:09
The publicly funded data is down here.
330
1029175
2424
17:11
And we would like flowers to grow out on the net.
331
1031623
3035
ื•ืื ื—ื ื• ืจื•ืฆื™ื ืฉืคืจื—ื™ื ื™ืคืจื—ื• ื‘ืื™ื ื˜ืจื ื˜.
17:14
One of the crucial points is to make them searchable,
332
1034682
3270
ื•ืื—ืช ื”ื ืงื•ื“ื•ืช ื”ืขื™ืงืจื™ื•ืช ื”ื™ื ืœืืคืฉืจ ืืช ื”ื—ื™ืคื•ืฉ ื‘ื”ื ื•ืื– ืืคืฉืจ ื™ื”ื™ื”
17:17
and then people can use the different design tools to animate it there.
333
1037976
4287
ืœื”ืฉืชืžืฉ ื‘ื›ืœื™ ื”ืชื›ื ื•ืŸ ื‘ืฉื‘ื™ืœ ื”ื”ื ืคืฉื”.
ื•ื™ืฉ ืœื™ ื—ื“ืฉื•ืช ื˜ื•ื‘ื•ืช ื‘ืฉื‘ื™ืœื›ื. ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ื”ืŸ ืฉื”ื™ื•ื,
17:22
And I have pretty good news for you.
334
1042287
2294
17:24
I have good news that the [current],
335
1044605
2194
17:26
new head of UN statistics doesn't say it's impossible.
336
1046823
3486
ื”ืžื ื”ืœ ื”ื—ื“ืฉ ืฉืœ ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ื”ืื•"ื ืœื ืื•ืžืจ ืฉื–ื” ื‘ืœืชื™ ืืคืฉืจื™.
17:30
He only says, "We can't do it."
337
1050333
1856
ื”ื•ื ืจืง ืื•ืžืจ, "ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื".
17:32
(Laughter)
338
1052772
3532
(ืฆื—ื•ืง)
17:36
And that's a quite clever guy, huh?
339
1056328
1883
ื–ื” ื‘ื—ื•ืจ ื—ื›ื, ื›ืŸ?
17:38
(Laughter)
340
1058235
1849
(ืฆื—ื•ืง)
17:40
So we can see a lot happening in data in the coming years.
341
1060108
4365
ื›ืš ืฉื‘ืฉื ื™ื ื”ืงืจื•ื‘ื•ืช ื ืจืื” ื”ืจื‘ื” ื”ืชืคืชื—ื•ื™ื•ืช ื‘ื ืชื•ื ื™ื.
17:44
We will be able to look at income distributions in completely new ways.
342
1064497
4376
ื ื•ื›ืœ ืœื”ืกืชื›ืœ ื‘ื—ืœื•ืงื•ืช ื”ื›ื ืกื” ื‘ื“ืจื›ื™ื ืฉื•ื ื•ืช ืœื—ืœื•ื˜ื™ืŸ.
17:48
This is the income distribution of China, 1970.
343
1068897
5079
ื–ื• ื—ืœื•ืงืช ื”ื”ื›ื ืกื” ื‘ืกื™ืŸ, 1970.
17:54
This is the income distribution of the United States, 1970.
344
1074000
4796
ื—ืœื•ืงืช ื”ื”ื›ื ืกื” ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช, 1970.
17:58
Almost no overlap.
345
1078820
1851
ืื™ืŸ ื—ืคื™ืคื” ื›ืžืขื˜. ื•ืžื” ืงืจื”?
18:00
Almost no overlap.
346
1080695
1411
18:02
And what has happened?
347
1082130
1716
18:03
What has happened is this:
348
1083870
1481
ืžื” ืฉืงืจื” ื”ื•ื ืฉืกื™ืŸ ืฆื•ืžื—ืช, ื”ื™ื ื›ื‘ืจ ืœื ื›ืœ ื›ืš ืฉื•ื•ื™ื•ื ื™ืช,
18:05
that China is growing, it's not so equal any longer,
349
1085375
2972
18:08
and it's appearing here, overlooking the United States,
350
1088371
3971
ื•ื”ื™ื ืžื•ืคื™ืขื” ื›ืืŸ, ืžืฉืงื™ืคื” ืžืขืœ ืืจืฆื•ืช ื”ื‘ืจื™ืช.
18:12
almost like a ghost, isn't it?
351
1092366
2292
ื›ืžืขื˜ ื›ืžื• ืจื•ื— ืจืคืื™ื, ื ื›ื•ืŸ?
18:14
(Laughter)
352
1094682
1294
(ืฆื—ื•ืง)
18:16
It's pretty scary.
353
1096000
1587
ื–ื” ื“ื™ ืžืคื—ื™ื“. ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื—ืฉื•ื‘ ืœืงื‘ืœ ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื–ื”.
18:17
(Laughter)
354
1097611
2261
18:22
But I think it's very important to have all this information.
355
1102762
3910
18:26
We need really to see it.
356
1106696
2730
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืžืžืฉ ืœืจืื•ืช ืืช ื–ื”. ื•ื‘ืžืงื•ื ืœื”ื‘ื™ื˜ ื‘ื–ื”,
18:29
And instead of looking at this,
357
1109450
2883
18:32
I would like to end up by showing the internet users per 1,000.
358
1112357
5383
ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœืกื™ื•ื ืืช ืžืฉืชืžืฉื™ ื”ืื™ื ื˜ืจื ื˜ ืœื›ืœ ืืœืฃ ืื™ืฉ.
18:37
In this software, we access about 500 variables
359
1117764
2924
ื‘ืชื•ื›ื ื” ื”ื–ืืช, ืื ื• ื ื™ื’ืฉื™ื ื‘ืงืœื•ืช ืœื›ื—ืžืฉ ืžืื•ืช ืžืฉืชื ื™ื ืžื›ืœ ื”ืžื“ื™ื ื•ืช.
