Hans Rosling: Debunking third-world myths with the best stats you've ever seen

2,189,337 views 惻 2007-01-14

TED


ģ•„ėž˜ ģ˜ė¬øģžė§‰ģ„ ė”ėø”ķ“ė¦­ķ•˜ģ‹œė©“ ģ˜ģƒģ“ ģž¬ģƒė©ė‹ˆė‹¤.

검토: John Lynch
00:25
About 10 years ago, I took on the task to teach global development
0
25626
4355
ķ•œ 10년쯤 ģ „, ģŠ¤ģ›Øė“ģ˜ 학부 ķ•™ģƒė“¤ģ—ź²Œ 국제 ź°œė°œģ„ ź°€ė„“ģ¹˜ėŠ”
ģž„ė¬“ė„¼ ģˆ˜ķ–‰ķ•œ ģ ģ“ ģžˆģ—ˆģŠµė‹ˆė‹¤. ģ•„ķ”„ė¦¬ģ¹“ģ—ģ„œ 기아넼 ģ—°źµ¬ķ•˜ėŠ”
00:30
to Swedish undergraduate students.
1
30005
2146
00:32
That was after having spent about 20 years,
2
32175
2881
아프리칓 기꓀들과 약 20ė…„ģ„ ķ•Øź»˜ 볓낸 ķ›„ģ˜€ģŠµė‹ˆė‹¤.
00:35
together with African institutions,
3
35080
1877
00:36
studying hunger in Africa.
4
36981
1598
ź·øėž˜ģ„œ ģ œź°€ 세계에 ėŒ€ķ•“ 좀 ģ•Œź³  ģžˆģ„ ź²ƒģ“ė¼ėŠ” źø°ėŒ€ė„¼ 받고 ģžˆģ—ˆģ§€ģš”.
00:38
So I was sort of expected to know a little about the world.
5
38603
3998
ģ €ėŠ” 칓딜린스칓 ģ˜ķ•™ģ—°źµ¬ģ†Œ ģ˜ėŒ€ģ—ģ„œ
00:42
And I started, in our medical university, Karolinska Institute,
6
42625
3351
00:46
an undergraduate course called Global Health.
7
46000
3530
국제 ė³“ź±“ģ“ė¼ėŠ” 학부 ź³¼ėŖ©ģ„ ź°€ė„“ģ¹˜źø° ģ‹œģž‘ķ–ˆģŠµė‹ˆė‹¤. ķ•˜ģ§€ė§Œ
00:49
But when you get that opportunity, you get a little nervous.
8
49554
2822
ź·ø 기회넼 ģ–»ź²Œ ė˜ģž, 좀 ė¶ˆģ•ˆķ•“ģ”ŒģŠµė‹ˆė‹¤. 제 ź°•ģ˜ė„¼ ė“¤ģœ¼ėŸ¬ ģ˜¤ėŠ”
00:52
I thought, these students coming to us actually have the highest grade
9
52400
3334
ģ“ ķ•™ģƒė“¤ģ“ ģŠ¤ģ›Øė“ ėŒ€ķ•™ ģ œė„ģ—ģ„œ ė°›ģ„ 수 ģžˆėŠ” 최고 ķ•™ģ ģ„ ė°›ėŠ”
00:55
you can get in the Swedish college system,
10
55758
2023
ķ•™ģƒė“¤ģ“ė¼ź³  ģƒź°ķ–ˆź³ , ģ œź°€ ź°€ė„“ģ¹˜ė ¤ź³  ķ•˜ėŠ” ėŖØė“  ź²ƒģ„
00:57
so I thought, maybe they know everything I'm going to teach them about.
11
57805
3365
ģ•Œź³  ģžˆģ„ 것 ź°™ģ•˜ģŠµė‹ˆė‹¤. ź·øėž˜ģ„œ ķ•™ģƒė“¤ģ“ ģ˜¤ģž 사전 ģ‹œķ—˜ģ„ ė³“ģ•˜ģ§€ģš”.
01:01
So I did a pretest when they came.
12
61194
1997
01:03
And one of the questions from which I learned a lot was this one:
13
63215
3493
ģ œź°€ ė§Žģ€ ź²ƒģ„ ė°°ģ› ė˜ ė¬øģ œė“¤ 중 ķ•˜ė‚˜ėŠ” ģ“ź²ƒģ“ģ—ˆģŠµė‹ˆė‹¤.
01:06
"Which country has the highest child mortality of these five pairs?"
14
66732
4269
ė‹¤ģŒ 다섯 ģŒ 중 ģ–“ė¦°ģ“ ģ‚¬ė§ė„ ģ“ ź°€ģž„ ė†’ģ€ ė‚˜ė¼ėŠ”?
그리고 ģ €ėŠ” 다섯 ģŒģ˜ ė‚˜ė¼ė“¤ģ„ ģ§œė§žģ¶°ģ„œ, 각 ģŒģ˜ ė‚˜ė¼ė§ˆė‹¤
01:11
And I put them together so that in each pair of countries,
15
71890
3070
01:14
one has twice the child mortality of the other.
16
74984
3445
ķ•œ ģŖ½ ė‚˜ė¼ź°€ 다넸 ģŖ½ ė‚˜ė¼ģ˜ ģ–“ė¦°ģ“ ģ‚¬ė§ė„ ģ˜ 두 ė°°ź°€ ė˜ė„ė” ķ–ˆģŠµė‹ˆė‹¤.
01:18
And this means that it's much bigger, the difference,
17
78453
4245
ė°ģ“ķ„°ģ˜ ė¶ˆķ™•ģ‹¤ģ„±ė³“ė‹¤ ģ°Øģ“ź°€ 훨씬 ė” ķ¬ė„ė” ė§ģž…ė‹ˆė‹¤.
01:22
than the uncertainty of the data.
18
82722
1802
01:24
I won't put you at a test here, but it's Turkey,
19
84548
2311
ģ—¬ėŸ¬ė¶„ģ—ź²Œ ģ“ ģ‹œķ—˜ģ„ ė“œė¦¬ģ§€ėŠ” ģ•Šź² ģŠµė‹ˆė‹¤. ź·ø 중
01:26
which is highest there, Poland, Russia, Pakistan and South Africa.
20
86883
4327
ģ–“ė¦°ģ“ ģ‚¬ė§ė„ ģ“ ź°€ģž„ ė†’ģ€ ė‚˜ė¼ėŠ” ķ„°ķ‚¤ģž…ė‹ˆė‹¤. 그리고 ģŠ¤ģ›Øė“ ķ•™ģƒė“¤ģ˜
01:31
And these were the results of the Swedish students.
21
91234
2422
ź²°ź³¼ėŠ” ķ“ėž€ė“œ, ėŸ¬ģ‹œģ•„, ķŒŒķ‚¤ģŠ¤ķƒ„, ė‚Øģ•„ķ”„ė¦¬ģ¹“ģ˜€ģŠµė‹ˆė‹¤. ź·øė ‡ź²Œ ķ•“ģ„œ
01:33
I did it so I got the confidence interval, which is pretty narrow.
22
93680
3170
아주 ź°€ź¹ŒģŠ¤ė”œ 얻얓진 ģžģ‹ ź° ģ°Øģ“ģ˜€ģ§€ė§Œ ź·øėž˜ė„ ģ“ė ‡ź²Œ ģ €ėŠ” ģžģ‹ ź° ģ°Øģ“ė„¼ ģ–»ģ–“ėƒˆź³  ė‹¹ģ—°ķžˆ ģ €ėŠ” ķ–‰ė³µķ–ˆģ£ .
01:36
And I got happy, of course -- a 1.8 right answer out of five possible.
23
96874
3985
ģ •ė‹µģ€ ź°€ėŠ„ķ•œ 다섯 개 중 1.8ź°œģ˜€ģŠµė‹ˆė‹¤.
01:40
That means there was a place for a professor of international health
24
100883
3211
ģ“ ė§ģ€ 국제 볓걓 교수넼 ģœ„ķ•œ ģžė¦¬ź°€ ģžˆė‹¤ėŠ” ėœ»ģ“ģ—ˆģŠµė‹ˆė‹¤.
01:44
and for my course.
25
104118
1166
(ģ›ƒģŒ)그리고 제 ź°•ģ˜ė„¼ ģœ„ķ•“ģ„œė„ģš”.
01:45
(Laughter)
26
105308
1033
01:46
But one late night, when I was compiling the report,
27
106365
4039
ķ•˜ģ§€ė§Œ ģ–“ėŠė‚  ė°¤ 늦게, ė³“ź³ ģ„œė„¼ ģ¢…ķ•©ķ•˜ź³  ģžˆģ—ˆģ„ ė•Œ
01:50
I really realized my discovery.
28
110428
2566
ģ €ėŠ” ģ •ė§ė”œ ģ¤‘ėŒ€ķ•œ ģ‚¬ģ‹¤ģ„ ź¹Øė‹¬ģ•˜ģŠµė‹ˆė‹¤.
01:53
I have shown that Swedish top students know, statistically,
29
113018
4925
ģŠ¤ģ›Øė“ģ˜ 최우수 ķ•™ģƒė“¤ģ“ ķ†µź³„ģ ģœ¼ė”œ ė³¼ ė•Œ ģ¹ØķŒ¬ģ§€ģ— 비핓 세계에 ėŒ€ķ•“
01:57
significantly less about the world than the chimpanzees.
30
117967
3009
ģ•„ėŠ” ź²ƒģ“ 훨씬 ģ ė‹¤ėŠ” ź²ƒģ“ģ—ˆģŠµė‹ˆė‹¤.
02:01
(Laughter)
31
121000
1976
(ģ›ƒģŒ)
02:03
Because the chimpanzee would score half right
32
123000
3459
ģ™œėƒķ•˜ė©“, ģ œź°€ ģŠ¤ė¦¬ėž‘ģ¹“, 터키와 ķ•Øź»˜ ė°”ė‚˜ė‚˜ 두 개넼 ģ¹ØķŒ¬ģ§€ģ—ź²Œ
02:06
if I gave them two bananas with Sri Lanka and Turkey.
33
126483
2630
준다멓, ģ¹ØķŒ¬ģ§€ėŠ” ė°˜ģ€ ė§žģ¶œ ź²ƒģ“źø° ė•Œė¬øģž…ė‹ˆė‹¤.
02:09
They would be right half of the cases. But the students are not there.
34
129137
3422
ķ•˜ģ§€ė§Œ ķ•™ģƒė“¤ģ€ 그렇지 ģ•Šģ•˜ģ§€ģš”. 제게 ģžˆģ–“ģ„œ ė¬øģ œėŠ” 묓지가 ģ•„ė‹ˆģ—ˆģŠµė‹ˆė‹¤.
02:12
The problem for me was not ignorance; it was preconceived ideas.
35
132583
4215
ź·øź²ƒģ€ ķŽøź²¬ģ“ģ—ˆģŠµė‹ˆė‹¤.
02:16
I did also an unethical study
36
136822
2737
ģ €ėŠ” 칓딜린스칓 ģ˜ķ•™ģ—°źµ¬ģ†Œ źµģˆ˜ė“¤ģ— ėŒ€ķ•“ģ„œė„ ė¹„ģœ¤ė¦¬ģ ģø 연구넼 ķ–ˆģ§€ģš”.
02:19
of the professors of the Karolinska Institute,
37
139583
2527
(ģ›ƒģŒ)
02:22
which hands out the Nobel Prize in Medicine,
38
142134
2541
ė…øė²Øģ˜ķ•™ģƒģ„ ģˆ˜ģ—¬ķ•˜ėŠ” ė¶„ė“¤ģøė°,
02:24
and they are on par with the chimpanzee there.
39
144699
2296
ź·ø ė¶„ė“¤ė„ ź·ø ģ¹ØķŒ¬ģ§€ė“¤ź³¼ ė˜‘ź°™ģ€ ģˆ˜ģ¤€ģ“ ė˜ģ—ˆģ§€ģš”.
(ģ›ƒģŒ).
02:27
(Laughter)
40
147019
2435
02:29
This is where I realized that there was really a need to communicate,
41
149478
4183
ģ“ ėŒ€ėŖ©ģ—ģ„œ ģ €ėŠ” 정말 ģ»¤ė®¤ė‹ˆģ¼€ģ“ģ…˜ģ“ ķ•„ģš”ķ•˜ė‹¤ėŠ” ź²ƒģ„ ź¹Øė‹¬ģ•˜ģŠµė‹ˆė‹¤.
02:33
because the data of what's happening in the world
42
153685
2904
ģ„øź³„ģ—ģ„œ ģ¼ģ–“ė‚˜ź³  ģžˆėŠ” ģ¼ģ˜ ė°ģ“ķ„°ģ™€
02:36
and the child health of every country
43
156613
1961
각 ė‚˜ė¼ģ˜ ģ–“ė¦°ģ“ ź±“ź°•ģ€ 아주 ģž˜ ģ•Œė ¤ģ ø ģžˆģŠµė‹ˆė‹¤.
02:38
is very well aware.
44
158598
1337
02:39
So we did this software, which displays it like this.
45
159959
2767
ģš°ė¦¬ėŠ” ģ“ ģ†Œķ”„ķŠøģ›Øģ–“ė”œ ģ“ėŸ° ģ‹ģ˜ ķ‘œģ‹œė„¼ ķ–ˆģŠµė‹ˆė‹¤. ģ—¬źø°ģ˜ 방울 ķ•˜ė‚˜ ķ•˜ė‚˜ź°€ ė‚˜ė¼ģž…ė‹ˆė‹¤.
02:42
Every bubble here is a country.
46
162750
1958
02:44
This country over here is China.
47
164732
4989
여기 ģ“ ė‚˜ė¼ėŠ” ģ¤‘źµ­ģž…ė‹ˆė‹¤. ģ“ź±“ ģøė„ģž…ė‹ˆė‹¤.
02:49
This is India.
48
169745
1163
02:50
The size of the bubble is the population,
49
170932
2247
ģ“ ė°©ģšøģ˜ ķ¬źø°ėŠ” ģøźµ¬ģž…ė‹ˆė‹¤. 여기 ģ“ ģ¶•ģ—ėŠ” ģ¶œģ‚°ģœØģ„ ķ‘œģ‹œķ•©ė‹ˆė‹¤.
02:53
and on this axis here, I put fertility rate.
50
173203
3556
02:56
Because my students, what they said
51
176783
2443
제 ķ•™ģƒė“¤ģ“ 세계넼 ė°”ė¼ė³“ź³  ģžˆģ„ ė•Œ,
02:59
when they looked upon the world, and I asked them,
52
179250
2559
ģ œź°€ ģ“ė ‡ź²Œ ė¬¼ģ—ˆģŠµė‹ˆė‹¤.
03:01
"What do you really think about the world?"
53
181833
2723
"ģ–˜ė“¤ģ•„, 세계에 ėŒ€ķ•“ ģ–“ė–»ź²Œ ģ—¬źø°ė‹ˆ?"
źø€ģŽ„ģš”. ģ œź°€ ģ²˜ģŒ ģ•Œź²Œ 된 걓 źµź³¼ģ„œź°€ ķ‹“ķ‹“ģ“ė¼ėŠ” ź²ƒģ“ģ—ˆģ£ .
03:04
Well, I first discovered that the textbook was Tintin, mainly.
54
184580
3269
03:07
(Laughter)
55
187873
1045
(ģ›ƒģŒ)
03:08
And they said, "The world is still 'we' and 'them.'
56
188942
2515
ķ•™ģƒė“¤ģ€ ģ“ė ‡ź²Œ ėŒ€ė‹µķ•˜ė”ė¼źµ¬ģš”. "ģ„øź³„ėŠ” ģ•„ģ§ė„ '우리'와 '그들'ģ“ģ£ .
03:11
And 'we' is the Western world and 'them' is the Third World."
57
191481
3453
ģš°ė¦¬ėŠ” ģ„œė°© ģ„øź³„ģ“ź³  ź·øė“¤ģ€ 제 3ģ§„źµ­ź°€ė“¤ģ“ģ§€ģš”."
ģ „ "ģ„œė°© ģ„øź³„ėŠ” 묓슨 ėœ»ģ“ģ§€?"ė¼ź³  ė¬¼ģ—ˆģŠµė‹ˆė‹¤.
03:15
"And what do you mean with 'Western world?'" I said.
58
195381
2510
03:17
"Well, that's long life and small family.
59
197915
1977
"źø€ģŽ„ 뭐. ģˆ˜ėŖ…ģ“ źøøź³  ź°€ģ”±ģˆ˜ėŠ” ģ ģ€ ź±°ģš”. 제3ģ§„źµ­ź°€ė“¤ģ€ ģˆ˜ėŖ…ģ“ ģ§§ź³  ź°€ģ”±ģˆ˜ź°€ ė§Žģ€ź±°źµ¬ģš”."
03:19
And 'Third World' is short life and large family."
60
199916
2388
ź·øėž˜ģ„œ 여기에 ģ“ź²ƒģ„ ķ‘œģ‹œķ•˜ź²Œ ė˜ģ—ˆģŠµė‹ˆė‹¤. ģ¶œģ‚°ģœØģ“ģš”. 여성당 ģžė…€ģˆ˜,
03:23
So this is what I could display here.
61
203058
2385
03:25
I put fertility rate here --
62
205467
1657
03:27
number of children per woman: one, two, three, four,
63
207148
3138
ķ•˜ė‚˜, ė‘˜, ģ…‹, ė„·, 여성당 최고 약 ģ—¬ėŸėŖ…ģ˜ ģžė…€ź¹Œģ§€ ģžˆģŠµė‹ˆė‹¤.
03:30
up to about eight children per woman.
64
210310
2031
03:32
We have very good data since 1962, 1960, about,
65
212365
3980
ģš°ė¦¬ėŠ” 1962ė…„ ģ“ėž˜, 1960년경부터, ėŖØė“  ė‚˜ė¼ģ˜ 가씱 크기에 ėŒ€ķ•œ 아주 ķ›Œė„­ķ•œ ė°ģ“ķ„°ė„¼ ė³“ģœ ķ•˜ź³  ģžˆģŠµė‹ˆė‹¤.
03:36
on the size of families in all countries.
66
216369
2033
03:38
The error margin is narrow.
67
218426
1375
오차 ķ•œź³„ėŠ” ģ¢ģŠµė‹ˆė‹¤. ģ—¬źø°ģ—ėŠ” ģ¶œģƒģ‹œ źø°ėŒ€ ģˆ˜ėŖ…ģ„ ķ‘œģ‹œķ•©ė‹ˆė‹¤.
03:39
Here, I put life expectancy at birth,
68
219825
2008
03:41
from 30 years in some countries, up to about 70 years.
69
221857
3467
ģ–“ė–¤ ė‚˜ė¼ė“¤ģ€ 30ģ„øģ“ź³ , 최고 약 70ģ„øź¹Œģ§€ ģžˆģŠµė‹ˆė‹¤.
03:45
And in 1962, there was really a group of countries here
70
225348
3403
그리고 1962ė…„, ģ—¬źø°ģ—ė„ ģ¼ė‹Øģ˜ ė‚˜ė¼ė“¤ģ“ ģžˆģ—ˆģŠµė‹ˆė‹¤.
03:48
that were industrialized countries,
71
228775
1857
ģ‚°ģ—…ķ™”ėœ ė‚˜ė¼ė“¤ģ“ģ—ˆź³ , ź°€ģ”±ģˆ˜ź°€ 적고 ģˆ˜ėŖ…ģ“ źøøģ—ˆģ§€ģš”.
03:50
and they had small families and long lives.
72
230656
3094
03:53
And these were the developing countries.
73
233774
2100
ģ“ ė‚˜ė¼ė“¤ģ€ ź°œė°œė„ģƒźµ­ė“¤ģ“ģ—ˆģŠµė‹ˆė‹¤.
03:55
They had large families and they had relatively short lives.
74
235898
3041
ź°€ģ”±ģˆ˜ėŠ” ė§Žź³  ģƒėŒ€ģ ģœ¼ė”œ ģˆ˜ėŖ…ģ“ ģ§§ģ•˜ģŠµė‹ˆė‹¤.
03:58
Now, what has happened since 1962? We want to see the change.
75
238963
3681
1962ė…„ ģ“ėž˜ė”œ ģ–“ė–¤ ģ¼ģ“ ģ¼ģ–“ė‚¬ģ„ź¹Œģš”? ģ–“ė–¤ 변화가 ģžˆģ—ˆėŠ”ģ§€ ź¶źøˆķ•˜ģ‹œģ£ ?
04:02
Are the students right? It's still two types of countries?
76
242668
2937
ķ•™ģƒė“¤ģ“ ė§žģ„ź¹Œģš”? ģ—¬ģ „ķžˆ 두 ģ¢…ė„˜ģ˜ ė‚˜ė¼ė“¤ģ“ģ—ˆģ„ź¹Œģš”?
04:05
Or have these developing countries got smaller families and they live here?
77
245629
3736
ģ•„ė‹ˆė©“ ģ“ ź°œė°œė„ģƒźµ­ė“¤ģ€ ź°€ģ”±ģˆ˜ź°€ 적얓지고 여기에 ģ‚“ź³  ģžˆģ„ź¹Œģš”?
04:09
Or have they got longer lives and live up there?
78
249389
2298
ģ•„ė‹ˆė©“ ģˆ˜ėŖ…ģ“ ė” 길얓지고 ģ € ģœ„ģ— ģ‚“ź³  ģžˆģ„ź¹Œģš”?
04:11
Let's see. We start the world, eh?
79
251711
1841
ģž, ė“…ģ‹œė‹¤. ź±°źø°ģ„œ 세계넼 ė©ˆģ·„ģŠµė‹ˆė‹¤. ģ“ź²ƒģ€ 모두
04:13
This is all UN statistics that have been available.
80
253576
2486
ģ“ģš© ź°€ėŠ„ķ•œ ģœ ģ—” ķ†µź³„ģž…ė‹ˆė‹¤. 여기 ģžˆģŠµė‹ˆė‹¤. ź±°źø°ģ„œ ė³“ģ“ģ‹œė‚˜ģš”?
04:16
Here we go. Can you see there?
81
256086
1501
04:17
It's China there, moving against better health there, improving there.
82
257611
3287
저기가 ģ¤‘źµ­ģž…ė‹ˆė‹¤. ź±“ź°•ģ“ 좋아지고, ķ–„ģƒė˜ź³  ģžˆźµ°ģš”.
04:20
All the green Latin American countries are moving towards smaller families.
83
260922
3645
ģ“ˆė”ģƒ‰ ė¼ķ‹“ 아메리칓 źµ­ź°€ė“¤ģ€ 모두 ź°€ģ”±ģˆ˜ź°€ ė” 적얓지고 ģžˆģŠµė‹ˆė‹¤.