18:40
from all the countries quite easily.
360
1120712
2267
ืœื•ืงื— ืœื” ืงืฆืช ื–ืžืŸ ืœื”ืชืื™ื ืืช ื–ื”,
18:43
It takes some time to change for this,
361
1123003
3134
18:46
but on the axes, you can quite easily get any variable you would like to have.
362
1126161
5818
ืื‘ืœ ืขืœ ื”ืฆื™ืจื™ื, ืืคืฉืจ ืœืจืื•ืช ื‘ืงืœื•ืช ื›ืœ ืžืฉืชื ื” ืฉืชืจืฆื•.
ื•ื”ืจืขื™ื•ืŸ ื”ื•ื ืœืงื‘ืœ ืืช ืžืื’ืจื™ ื”ื ืชื•ื ื™ื ื‘ื—ื™ื ื,
18:52
And the thing would be to get up the databases free,
363
1132003
4383
18:56
to get them searchable, and with a second click,
364
1136410
2809
ืœืืคืฉืจ ื—ื™ืคื•ืฉ ื‘ื”ื, ื•ื‘ืœื—ื™ืฆืช ืขื›ื‘ืจ ื ื•ืกืคืช
18:59
to get them into the graphic formats, where you can instantly understand them.
365
1139243
5056
ืœื”ืขื‘ื™ืจ ืื•ืชื ืœืชื‘ื ื™ืช ื”ื’ืจืคื™ืช, ืฉืžืืคืฉืจืช ืœื”ื‘ื™ืŸ ืื•ืชื ืžื™ื“.
19:04
Now, statisticians don't like it, because they say
366
1144323
3426
ื”ืกื˜ื˜ื™ืกื˜ื™ืงืื™ื ืœื ืื•ื”ื‘ื™ื ืืช ื–ื”, ื›ื™ ืœื˜ืขื ืชื
19:07
that this will not show the reality;
367
1147773
6917
ื–ื” ืœื ื™ืฆื™ื’ ืืช ื”ืžืฆื™ืื•ืช; ืฆืจื™ืš ื“ืจื›ื™ื ืกื˜ื˜ื™ืกื˜ื™ื•ืช ื•ืื ืœื™ื˜ื™ื•ืช.
19:14
we have to have statistical, analytical methods.
368
1154714
2288
ืื‘ืœ ื–ื” ืขื•ื–ืจ ืœื™ืฆื•ืจ ื”ื™ืคื•ืชื–ื•ืช.
19:17
But this is hypothesis-generating.
369
1157026
1950
19:19
I end now with the world.
370
1159000
1905
ืืกื™ื™ื ื›ืขืช ืขื ื”ืขื•ืœื. ื”ื ื”, ื”ืื™ื ื˜ืจื ื˜ ืžื’ื™ืข.
19:22
There, the internet is coming.
371
1162021
1485
19:23
The number of internet users are going up like this.
372
1163530
2483
ืžืกืคืจ ืžืฉืชืžืฉื™ ื”ืื™ื ื˜ืจื ื˜ ื’ื“ืœ ื›ืš. ื–ื” ื”ืชืœ"ื’ ืœื ืคืฉ.
19:26
This is the GDP per capita.
373
1166037
2111
ื•ื–ื• ื›ื ื™ืกื” ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื“ืฉื”,
19:28
And it's a new technology coming in, but then amazingly,
374
1168172
3500
19:31
how well it fits to the economy of the countries.
375
1171696
4027
ืื‘ืœ ื”ื”ืชืืžื” ืฉืœื” ืœื›ืœื›ืœืช ื”ืžื“ื™ื ื•ืช ืžื“ื”ื™ืžื”.
19:35
That's why the $100 computer will be so important.
376
1175747
2992
ืœื›ืŸ ื”ืžื—ืฉื‘ ื‘ืžืื” ื“ื•ืœืจ ื™ื”ื™ื” ื›ื” ื—ืฉื•ื‘. ืื‘ืœ ื–ื• ืžื’ืžื” ื ื—ืžื“ื”.
19:38
But it's a nice tendency.
377
1178763
1405
19:40
It's as if the world is flattening off, isn't it?
378
1180192
2771
ื–ื” ื›ืื™ืœื• ื”ืขื•ืœื ืžืฉืชื˜ื—, ื ื›ื•ืŸ? ื”ืžื“ื™ื ื•ืช ื”ืืœื”
19:42
These countries are lifting more than the economy,
379
1182987
2538
ื ื•ืฉืื•ืช ื™ื•ืชืจ ื•ื™ื•ืชืจ ืžื”ื›ืœื›ืœื”, ื•ื™ื”ื™ื” ืžืขื ื™ื™ืŸ
19:45
and it will be very interesting to follow this over the year,
380
1185549
2956
ืœืขืงื•ื‘ ืื—ืจื™ื”ืŸ ื‘ืžื”ืœืš ื”ืฉื ื”, ื›ืคื™ ืฉืื ื™ ืจื•ืฆื” ืฉืชื•ื›ืœื• ืœืขืฉื•ืช
19:48
as I would like you to be able to do with all the publicly funded data.
381
1188529
3650
.ื‘ืืžืฆืขื•ืช ื›ืœ ื”ื ืชื•ื ื™ื ื‘ืžื™ืžื•ืŸ ืฆื™ื‘ื•ืจื™. ืชื•ื“ื” ืจื‘ื” ืœื›ื
19:52
Thank you very much.
382
1192203
1182
19:53
(Applause)
383
1193409
3000
(ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7