여기 ė…øėž€ģƒ‰ė“¤ģ€ ģ•„ėž źµ­ź°€ė“¤ģž…ė‹ˆė‹¤.
04:24
Your yellow ones here are the Arabic countries,
84
264591
2422
ź°€ģ”±ģˆ˜ėŠ” 점점 ė” ėŠ˜ģ–“ė‚˜ģ§€ė§Œ, ģ•„ė‹ˆ, ģˆ˜ėŖ…ģ“ źøøģ–“ģ§€ģ§€ė§Œ, ź°€ģ”±ģˆ˜ėŠ” ėŠ˜ģ§€ ģ•ŠėŠ”źµ°ģš”.
04:27
and they get longer life, but not larger families.
85
267037
3901
04:30
The Africans are the green here. They still remain here.
86
270962
2622
아프리칓 ģ‚¬ėžŒė“¤ģ€ ģ“ ģ•„ėž˜ ģ“ˆė”ģƒ‰ģž…ė‹ˆė‹¤. ģ•„ģ§ė„ 여기에 ģžˆė„¤ģš”.
04:33
This is India; Indonesia is moving on pretty fast.
87
273608
2641
ģ“ź²ƒģ€ ģøė„ģž…ė‹ˆė‹¤. ģøė„ė„¤ģ‹œģ•„ėŠ” 꽤 빨리 ģ›€ģ§ģ“ź³  ģžˆė„¤ģš”.
04:36
In the '80s here, you have Bangladesh still among the African countries.
88
276273
4106
(ģ›ƒģŒ)
여기 1980ė…„ėŒ€ģ—ėŠ”, ė°©źø€ė¼ė°ģ‹œź°€ ģ—¬ģ „ķžˆ 저기 아프리칓 국가들 ģ‚¬ģ“ģ— ģžˆģŠµė‹ˆė‹¤.
04:40
But now, Bangladesh -- it's a miracle that happens in the '80s --
89
280403
3228
ķ•˜ģ§€ė§Œ ģ“ģ œ, ė°©źø€ė¼ė°ģ‹œģ—ėŠ” 1980ė…„ėŒ€ģ— źø°ģ ģ“ ģ¼ģ–“ė‚©ė‹ˆė‹¤.
04:43
the imams start to promote family planning,
90
283655
2413
ģ“ė§˜ģ“ 가씱 ź³„ķšģ„ ź¶Œģž„ķ•˜źø° ģ‹œģž‘ķ•©ė‹ˆė‹¤.
04:46
and they move up into that corner.
91
286092
1747
ė°©źø€ė¼ė°ģ‹œėŠ” ģ € źµ¬ģ„ģœ¼ė”œ ģ˜¬ė¼ź°‘ė‹ˆė‹¤. 1990ė…„ėŒ€ģ—ėŠ” ė”ģ°ķ•œ HIVź°€ ģœ ķ–‰ķ•©ė‹ˆė‹¤.
04:47
And in the '90s, we have the terrible HIV epidemic
92
287863
3298
04:51
that takes down the life expectancy of the African countries.
93
291185
3509
ź·øėž˜ģ„œ 아프리칓 źµ­ź°€ė“¤ģ˜ źø°ėŒ€ ģˆ˜ėŖ…ģ“ ģ¤„ģ–“ė“­ė‹ˆė‹¤.
04:54
And the rest of them all move up into the corner,
94
294718
3648
ė‚˜ėØøģ§€ ėŖØė“  źµ­ź°€ė“¤ģ“ ģ € źµ¬ģ„ģœ¼ė”œ ģ˜¬ė¼ź°‘ė‹ˆė‹¤.
04:58
where we have long lives and small family,
95
298390
2386
ģˆ˜ėŖ…ģ€ źøøź³  ź°€ģ”±ģˆ˜ėŠ” ģ ģ€ ź³³ģ“ģ§€ģš”. ģ“ģ œ ģ™„ģ „ķžˆ 새딜욓 ģ„øź³„ė„¤ģš”.
05:00
and we have a completely new world.
96
300800
2114
05:02
(Applause)
97
302938
3214
(ė°•ģˆ˜)
05:13
(Applause ends)
98
313561
1097
05:15
Let me make a comparison directly
99
315567
1813
미국과 ė² ķŠøė‚Øģ„ 직접 비교핓 ė³“ź² ģŠµė‹ˆė‹¤.
05:17
between the United States of America and Vietnam.
100
317404
3014
05:20
1964:
101
320442
1199
1964ė…„: ėÆøźµ­ģ˜ ź°€ģ”±ģˆ˜ėŠ” 적고 ģˆ˜ėŖ…ģ€ ź¹ė‹ˆė‹¤.
05:22
America had small families and long life;
102
322538
2611
05:25
Vietnam had large families and short lives.
103
325173
3349
ė² ķŠøė‚Øģ€ ź°€ģ”±ģˆ˜ź°€ ė§Žź³  ģˆ˜ėŖ…ģ“ ģ§§ģŠµė‹ˆė‹¤. 그리고 ģ“ėŸ° ģ¼ģ“ ģƒź¹ė‹ˆė‹¤.
05:28
And this is what happens.
104
328546
1283
05:29
The data during the war indicate that even with all the death,
105
329853
5341
ģ „ģŸ ģ¤‘ģ˜ ė°ģ“ķ„°ėŠ” ź·ø ėŖØė“  ģ£½ģŒģ—ė„ ė¶ˆźµ¬ķ•˜ź³ 
05:35
there was an improvement of life expectancy.
106
335218
2229
źø°ėŒ€ ģˆ˜ėŖ…ģ“ ķ–„ģƒė˜ģ—ˆģŒģ„ ė³“ģ—¬ģ¤ė‹ˆė‹¤. ģ—°ė§ź¹Œģ§€ėŠ”,
05:37
By the end of the year, family planning started in Vietnam,
107
337471
2784
ė² ķŠøė‚Øģ—ģ„œ 가씱 ź³„ķšģ“ ģ‹œģž‘ė˜ź³ , ź°€ģ”±ģˆ˜ź°€ ė” ģ ģ–“ģ”ŒģŠµė‹ˆė‹¤.
05:40
and they went for smaller families.
108
340279
1694
05:41
And the United States up there is getting longer life,
109
341997
2569
ģ € ģœ„ ėÆøźµ­ģ—ģ„œėŠ” ģˆ˜ėŖ…ģ“ ė” 길얓지고 ģžˆź³ ,
05:44
keeping family size.
110
344590
1188
가씱 ģˆ˜ėŠ” ź·øėŒ€ė”œ ģœ ģ§€ė˜ė„¤ģš”. ģ“ģ œ 1980ė…„ėŒ€ģ—,
05:45
And in the '80s now, they give up Communist planning
111
345802
3605
ź³µģ‚°ģ£¼ģ˜ ź³„ķšģ„ ķ¬źø°ķ•˜ź³ , ģ‹œģž„ 경제딜 ģ“ķ–‰ķ•©ė‹ˆė‹¤.
05:49
and they go for market economy,
112
349431
1507
05:50
and it moves faster even than social life.
113
350962
2010
ģ‚¬ķšŒ ģƒķ™œė³“ė‹¤ ė” 빨리 ģ›€ģ§ģž…ė‹ˆė‹¤. 그리고 ģ˜¤ėŠ˜ė‚ ,
05:52
And today, we have in Vietnam
114
352996
2336
ė² ķŠøė‚Øģ—ģ„œėŠ”, 2003ė…„ ė² ķŠøė‚Øź³¼ 1974ė…„, 종전 묓렵, ėÆøźµ­ģ˜
05:55
the same life expectancy and the same family size
115
355356
4802
źø°ėŒ€ ģˆ˜ėŖ…ź³¼ 가씱 ģˆ˜ź°€ ė˜‘ź°™ģŠµė‹ˆė‹¤.
06:00
here in Vietnam, 2003,
116
360182
2763
06:02
as in United States, 1974, by the end of the war.
117
362969
4067
ė°ģ“ķ„°ė„¼ 볓지 ģ•ŠėŠ”ė‹¤ė©“, ģš°ė¦¬ėŠ” 모두
06:07
I think we all, if we don't look at the data,
118
367513
3296
06:10
we underestimate the tremendous change in Asia,
119
370833
3221
ģ•„ģ‹œģ•„ģ—ģ„œģ˜ ģ—„ģ²­ė‚œ 변화넼 ź³¼ģ†Œķ‰ź°€ķ•œė‹¤ź³  ģƒź°ķ•©ė‹ˆė‹¤.
06:14
which was in social change before we saw the economic change.
120
374078
4691
ź²½ģ œģ ģø 변화넼 볓기 전에 ģ¼ģ–“ė‚œ ģ‚¬ķšŒģ ģø ė³€ķ™”ģ˜€ģŠµė‹ˆė‹¤.
06:18
So let's move over to another way here
121
378793
2367
ģ“ģ œ 세계 ģ†Œė“ 분배넼 볓여줄 수 ģžˆėŠ” 다넸 ė°©ė²•ģœ¼ė”œ ģ˜®ź²Øź°€ ė³“ź² ģŠµė‹ˆė‹¤.
06:21
in which we could display the distribution in the world
122
381184
4487
ģ“ź²ƒģ€ ģ‚¬ėžŒė“¤ģ˜ ģ†Œė“ģ˜ 세계 ė¶„ė°°ģž…ė‹ˆė‹¤.
06:25
of income.
123
385695
1280
06:26
This is the world distribution of income of people.
124
386999
3696
ģ¼ė‹¹ 1ė‹¬ėŸ¬, 10ė‹¬ėŸ¬, ė˜ėŠ” 100ė‹¬ėŸ¬ģž…ė‹ˆė‹¤.
06:31
One dollar, 10 dollars or 100 dollars per day.
125
391499
3846
ė¶€ģžģ™€ ź°€ė‚œķ•œ ģž ģ‚¬ģ“ģ— ė” ģ“ģƒ 격차가 ģ—†ģŠµė‹ˆė‹¤. ź·øź²ƒģ€ ģ‹ ķ™”ģž…ė‹ˆė‹¤.
06:36
There's no gap between rich and poor any longer. This is a myth.
126
396071
3412
06:39
There's a little hump here.
127
399507
2015
여기 씰그만 ģ–øė•ģ“ ģžˆė„¤ģš”. ķ•˜ģ§€ė§Œ ėź¹Œģ§€ ģ‚¬ėžŒė“¤ģ“ ģžˆģŠµė‹ˆė‹¤.
06:42
But there are people all the way.
128
402195
1640
06:43
And if we look where the income ends up,
129
403859
4386
ģ†Œė“ģ“ ģ–“ė””ģ„œ ėė‚˜ėŠ”ģ§€ 볓멓, ģ†Œė“ģ€--
06:48
this is 100 percent of the world's annual income.
130
408269
4195
ģ“ź²ƒģ“ ģ„øź³„ģ˜ ģ—°ź°„ ģ†Œė“ 100%ģž…ė‹ˆė‹¤. ź°€ģž„ ė¶€ģœ ķ•œ 20ķ¼ģ„¼ķŠø,
06:52
And the richest 20 percent,
131
412488
2465
06:54
they take out of that about 74 percent.
132
414977
4119
ź·øė“¤ģ“ 약 74ķ¼ģ„¼ķŠøģ˜ ģ†Œė“ģ„ ź°€ģ§‘ė‹ˆė‹¤. ź°€ģž„ ź°€ė‚œķ•œ 20ķ¼ģ„¼ķŠø,
06:59
And the poorest 20 percent, they take about two percent.
133
419120
4916
ź·øė“¤ģ“ 약 2ķ¼ģ„¼ķŠøģ˜ ģ†Œė“ģ„ ź°€ģ§‘ė‹ˆė‹¤. ģ“ź²ƒģ€ ź°œė°œė„ģƒźµ­ź°€ė¼ėŠ”
07:04
And this shows that the concept of developing countries
134
424060
2755
07:06
is extremely doubtful.
135
426839
1567
ź°œė…ģ“ ź·¹ķžˆ ģ˜ģ‹¬ģŠ¤ėŸ½ė‹¤ėŠ” ź²ƒģ„ ė³“ģ—¬ģ¤ė‹ˆė‹¤. ģš°ė¦¬ėŠ” ė„ģ›€ģ„ ģƒź°ķ•©ė‹ˆė‹¤.
07:08
We think about aid,
136
428430
1881
07:10
like these people here giving aid to these people here.
137
430335
3613
여기 ģ“ ģ‚¬ėžŒė“¤ģ“ 여기 ģ“ ģ‚¬ėžŒė“¤ģ—ź²Œ ė„ģ›€ģ„ 주고 ģžˆė‹¤ź³ . ķ•˜ģ§€ė§Œ, 중간에,
07:13
But in the middle, we have most of the world population,
138
433972
3120
ź°€ģž„ ė§Žģ€ 세계 ģøźµ¬ź°€ ģžˆź³ , ģ“ģ œ ź·øė“¤ģ“ ģ†Œė“ģ˜ 24ķ¼ģ„¼ķŠøė„¼ ź°€ģ§‘ė‹ˆė‹¤.
07:17
and they have now 24 percent of the income.
139
437116
2609
07:19
We heard it in other forms.
140
439749
1656
ģš°ė¦¬ėŠ” ģ“ź²ƒģ„ 다넸 ķ˜•ķƒœė”œ 들얓본 ģ ģ“ ģžˆģŠµė‹ˆė‹¤. ģ“ė“¤ģ“ ėˆ„źµ¬ģž…ė‹ˆź¹Œ?
07:21
And who are these?
141
441429
2701
다넸 ė‚˜ė¼ė“¤ģ€ ģ–“ė”” ģžˆģŠµė‹ˆź¹Œ? 아프리칓넼 ė³“ģ—¬ė“œė¦¬ģ§€ģš”.
07:24
Where are the different countries?
142
444154
2220
07:26
I can show you Africa.
143
446398
1546
07:27
This is Africa.
144
447968
1591
ģ“ź²ƒģ“ ģ•„ķ”„ė¦¬ģ¹“ģž…ė‹ˆė‹¤. 세계 ģøźµ¬ģ˜ 10ķ¼ģ„¼ķŠø. ėŒ€ė¶€ė¶„ģ“ ź°€ė‚œķ•˜ģ§€ģš”.
07:30
Ten percent of the world population,
145
450078
1763
07:31
most in poverty.
146
451865
1166
ģ“ź²ƒģ“ OECDģž…ė‹ˆė‹¤. ė¶€ģž ė‚˜ė¼ģ§€ģš”. ģœ ģ—”ģ˜ 컨트리 ķ“ėŸ½ģž…ė‹ˆė‹¤.
07:33
This is OECD -- the rich countries, the country club of the UN.
147
453055
4375
07:37
And they are over here on this side. Quite an overlap between Africa and OECD.
148
457454
5416
그리고 ģ“ė“¤ģ€ ģ“ģŖ½ 여기에 ģžˆģŠµė‹ˆė‹¤. 아프리칓와 OECD간에 꽤 ź²¹ģ¹©ė‹ˆė‹¤.
07:42
And this is Latin America.
149
462894
1348
ģ“ź²ƒģ€ ė¼ķ‹“ ģ•„ė©”ė¦¬ģ¹“ģž…ė‹ˆė‹¤. ģ“ 땅에 ėŖØė“  ź²ƒģ“ 다 ģžˆģ§€ģš”.
07:44
It has everything on this earth, from the poorest to the richest
150
464266
3355
ź°€ģž„ ź°€ė‚œķ•œ ģ‚¬ėžŒė¶€ķ„° ź°€ģž„ ė¶€ģœ ķ•œ ģ‚¬ėžŒź¹Œģ§€, ė¼ķ‹“ 아메리칓에 ģžˆģŠµė‹ˆė‹¤.
07:47
in Latin America.
151
467645
1373
거기에다가, ė™ģœ ėŸ½, ė™ģ•„ģ‹œģ•„ź°€ ģžˆģŠµė‹ˆė‹¤.
07:49
And on top of that, we can put East Europe,
152
469042
3107
07:52
we can put East Asia, and we put South Asia.
153
472173
3175
ė‚Øģ•„ģ‹œģ•„ģž…ė‹ˆė‹¤. 약 1970ė…„ģœ¼ė”œ ėŒģ•„ź°€ė©“,
07:55
And what did it look like if we go back in time,
154
475372
3130
07:58
to about 1970?
155
478526
2093
ģ–“ė–»ź²Œ ė³“ģ¼ź¹Œģš”? ź·ø ė•ŒėŠ” ģ–øė•ģ“ ė” ė§Žģ“ ģžˆģ—ˆė„¤ģš”.
08:00
Then, there was more of a hump.
156
480643
2522
ģ ˆėŒ€ 빈곤 ģ†ģ— ģ‚“ģ•˜ė˜ ėŒ€ė¶€ė¶„ģ“ ģ•„ģ‹œģ•„ģøė“¤ģ“ģ—ˆģŠµė‹ˆė‹¤.
08:04
And most who lived in absolute poverty were Asians.
157
484242
3759
ģ„øź³„ģ˜ ė¬øģ œėŠ” ģ•„ģ‹œģ•„ģ˜ ź°€ė‚œģ“ģ—ˆģŠµė‹ˆė‹¤. ģ§€źøˆ 세계가 움직여 ė‚˜ź°€ė„ė” ķ•˜ė©“,
08:08
The problem in the world was the poverty in Asia.
158
488025
2947
08:10
And if I now let the world move forward,
159
490996
3118
08:14
you will see that while population increases,
160
494138
2612
ģøźµ¬ź°€ ģ¦ź°€ķ•˜ėŠ” 반멓, ģ•„ģ‹œģ•„ģ—ģ„œ ģˆ˜ģ²œė§ŒėŖ…ģ˜ ģ‚¬ėžŒė“¤ģ“
08:16
there are hundreds of millions in Asia getting out of poverty,
161
496774
3313
ź°€ė‚œģ—ģ„œ ė¹ ģ øė‚˜ģ˜¤ź³ , 다넸 ģ‚¬ėžŒė“¤ģ€ ź°€ė‚œģ— 빠지고 ģžˆėŠ” ź²ƒģ„
08:20
and some others getting into poverty,
162
500111
1965
ė³¼ 수 ģžˆģŠµė‹ˆė‹¤. ģ“ź²ƒģ“ ģ˜¤ėŠ˜ė‚ ģ˜ ķŒØķ„“ģž…ė‹ˆė‹¤.
08:22
and this is the pattern we have today.
163
502100
1901
세계 ģ€ķ–‰ ģµœź³ ģ˜ ź³„ķšģ€ ģ“ź²ƒģ“ ģ¼ģ–“ė‚˜ėŠ” ź²ƒģž…ė‹ˆė‹¤.
08:24
And the best projection from the World Bank
164
504025
2071
08:26
is that this will happen,
165
506120
1914
그러멓 ģš°ė¦¬ėŠ” ė¶„ė¦¬ėœ 세계에 ģ‚“ģ§€ ģ•Šģ„ ź²ƒģž…ė‹ˆė‹¤. ėŒ€ė¶€ė¶„ģ˜ ģ‚¬ėžŒė“¤ģ“ ź°€ģš“ė° ģžˆģ„ ź²ƒģž…ė‹ˆė‹¤.
08:28
and we will not have a divided world.
166
508058
1848
08:29
We'll have most people in the middle.
167
509930
1895
08:31
Of course it's a logarithmic scale here,
168
511849
2027
물딠 여기 ėŒ€ģˆ˜ ź³„ģ‚°ģžź°€ ģžˆģŠµė‹ˆė‹¤.
08:33
but our concept of economy is growth with percent.
169
513900
3397
ķ•˜ģ§€ė§Œ, ģš°ė¦¬ģ˜ ź²½ģ œė¼ėŠ” ź°œė…ģ€ ķ¼ģ„¼ķŠøė”œ ģ„±ģž„ķ•˜ėŠ” ź²ƒģž…ė‹ˆė‹¤. ź·øź²ƒģ„ źø°ėŒ€ķ•©ė‹ˆė‹¤.
08:37
We look upon it as a possibility of percentile increase.
170
517321
5285
ė°±ė¶„ģœ„ģˆ˜ģ˜ ģ¦ź°€ ź°€ėŠ„ģ„±ģ“ģ§€ģš”. ģ“ź²ƒģ„ 바꾼다멓,
08:42
If I change this and take GDP per capita instead of family income,
171
522630
4824
가씱 ģ†Œė“ ėŒ€ģ‹  1ģøė‹¹ 국민 ģ†Œė“ģ„ 본다멓,
08:47
and I turn these individual data
172
527478
3771
ģ“ ź°œģø ė°ģ“ķ„°ė„¼ ģ“ź°€ģ •ģƒģ‚°ģ˜ 지역 ė°ģ“ķ„°ė”œ 바꾸고,
08:51
into regional data of gross domestic product,
173
531273
3276
08:54
and I take the regions down here,
174
534573
1888
여기 ģ“ ģ§€ģ—­ģ„ ė“…ė‹ˆė‹¤. ė°©ģšøģ˜ ķ¬źø°ėŠ” ģ—¬ģ „ķžˆ ģøźµ¬ė„¼ ė‚˜ķƒ€ėƒ…ė‹ˆė‹¤.
08:56
the size of the bubble is still the population.
175
536485
2239
08:58
And you have the OECD there, and you have sub-Saharan Africa there,
176
538748
3198
저기 OECDź°€ ģžˆģŠµė‹ˆė‹¤. ģ €źø°ģ—ėŠ” ģ‚¬ķ•˜ė¼ ģ“ė‚Ø 아프리칓가 ģžˆģŠµė‹ˆė‹¤.
09:01
and we take off the Arab states there,
177
541970
2241
ģ €źø°ģ„œ ģ•„ėž źµ­ź°€ė“¤ģ“ ģƒģŠ¹ķ•©ė‹ˆė‹¤.
09:04
coming both from Africa and from Asia,
178
544235
2218
아프리칓와 ģ•„ģ‹œģ•„ģ—ģ„œģš”. 두 개넼 떼얓 ė†“ģŠµė‹ˆė‹¤.
09:06
and we put them separately,
179
546477
1666
09:08
and we can expand this axis, and I can give it a new dimension here,
180
548167
5097
ģ“ ģ¶•ģ„ ķ™•ģž„ķ•  수 ģžˆģŠµė‹ˆė‹¤. 여기에 새 ģ°Øģ›ģ„ ė”ķ•  수 ģžˆģŠµė‹ˆė‹¤.
09:13
by adding the social values there, child survival.
181
553288
3349
저기에 ģ‚¬ķšŒģ  ź°€ģ¹˜ė„¼ ė”ķ•©ė‹ˆė‹¤. ģ–“ė¦°ģ“ ģƒģ”“ė„ .
09:16
Now I have money on that axis,
182
556661
1728
ģ“ģ œ ź·ø 축에 ėˆģ„ ė”ķ•©ė‹ˆė‹¤. 저기에 ģ–“ė¦°ģ“ė“¤ģ“ ģƒģ”“ķ•  ź°€ėŠ„ģ„±ģ“ ģžˆģŠµė‹ˆė‹¤.
09:18
and I have the possibility of children to survive there.
183
558413
2743
09:21
In some countries, 99.7% of children survive to five years of age;
184
561180
4257
ģ–“ė–¤ ė‚˜ė¼ė“¤ģ—ģ„œėŠ”, ģ–“ė¦°ģ“ģ˜ 99.7ķ¼ģ„¼ķŠøź°€ 다섯 ģ‚“ź¹Œģ§€ 밖에 ģ‚“ģ§€ ėŖ»ķ•©ė‹ˆė‹¤.
09:25
others, only 70.
185
565461
1725
다넸 ė‚˜ė¼ė“¤ģ—ģ„œėŠ” 70ģ„øź¹Œģ§€ ģ‚½ė‹ˆė‹¤. ģ—¬źø°ģ—ģ„œ 격차가 ģžˆėŠ” 것 ź°™ģŠµė‹ˆė‹¤.
09:27
And here, it seems, there is a gap between OECD,
186
567210
3268
OECD, ė¼ķ‹“ 아메리칓, ė™ģœ ėŸ½, ė™ģ•„ģ‹œģ•„, ģ•„ėž 국가들, ė‚Øģ•„ģ‹œģ•„,
09:30
Latin America, East Europe, East Asia,
187
570502
3254
09:33
Arab states, South Asia and sub-Saharan Africa.
188
573780
3885
ģ‚¬ķ•˜ė¼ ģ“ė‚Ø 아프리칓 간에 격차가 ģžˆėŠ” 것 ź°™ģŠµė‹ˆė‹¤.
09:37
The linearity is very strong between child survival and money.
189
577689
4908
ģ–“ė¦°ģ“ ģƒģ”“ė„ ź³¼ ėˆ ģ‚¬ģ“ģ˜ ģ§ģ„ ģ“ 아주 ź°•ķ•©ė‹ˆė‹¤.
09:42
But let me split sub-Saharan Africa.
190
582621
3296
ķ•˜ģ§€ė§Œ ģ‚¬ķ•˜ė¼ ģ“ė‚Ø 아프리칓넼 ė‚˜ėˆ ė³“ź² ģŠµė‹ˆė‹¤. ź±“ź°•ģ€ 저쪽, ė” ė‚˜ģ€ ź±“ź°•ģ€ ģ € ģœ„ģŖ½.
09:45
Health is there and better health is up there.
191
585941
4924
09:50
I can go here, and I can split sub-Saharan Africa into its countries.
192
590889
4462
ģ—¬źø°ģ—ģ„œė¶€ķ„° ģ‹œģž‘ķ•“ģ„œ, ģ‚¬ķ•˜ė¼ ģ“ė‚Ø 아프리칓넼 ģ—¬ėŸ¬ ė‚˜ė¼ė“¤ė”œ ė‚˜ėˆŒ 수 ģžˆģŠµė‹ˆė‹¤.
09:55
And when it bursts,
193
595375
1202
ķ„°ģ§ˆ ė•ŒėŠ”, ź·ø ė‚˜ė¼ ė°©ģšøģ˜ 크기가 ģøźµ¬ģ˜ ķ¬źø°ģž…ė‹ˆė‹¤.
09:56
the size of each country bubble is the size of the population.
194
596601
3646
10:00
Sierra Leone down there, Mauritius is up there.
195
600271
2540
ģ“ ģ•„ėž˜ģ— ģ‹œģ—ė¼ ė ˆģ˜¤ė„¤ź°€ ģžˆź³ , ėŖØė¦¬ģ…”ģŠ¤ėŠ” ģ € ģœ„ģŖ½ģž…ė‹ˆė‹¤. ėŖØė¦¬ģ…”ģŠ¤ėŠ”
10:02
Mauritius was the first country to get away with trade barriers,
196
602835
3656
묓역 ģž„ė²½ģ„ ģ² ķšŒķ•œ 첫번째 ė‚˜ė¼ģž…ė‹ˆė‹¤. ėŖØė¦¬ģ…”ģŠ¤ėŠ” ģžźµ­ģ˜ ģ„¤ķƒ•ģ„ ķŒ” 수 ģžˆģŠµė‹ˆė‹¤.
10:06
and they could sell their sugar, they could sell their textiles,
197
606515
3525
유럽과 북미 ģ‚¬ėžŒė“¤ź³¼ ź°™ģ€ 씰걓으딜 ģ§ė¬¼ģ„ ķŒ” 수 ģžˆģŠµė‹ˆė‹¤.
10:10
on equal terms as the people in Europe and North America.
198
610064
3714
10:13
There's a huge difference [within] Africa.
199
613802
2132
아프리칓 ģ‚¬ģ“ģ— ź±°ėŒ€ķ•œ ģ°Øģ“ź°€ ģžˆģŠµė‹ˆė‹¤. ź°€ė‚˜ėŠ” 여기 중간에 ģžˆė„¤ģš”.
10:15
And Ghana is here in the middle.
200
615958
1868
10:17
In Sierra Leone, humanitarian aid.
201
617850
2592
ģ‹œģ—ė¼ ė ˆģ˜¤ė„¤ģ—ģ„œėŠ”, ė°•ģ• ģ£¼ģ˜ģ ģø ė„ģ›€ģ“ ģžˆģŠµė‹ˆė‹¤.
10:20
Here in Uganda, development aid.
202
620466
3310
여기 ģš°ź°„ė‹¤ģ—ģ„œėŠ”, 개발 ģ§€ģ›ģ“ ģžˆģŠµė‹ˆė‹¤. 여기, ķˆ¬ģžķ•  ģ‹œź°„ģ“źµ°ģš”, 저기,
10:23
Here, time to invest; there, you can go for a holiday.
203
623800
3295
ķœ“ź°€ ģ—¬ķ–‰ģ„ 가실 수 ģžˆģŠµė‹ˆė‹¤. 아프리칓 ė‚“ģ—ģ„œėŠ”
10:27
There's tremendous variation within Africa,
204
627119
2742
볓통 ź±°ģ˜ ė³¼ 수 ģ—†ģ„ ģ •ė„ģ˜ ģ—„ģ²­ė‚œ ė‹¤ģ–‘ķ•Øģ“ ģžˆģŠµė‹ˆė‹¤. ėŖØė“  ź²ƒģ“ ķ‰ė“±ķ•©ė‹ˆė‹¤.
10:29
which we very often make that it's equal everything.
205
629885
3091
10:33
I can split South Asia here. India's the big bubble in the middle.
206
633000
4239
여기 ė‚Øģ•„ģ‹œģ•„ė„¼ ė‚˜ėˆ„ź² ģŠµė‹ˆė‹¤. ģøė„ėŠ” ģ¤‘ź°„ģ˜ 큰 ė°©ģšøģž…ė‹ˆė‹¤.
10:37
But there's a huge difference between Afghanistan and Sri Lanka.
207
637263
4440
ķ•˜ģ§€ė§Œ ģ•„ķ”„ź°€ė‹ˆģŠ¤ķƒ„ź³¼ ģŠ¤ė¦¬ėž‘ģ¹“ ģ‚¬ģ“ģ—ėŠ” ź±°ėŒ€ķ•œ 격차가 ģžˆė„¤ģš”.
10:41
I can split Arab states. How are they?
208
641727
2135
ģ•„ėž źµ­ź°€ė“¤ģ„ ė‚˜ėˆ„ź² ģŠµė‹ˆė‹¤. ģ“ė“¤ģ€ ģ–“ė–¤ź°€ģš”? ź°™ģ€ 기후, ź°™ģ€ 문화,
10:43
Same climate, same culture, same religion -- huge difference.
209
643886
4132
ź°™ģ€ 종교. ģ°Øģ“ź°€ ķ½ė‹ˆė‹¤. 심지얓 ģ“ģ›ƒė“¤ ź°„ģ—ģ”°ģ°Øė„.
10:48
Even between neighbors --
210
648042
1222
10:49
Yemen, civil war;
211
649288
1245
예멘, ģ‹œėÆ¼ģ „ģŸ. ģ•„ėžģ—ėÆøė ˆģ“ķŠø, ėˆģ“ ź· ė“±ķ•˜ź²Œ ģž˜ ģ‚¬ģš©ė˜ź³  ģžˆģ—ˆģŠµė‹ˆė‹¤.
10:50
United Arab Emirates, money, which was quite equally and well-used.
212
650557
4166
10:54
Not as the myth is.
213
654747
1782
ģ‹ ķ™” 같지 ģ•Šė„¤ģš”. ģ—¬źø°ģ—ėŠ” ź·ø ė‚˜ė¼ģ— ģžˆėŠ” ėŖØė“  ģ™øźµ­ģø ė…øė™ģžė“¤ģ˜ ģžė…€ė„ ķ¬ķ•Øė©ė‹ˆė‹¤.
10:56
And that includes all the children of the foreign workers
214
656553
4109
11:00
who are in the country.
215
660686
1574
ė°ģ“ķ„°ź°€ ģƒź°ė³“ė‹¤ ģ¢‹ģ„ ė•Œė„ ģžģ£¼ ģžˆģŠµė‹ˆė‹¤. ė§Žģ€ ģ‚¬ėžŒė“¤ģ“ ė°ģ“ķ„°ėŠ” ė‚˜ģ˜ė‹¤ź³  ķ•©ė‹ˆė‹¤.
11:02
Data is often better than you think. Many people say data is bad.
216
662284
3692
11:06
There is an uncertainty margin, but we can see the difference here:
217
666000
3143
ė¶ˆķ™•ģ‹¤ģ„±ģ˜ ģ˜¤ģ°Øź°€ ģžˆģ§€ė§Œ, ģš°ė¦¬ėŠ” ģ—¬źø°ģ„œ ź·ø ģ°Øģ“ė„¼ ė³¼ 수 ģžˆģŠµė‹ˆė‹¤.
캄볓디아, ģ‹±ź°€ķ¬ė„“. ė°ģ“ķ„°ģ˜ 약함볓다
11:09
Cambodia, Singapore.
218
669167
1362
11:10
The differences are much bigger than the weakness of the data.
219
670553
2971
ģ°Øģ“ź°€ 훨씬 ķ½ė‹ˆė‹¤. ė™ģœ ėŸ½.
11:13
East Europe: Soviet economy for a long time,
220
673548
4647
ģ˜¤ėž«ė™ģ•ˆ ģ†Œė¹„ģ—ķŠø ź²½ģ œģ˜€ģ§€ė§Œ ģ‹­ė…„ 후에 ė‚˜ģ˜µė‹ˆė‹¤.
11:18
but they come out after 10 years very, very differently.
221
678219
3212
아주, 아주 ė‹¤ė¦…ė‹ˆė‹¤. ģ—¬źø°ėŠ” ė¼ķ‹“ ģ•„ė©”ė¦¬ģ¹“ģž…ė‹ˆė‹¤.
11:21
And there is Latin America.
222
681455
2733
ģ˜¤ėŠ˜ė‚ , ģš°ė¦¬ėŠ” ė¼ķ‹“ ģ•„ė©”ė¦¬ģ¹“ģ—ģ„œ ź±“ź°•ķ•œ ė‚˜ė¼ė„¼ 찾아 쿠바에 갈 ķ•„ģš”ź°€ ģ—†ģŠµė‹ˆė‹¤.
11:24
Today, we don't have to go to Cuba
223
684212
1646
11:25
to find a healthy country in Latin America.
224
685882
2028
11:27
Chile will have a lower child mortality than Cuba within some few years from now.
225
687934
4634
ģ•žģœ¼ė”œ ėŖ‡ ė…„ ė™ģ•ˆ ģ¹ ė ˆėŠ” 쿠바볓다 ģ–“ė¦°ģ“ ģ‚¬ė§ė„ ģ“ ė” ė‚®ģ„ ź²ƒģž…ė‹ˆė‹¤.
11:32
Here, we have high-income countries in the OECD.
226
692592
3055
ģ—¬źø°ģ—ėŠ” OECDģ˜ ź³ ģ†Œė“ źµ­ź°€ė“¤ģ“ ģžˆė„¤ģš”.
11:35
And we get the whole pattern here of the world,
227
695671
3792
그리고 ģ—¬źø°ģ„œ ģ„øź³„ģ˜ 전첓 ķŒØķ„“ģ„ ė“…ė‹ˆė‹¤.
11:39
which is more or less like this.
228
699487
2151
ėŒ€ģ²“ė”œ ģ“ģ™€ ź°™ģŠµė‹ˆė‹¤. ģ“ź²ƒģ„ 볓멓,
11:41
And if we look at it, how the world looks,
229
701662
3940
ģ–“ė–»ź²Œ ė³“ģ“ė‚˜ ė³“ģ„øģš”. 1960ė…„ģ˜ 세계. ģ›€ģ§ģ“źø° ģ‹œģž‘ķ•©ė‹ˆė‹¤. 1960ė…„.
11:46
in 1960, it starts to move.
230
706658
3318
11:50
This is Mao Zedong. He brought health to China.
231
710000
2632
ģ“ ģ‚¬ėžŒģ“ ė§ˆģ˜¤ģ©Œė‘„ģž…ė‹ˆė‹¤. 중국에 ź±“ź°•ģ„ 가져다 ģ£¼ģ—ˆģ§€ģš”. 그리고 ģ„øģƒģ„ ė– ė‚¬ģŠµė‹ˆė‹¤.
11:52
And then he died.
232
712656
1166
11:53
And then Deng Xiaoping came and brought money to China,
233
713846
2612
ź·ø ė‹¤ģŒģ—ėŠ” ė©ģƒ¤ģ˜¤ķ•‘ģ“ ė‚˜ķƒ€ė‚˜ 중국에 ėˆģ„ 가져다 ģ£¼ģ—ˆģ§€ģš”. ė‹¤ģ‹œ 주넘딜 ėŒė ¤ ė†“ģ•˜ģŠµė‹ˆė‹¤.
11:56
and brought them into the mainstream again.
234
716482
2054
11:58
And we have seen how countries move in different directions like this,
235
718560
4158
ė‚˜ė¼ė“¤ģ“ ģ“ė ‡ź²Œ 다넸 ė°©ķ–„ģœ¼ė”œ ģ–“ė–»ź²Œ ģ›€ģ§ģ“ėŠ”ģ§€ ė³“ģ•˜ģŠµė‹ˆė‹¤.
12:02
so it's sort of difficult to get an example country
236
722742
5905
ģ„øź³„ģ˜ ķŒØķ„“ģ„ ė³“ģ—¬ģ£¼ėŠ” ģ˜ˆź°€ ė˜ėŠ” ė‚˜ė¼ė„¼
ģ°¾ėŠ” ź²ƒģ€ 씰금 ķž˜ė“­ė‹ˆė‹¤.
12:08
which shows the pattern of the world.
237
728671
2145
12:10
But I would like to bring you back to about here, at 1960.
238
730840
6854
여기 1960ė…„ģœ¼ė”œ ė‹¤ģ‹œ ėŒģ•„ź°€ ė³“ģ‹­ģ‹œė‹¤.
ķ•œźµ­, ģ“ź²ƒģž…ė‹ˆė‹¤, ķ•œźµ­ź³¼ ėøŒė¼ģ§ˆģ„ ė¹„źµķ•˜ź³  ģ‹¶ģŠµė‹ˆė‹¤.
12:18
I would like to compare South Korea, which is this one,
239
738083
6991
12:25
with Brazil, which is this one.
240
745098
3358
ģ“ź²ƒģ“ ėøŒė¼ģ§ˆģž…ė‹ˆė‹¤. ģ—¬źø°ģ„œ ģ €ģ—ź²ŒėŠ” ź·ø ė¼ė²Øģ“ ģ‚¬ė¼ģ”ŒģŠµė‹ˆė‹¤.
12:29
The label went away for me here.
241
749154
1782
12:30
And I would like to compare Uganda, which is there.
242
750960
2925
저기 ģžˆėŠ” ģš°ź°„ė‹¤ė„¼ ė¹„źµķ•˜ź³  ģ‹¶ģŠµė‹ˆė‹¤. ģ“ė ‡ź²Œ ģ•žģœ¼ė”œ ė‹¬ė¦¬ź²Œ ķ•  수 ģžˆģŠµė‹ˆė‹¤.
12:34
I can run it forward, like this.
243
754699
3183
ķ•œźµ­ģ“ 아주 아주 빨리 ģ „ģ§„ķ•˜ź³  ģžˆėŠ” ź²ƒģ„ 볓실 수 ģžˆģ§€ģš”.
12:39
And you can see how South Korea is making a very, very fast advancement,
244
759748
6996
12:46
whereas Brazil is much slower.
245
766768
2585
반멓 ėøŒė¼ģ§ˆģ€ 훨씬 ė” ėŠė¦½ė‹ˆė‹¤.
12:49
And if we move back again, here, and we put trails on them, like this,
246
769377
6144
ė‹¤ģ‹œ ģ—¬źø°ė”œ ėŒģ•„ģ˜¤ė©“, ģ“ė ‡ź²Œ ķ”ģ ģ„ ė‚Øź¹ė‹ˆė‹¤.
12:55
you can see again
247
775545
2403
ė‹¤ģ‹œ ķ•œ 번 ź·ø ė°œģ „ģ˜ ģ†ė„ź°€
12:57
that the speed of development is very, very different,
248
777972
3332
아주 아주 ė‹¤ė„“ė‹¤ėŠ” ź²ƒģ„ 볓실 수 ģžˆģ§€ģš”. ėŒ€ģ²“ė”œ ė‚˜ė¼ė“¤ģ€
13:01
and the countries are moving more or less at the same rate
249
781328
5760
ėˆź³¼ ź±“ź°•ģ“ ź°™ģ€ ė¹„ģœØė”œ ģ›€ģ§ģ“ź³  ģžˆģŠµė‹ˆė‹¤. ķ•˜ģ§€ė§Œ,
13:07
as money and health,
250
787112
1427
13:08
but it seems you can move much faster
251
788563
1929
먼저 ė¶€ģœ ķ•œ ź²ƒė³“ė‹¤ 먼저 ź±“ź°•ķ•˜ė©“ 훨씬 ė” 빨리 ģ›€ģ§ģ¼ 수 ģžˆėŠ” 것 ź°™ģŠµė‹ˆė‹¤.
13:10
if you are healthy first than if you are wealthy first.
252
790516
2918
13:14
And to show that, you can put on the way of United Arab Emirates.
253
794000
4158
ź·øź²ƒģ„ 볓려멓, ģ•„ėžģ—ėÆøė ˆģ“ķŠøź°€ ź°€ėŠ” źøøģ„ 볓멓 ė©ė‹ˆė‹¤.
13:18
They came from here, a mineral country.
254
798182
2674
ģ—¬źø°ģ„œ 부터 ģ‹œģž‘ķ–ˆģ£ . ꓑ물 źµ­ź°€ģ§€ģš”. ģ„ģœ ė„ ģž”ėœ© ģžˆź³ ,
13:20
They cached all the oil; they got all the money;
255
800880
2467
ėˆė„ ģž”ėœ© ģžˆģŠµė‹ˆė‹¤. ķ•˜ģ§€ė§Œ, ź±“ź°•ģ€ ģˆ˜ķ¼ė§ˆģ¼“ģ—ģ„œ ģ‚“ 수 ģžˆėŠ” 게 ģ•„ė‹ˆģ§€ģš”.
13:23
but health cannot be bought at the supermarket.
256
803371
2436
ź±“ź°•ģ—ėŠ” ķˆ¬ģžė„¼ 핓야 ķ•©ė‹ˆė‹¤. ģ•„ģ“ė“¤ģ—ź²Œ 학교 공부넼 ģ‹œģ¼œģ•¼ ķ•˜ģ§€ģš”.
13:26
You have to invest in health. You have to get kids into schooling.
257
806516
3147
13:29
You have to train health staff. You have to educate the population.
258
809687
3190
걓강 닓당 ģ§ģ›ģ„ ķ›ˆė Øģ‹œģ¼œģ•¼ ķ•©ė‹ˆė‹¤. ģøźµ¬ė„¼ źµģœ”ģ‹œģ¼œģ•¼ ķ•©ė‹ˆė‹¤.
13:32
And Sheikh Zayed did that in a fairly good way.
259
812901
2356
ģ‹œķ¬ ģ‚¬ģ˜ˆė“œėŠ” 꽤 ķ›Œė„­ķ•œ ė°©ė²•ģœ¼ė”œ ź·øė ‡ź²Œ ķ–ˆģŠµė‹ˆė‹¤.
13:35
In spite of falling oil prices, he brought this country up here.
260
815281
3963
ģ„ģœ  ź°€ź²©ģ€ ė–Øģ–“ģ”Œģ§€ė§Œ, ė‚˜ė¼ė„¼ ģ—¬źø°ź¹Œģ§€ ģ˜¬ė ¤ė†“ģ•˜ģŠµė‹ˆė‹¤.
13:39
So we've got a much more mainstream appearance of the world,
261
819268
3708
ź·øėž˜ģ„œ ģš°ė¦¬ėŠ” 훨씬 ė” 주넘스러욓 ģ„øź³„ģ˜ ėŖØģŠµģ„ ź°–ź³  ģžˆģŠµė‹ˆė‹¤.
13:43
where all countries tend to use their money
262
823000
2527
ėŖØė“  ė‚˜ė¼ėŠ” ź³¼ź±°ė³“ė‹¤ėŠ” ģ§€źøˆ ėˆģ„ ė” ģž˜
13:45
better than they used it in the past.
263
825551
2295
ķ™œģš©ķ•˜ėŠ” 것 ź°™ģŠµė‹ˆė‹¤.
13:49
Now, this is, more or less, if you look at the average data of the countries --
264
829269
6978
ė‚˜ė¼ė“¤ģ˜ ķ‰ź·  ė°ģ“ķ„°ė„¼ ė³“ģ‹œė©“, ģ“ė ‡ģŠµė‹ˆė‹¤.
13:56
they are like this.
265
836271
1194
13:57
That's dangerous, to use average data,
266
837489
3409
ģ“ģ œ ķ‰ź·  ė°ģ“ķ„°ė„¼ ģ‚¬ģš©ķ•˜ėŠ” ź²ƒģ€ ģœ„ķ—˜ķ•©ė‹ˆė‹¤. ģ™œėƒķ•˜ė©“,
14:00
because there is such a lot of difference within countries.
267
840922
3845
ė‚˜ė¼ė§ˆė‹¤ ė‚“ė¶€ģ ģœ¼ė”œ 큰 ģ°Øģ“ź°€ ģžˆźø° ė•Œė¬øģž…ė‹ˆė‹¤. 여기에 ź°€ģ„œ 볓멓,
14:04
So if I go and look here,
268
844791
2494
14:07
we can see that Uganda today is where South Korea was in 1960.
269
847309
6545
ģ˜¤ėŠ˜ė‚ ģ˜ ģš°ź°„ė‹¤ź°€ ķ•œźµ­ģ“ 1960년에 ģžˆė˜ ģžė¦¬ģ— ģžˆėŠ” ź²ƒģ„ 볓실 수 ģžˆģŠµė‹ˆė‹¤.
14:13
If I split Uganda, there's quite a difference within Uganda.
270
853878
3788
ģš°ź°„ė‹¤ė„¼ ė‚˜ėˆ„ė©“, ģš°ź°„ė‹¤ ė‚“ģ—ė„ 꽤 ģ°Øģ“ź°€ ģ”“ģž¬ķ•©ė‹ˆė‹¤. ģ“ź²ƒģ€ ģš°ź°„ė‹¤ģ˜ 5ė¶„ģœ„ģˆ˜ģž…ė‹ˆė‹¤.
14:17
These are the quintiles of Uganda.
271
857690
1988
14:19
The richest 20 percent of Ugandans are there.
272
859702
2180
ģš°ź°„ė‹¤ ģ‚¬ėžŒė“¤ 중 ź°€ģž„ ė¶€ģœ ķ•œ 20ķ¼ģ„¼ķŠøź°€ 저기 ģžˆģŠµė‹ˆė‹¤.
14:21
The poorest are down there.
273
861906
1471
ź°€ģž„ ź°€ė‚œķ•œ ģ‚¬ėžŒė“¤ģ€ ģ € ģ•„ėž˜ ģžˆģŠµė‹ˆė‹¤. 남아프리칓넼 ė‚˜ėˆ„ė©“, ģ“ė ‡ģŠµė‹ˆė‹¤.
14:23
If I split South Africa, it's like this.
274
863401
2831
14:26
And if I go down and look at Niger,
275
866256
3009
ė‹ˆģ œė„“ė”œ ė‚“ė ¤ź°€ģ„œ 볓멓, ė”ģ°ķ•œ źø°ź·¼ģ“ ģžˆģ—ˆėŠ”ė°,
14:29
where there was such a terrible famine [recently],
276
869289
3493
ė§ˆģ§€ė§‰ģœ¼ė”œ, ģ“ė ‡ģŠµė‹ˆė‹¤. ė‹ˆģ œė„“ģ˜ ź°€ģž„ ź°€ė‚œķ•œ 20ķ¼ģ„¼ķŠøź°€ 여기 ģžˆģŠµė‹ˆė‹¤.
14:32
it's like this.
277
872806
1151
14:33
The 20 percent poorest of Niger is out here,
278
873981
2757
14:36
and the 20 percent richest of South Africa is there,
279
876762
2769
ė‚Øģ•„ķ”„ė¦¬ģ¹“ģ—ģ„œ ź°€ģž„ ė¶€ģœ ķ•œ 20ķ¼ģ„¼ķŠøź°€ 저기 ģžˆģŠµė‹ˆė‹¤.
14:39
and yet we tend to discuss what solutions there should be in Africa.
280
879555
4421
ķ•˜ģ§€ė§Œ ģš°ė¦¬ėŠ” ģ•„ķ”„ė¦¬ģ¹“ģ—ģ„œ ģ–“ė–¤ ķ•“ź²°ģ±…ģ“ ģžˆģ–“ģ•¼ ķ•˜ėŠ”ģ§€ė„¼ ė…¼ģ˜ķ•˜ź³¤ ķ•©ė‹ˆė‹¤.
14:44
Everything in this world exists in Africa.
281
884000
2567
ģ“ ģ„øģƒģ˜ ėŖØė“  ź²ƒģ“ 아프리칓에 ģ”“ģž¬ķ•©ė‹ˆė‹¤. 그리고
14:46
And you can't discuss universal access to HIV [treatment]
282
886591
3275
여기 4ė¶„ģœ„ģˆ˜ė„¼ ģœ„ķ•“ ģ € ģ•„ėž˜ģ—ģ„œģ™€ ė˜‘ź°™ģ€ ģ „ėžµģœ¼ė”œ
14:49
for that quintile up here
283
889890
1919
14:51
with the same strategy as down here.
284
891833
2625
HIV ģ•½ķ’ˆģ— ėŒ€ķ•œ ė³“ķŽøģ ģø ģ ‘ź·¼ģ„ ė…¼ģ˜ķ•  ģˆ˜ėŠ” ģ—†ģŠµė‹ˆė‹¤.
14:54
The improvement of the world must be highly contextualized,
285
894482
3706
ģ„øź³„ģ˜ ķ–„ģƒģ€ ź·¹ķžˆ ė¬øė§„ķ™”ė˜ģ–“ģ•¼ ķ•©ė‹ˆė‹¤. 지역 ģˆ˜ģ¤€ģ—ģ„œ
14:58
and it's not relevant to have it on a regional level.
286
898212
3653
ė³“ėŠ” ź²ƒģ€ ģ¤‘ģš”ķ•˜ģ§€ ģ•ŠģŠµė‹ˆė‹¤. ģš°ė¦¬ėŠ” 훨씬 ė” źµ¬ģ²“ģ ģ“ģ–“ģ•¼ ķ•©ė‹ˆė‹¤.
15:01
We must be much more detailed.
287
901889
1530
ķ•™ģƒė“¤ģ“ ģ“ź²ƒģ„ ģ‚¬ģš©ķ•  수 ģžˆģ–“ģ„œ 아주 ķ„ė¶„ķ•˜ėŠ” ź²ƒģ„ ė“…ė‹ˆė‹¤.
15:04
We find that students get very excited when they can use this.
288
904070
3326
15:07
And even more, policy makers and the corporate sectors
289
907420
3618
훨씬 ė” ė§Žģ€ ģ •ģ±… ģž…ģ•ˆģžė“¤ź³¼ źø°ģ—… ė¶€ė¬øģ—ģ„œ
15:11
would like to see how the world is changing.
290
911062
3661
세계가 ģ–“ė–»ź²Œ ė³€ķ™”ķ•˜ź³  ģžˆėŠ”ģ§€ 볓고 ģ‹¶ģ–“ķ•©ė‹ˆė‹¤. ģ“ģ œ ģ™œ ģ“ėŸ° ģ¼ģ“ ģƒźø°ģ§€ ģ•Šģ„ź¹Œģš”?
15:14
Now, why doesn't this take place?
291
914747
1875
15:16
Why are we not using the data we have?
292
916646
2303
ģ™œ ģš°ė¦¬ėŠ” ģš°ė¦¬ź°€ 가지고 ģžˆėŠ” ė°ģ“ķ„°ė„¼ ģ‚¬ģš©ķ•˜ģ§€ ģ•Šź³  ģžˆģ„ź¹Œģš”?
15:18
We have data in the United Nations, in the national statistical agencies
293
918973
3810
ģš°ė¦¬ėŠ” ģœ ģ—”ź³¼ 국립 통계 ėŒ€ķ–‰ģ‚¬, ėŒ€ķ•™, ź·ø 밖에 다넸 비정부 ģ”°ģ§ė“¤ģ˜
15:22
and in universities and other nongovernmental organizations.
294
922807
3169
ė°ģ“ķ„°ė„¼ 가지고 ģžˆģŠµė‹ˆė‹¤.
15:26
Because the data is hidden down in the databases.
295
926000
2737
ė°ģ“ķ„°ź°€ ė°ģ“ķ„°ė² ģ“ģŠ¤ ģ•„ėž˜ģ— ģˆØģ–“ ģžˆźø° ė•Œė¬øģ—
15:28
And the public is there, and the internet is there,
296
928761
2530
ģ¼ė°˜ ėŒ€ģ¤‘ė„ ź±°źø° ģžˆź³ , ģøķ„°ė„·ė„ ź±°źø° ģžˆģ§€ė§Œ, 아직 효과적으딜 ģ‚¬ģš©ķ•˜ģ§€ ėŖ»ķ•©ė‹ˆė‹¤.
15:31
but we have still not used it effectively.
297
931315
2160
15:33
All that information we saw changing in the world
298
933499
2675
ģš°ė¦¬ź°€ ģ„øģƒģ—ģ„œ ė³ø ė³€ķ™”ķ•˜ėŠ” ėŖØė“  ģ •ė³“ėŠ”
15:36
does not include publicly funded statistics.
299
936198
2941
공적으딜 źø°źøˆģ„ ģ§€ģ›ė°›ėŠ” 통계넼 ķ¬ķ•Øķ•˜ģ§€ ģ•ŠģŠµė‹ˆė‹¤. ģ“ģ™€ ź°™ģ€
15:39
There are some web pages like this, you know,
300
939163
2371
ģ›¹ķŽ˜ģ“ģ§€ź°€ 약간 ģžˆģ§€ė§Œ, ė°ģ“ķ„°ė² ģ“ģŠ¤ ė°‘ė°”ė‹„ģ„ 긁얓 ģ˜ģ–‘ź°€ė„¼ 좀 ģ·Øķ•  수 ģžˆģ§€ė§Œ,
15:41
but they take some nourishment down from the databases,
301
941558
4703
15:46
but people put prices on them, stupid passwords and boring statistics.
302
946285
4972
ģ‚¬ėžŒė“¤ģ€ 거기에, ė°”ė³“ź°™ģ€ ė¹„ė°€ė²ˆķ˜øģ—, ģ§€ė£Øķ•œ 통계에 ź°€ź²©ģ„ ė§¤ź¹ė‹ˆė‹¤.
15:51
(Laughter)
303
951281
1108
(ģ›ƒģŒ).(ė°•ģˆ˜).
15:52
And this won't work.
304
952413
1422
15:53
(Applause)
305
953859
2556
ģ“ėŸ° ė°©ė²•ģ€ ķšØź³¼ź°€ ģ—†ģŠµė‹ˆė‹¤. 그러멓 ģ–“ė–»ź²Œ 핓야 ķ•©ė‹ˆź¹Œ? ģš°ė¦¬ėŠ” ė°ģ“ķ„°ė² ģ“ģŠ¤ź°€ ģžˆģŠµė‹ˆė‹¤.
15:56
So what is needed? We have the databases.
306
956439
2422
15:58
It's not a new database that you need.
307
958885
1867
ģ—¬ėŸ¬ė¶„ģ“ ķ•„ģš”ķ•œ ź²ƒģ€ 새 ė°ģ“ķ„°ė² ģ“ģŠ¤ź°€ ģ•„ė‹™ė‹ˆė‹¤. ģš°ė¦¬ėŠ” ė©‹ģ§„ ė””ģžģø ė„źµ¬ė„¼ 가지고 ģžˆģŠµė‹ˆė‹¤.
16:00
We have wonderful design tools and more and more are added up here.
308
960776
3805
그리고 여기에 점점 ė” ė§Žģ€ ź²ƒė“¤ģ“ ģ¶”ź°€ė©ė‹ˆė‹¤. ź·øėž˜ģ„œ ģš°ė¦¬ėŠ”
16:04
So we started a nonprofit venture linking data to design,
309
964605
6130
ė°ģ“ķ„°ė„¼ ė””ģžģøģ— ģ—°ź²°ķ•“ģ£¼ėŠ”, ź°­ė§ˆģ“ė„ˆė¼ź³  ė¶€ė„“ėŠ”
16:10
we called "Gapminder,"
310
970759
1156
ė¹„ģ˜ė¦¬ ė²¤ģ²˜źø°ģ—…ģ„ ģ‹œģž‘ķ–ˆģŠµė‹ˆė‹¤. ėŸ°ė˜ ģ§€ķ•˜ģ² ģ—ģ„œė¶€ķ„° ģ‹œģž‘ķ–ˆģ§€ģš”.
16:11
from the London Underground, where they warn you, "Mind the gap."
311
971939
3097
ėŸ°ė˜ ģ§€ķ•˜ģ² ģ—ģ„œėŠ” "ź°„ź²©ģ“ ė–Øģ–“ģ ø ģžˆģœ¼ė‹ˆ ģ”°ģ‹¬ķ•˜ģ„øģš”."ė¼ź³  ź²½ź³ ķ•“ģ¤ė‹ˆė‹¤.
16:15
So we thought Gapminder was appropriate.
312
975060
1959
ź·øėž˜ģ„œ ź°­ė§ˆģøė”ź°€ ģ ė‹¹ķ•˜ė‹¤ź³  ģƒź°ķ–ˆģŠµė‹ˆė‹¤. 그리고 ģ“ź²ƒģ²˜ėŸ¼
16:17
And we started to write software which could link the data like this.
313
977043
4181
ė°ģ“ķ„°ė„¼ ģ—°ź²°ķ•  수 ģžˆėŠ” ģ†Œķ”„ķŠøģ›Øģ–“ė„¼ ė§Œė“¤źø° ģ‹œģž‘ķ–ˆģŠµė‹ˆė‹¤. 얓렵지 ģ•Šģ•˜ģ–“ģš”.
16:21
And it wasn't that difficult.
314
981248
1547
16:22
It took some person years, and we have produced animations.
315
982819
3723
16:26
You can take a data set and put it there.
316
986566
2233
ėŖ‡ ģø-ė…„ģ“ ź±øė øź³ , ģš°ė¦¬ėŠ” ģ• ė‹ˆė©”ģ“ģ…˜ģ„ ģ œģž‘ķ–ˆģŠµė‹ˆė‹¤.
16:28
We are liberating UN data, some few UN organization.
317
988823
4476
ģš°ė¦¬ėŠ” ģœ ģ—” ė°ģ“ķ„°ģ™€ 몇몇 ģœ ģ—” ģ”°ģ§ģ„ ķ•“ė°©ģ‹œķ‚¤ź³  ģžˆģŠµė‹ˆė‹¤.
16:33
Some countries accept that their databases can go out on the world.
318
993323
4278
ģ–“ė–¤ ė‚˜ė¼ė“¤ģ€ ź·øė“¤ģ˜ ė°ģ“ķ„°ė² ģ“ģŠ¤ź°€ ģ„øź³„ė”œ ė‚˜ź°ˆ 수 ģžˆė„ė” ķ—ˆė½ķ•“ģ£¼ģ§€ė§Œ,
16:37
But what we really need is, of course, a search function,
319
997625
3245
ģš°ė¦¬ź°€ ģ •ė§ė”œ ķ•„ģš”ķ•œ ź²ƒģ€, 물딠, ź²€ģƒ‰ źø°ėŠ„ģž…ė‹ˆė‹¤.
16:40
a search function where we can copy the data up to a searchable format
320
1000894
4502
ė°ģ“ķ„°ė„¼ ź²€ģƒ‰ ź°€ėŠ„ķ•œ ķ˜•ģ‹ģœ¼ė”œ 복사할 수 ģžˆėŠ” ź²€ģƒ‰ źø°ėŠ„ģ„
16:45
and get it out in the world.
321
1005420
1518
ģ„øģƒģ— ė‚“ė³“ė‚“ėŠ” ź²ƒģž…ė‹ˆė‹¤. ģš°ė¦¬ź°€ ėŒģ•„ė‹¤ė‹ ė•Œ 묓슨 ģ–˜źø°ė„¼ ė“¤ģ„ź¹Œģš”?
16:46
And what do we hear when we go around?
322
1006962
2165
ģ €ėŠ” 주 ķ†µź³„ė¶€ģ„œģ—ģ„œ ģøė„˜ķ•™ģ„ 다룬 ģ ģ“ ģžˆģŠµė‹ˆė‹¤. ėˆ„źµ¬ė‚˜ ė§ķ•˜ģ§€ģš”.
16:49
I've done anthropology on the main statistical units.
323
1009151
3118
16:52
Everyone says, "It's impossible. This can't be done.
324
1012293
3009
"ė¶ˆź°€ėŠ„ķ•“ģš”. ģ“ź±“ ė¶ˆź°€ėŠ„ķ•“ģš”. 우리 ģ •ė³“ėŠ” 세부 ģ‚¬ķ•­ģ“ ė„ˆė¬“
16:55
Our information is so peculiar in detail,
325
1015326
2510
16:57
so that cannot be searched as others can be searched.
326
1017860
3104
ķŠ¹ģ“ķ•“ģ„œ 다넸 ė°ģ“ķ„°ė“¤ģ“ ź²€ģƒ‰ė˜ėŠ” 것처럼 ź²€ģƒ‰ė  수 ģ—†ģŠµė‹ˆė‹¤.
17:00
We cannot give the data free to the students,
327
1020988
2355
ķ•™ģƒė“¤ģ—ź²Œ, ģ„øź³„ģ˜ źø°ģ—…ź°€ė“¤ģ—ź²Œ 묓료딜 ė°ģ“ķ„°ė„¼ 줄 ģˆ˜ėŠ” ģ—†ģ–“ģš”."
17:03
free to the entrepreneurs of the world."
328
1023367
2126
ź·øėŸ¬ė‚˜ ģ“ź²ƒģ“ ģš°ė¦¬ź°€ 볓고 ģ‹¶ģ–“ķ•˜ėŠ” ź²ƒģ“ģ§€ģš”, 그렇지 ģ•ŠģŠµė‹ˆź¹Œ?
17:06
But this is what we would like to see, isn't it?
329
1026256
2346
공적으딜 기금 ģ§€ģ›ģ„ ė°›ģ€ ė°ģ“ķ„°ź°€ 여기 ģžˆģŠµė‹ˆė‹¤.
17:09
The publicly funded data is down here.
330
1029175
2424
17:11
And we would like flowers to grow out on the net.
331
1031623
3035
ģš°ė¦¬ėŠ” ė„¤ķŠøģ—ģ„œ 꽃처럼 ģžė¼ź²Œ ķ•˜ź³  ģ‹¶ģŠµė‹ˆė‹¤.
17:14
One of the crucial points is to make them searchable,
332
1034682
3270
ķ•µģ‹¬ģ ģø ķ¬ģøķŠø 중 ķ•˜ė‚˜ėŠ” ė°ģ“ķ„°ė„¼ ź²€ģƒ‰ ź°€ėŠ„ķ•˜ź²Œ ė§Œė“œėŠ” 것, 그리고 ė‚˜ģ„œ
17:17
and then people can use the different design tools to animate it there.
333
1037976
4287
ģ‚¬ėžŒė“¤ģ“ 다넸 ė””ģžģø ė„źµ¬ė„¼ ģ“ģš©ķ•˜ģ—¬ ź±°źø°ģ„œ ģ• ė‹ˆė©”ģ“ģ…˜ģ„ ė§Œė“¤ 수 ģžˆė„ė” ķ•˜ėŠ” ź²ƒģž…ė‹ˆė‹¤.
ģ—¬ėŸ¬ė¶„ź»˜ 꽤 ģ¢‹ģ€ ģ†Œģ‹ģ“ ģžˆģŠµė‹ˆė‹¤. ķ˜„ ģ‹ ģž„ ģœ ģ—” ķ†µź³„ģ²­ģž„ģ€
17:22
And I have pretty good news for you.
334
1042287
2294
17:24
I have good news that the [current],
335
1044605
2194
17:26
new head of UN statistics doesn't say it's impossible.
336
1046823
3486
ė¶ˆź°€ėŠ„ķ•˜ė‹¤ź³  ė§ķ•˜ģ§€ ģ•Šģ•˜ė‹¤ėŠ” ģ¢‹ģ€ ģ†Œģ‹ģ„ ģ•Œė ¤ė“œė¦½ė‹ˆė‹¤.
17:30
He only says, "We can't do it."
337
1050333
1856
ė‹¤ė§Œ, "ģš°ė¦¬ėŠ” ķ•  수 ģ—†ģŠµė‹ˆė‹¤."ė¼ź³ ė§Œ ė§ķ–ˆģ§€ģš”.
17:32
(Laughter)
338
1052772
3532
(ģ›ƒģŒ).
17:36
And that's a quite clever guy, huh?
339
1056328
1883
ģƒė‹¹ķžˆ ģ˜ė¦¬ķ•˜ģ‹  ė¶„ģ“ģ£ ?
17:38
(Laughter)
340
1058235
1849
(ģ›ƒģŒ)
17:40
So we can see a lot happening in data in the coming years.
341
1060108
4365
ź·øėž˜ģ„œ ģš°ė¦¬ėŠ” ģ•žģœ¼ė”œ ėŖ‡ ė…„ ė™ģ•ˆ ė°ģ“ķ„°ģ—ģ„œ ģˆ˜ė§Žģ€ ģ¼ė“¤ģ“ ģ¼ģ–“ė‚˜ėŠ” ź²ƒģ„ ė³¼ 수 ģžˆģŠµė‹ˆė‹¤.
17:44
We will be able to look at income distributions in completely new ways.
342
1064497
4376
ģ™„ģ „ķžˆ 새딜욓 ė°©ė²•ģœ¼ė”œ ģ†Œė“ 분배넼 ė³¼ 수 ģžˆģ„ ź²ƒģž…ė‹ˆė‹¤.
17:48
This is the income distribution of China, 1970.
343
1068897
5079
ģ“ź²ƒģ€ 1970ė…„ ģ¤‘źµ­ģ˜ ģ†Œė“ ė¶„ė°°ģž…ė‹ˆė‹¤.
17:54
This is the income distribution of the United States, 1970.
344
1074000
4796
1970ė…„ ėÆøźµ­ģ˜ ģ†Œė“ ė¶„ė°°ģž…ė‹ˆė‹¤.
17:58
Almost no overlap.
345
1078820
1851
ź±°ģ˜ ź²¹ģ¹˜ėŠ” ė¶€ė¶„ģ“ ģ—†ģŠµė‹ˆė‹¤. 묓슨 ģ¼ģ“ ģ¼ģ–“ė‚¬ģ„ź¹Œģš”?
18:00
Almost no overlap.
346
1080695
1411
18:02
And what has happened?
347
1082130
1716
18:03
What has happened is this:
348
1083870
1481
ģ“ėŸ° ģ¼ģ“ ģžˆģ—ˆģŠµė‹ˆė‹¤. ģ¤‘źµ­ģ€ ģ„±ģž„ķ•˜ź³  ģžˆģŠµė‹ˆė‹¤. ė” ģ“ģƒ ź·øė ‡ź²Œ
18:05
that China is growing, it's not so equal any longer,
349
1085375
2972
18:08
and it's appearing here, overlooking the United States,
350
1088371
3971
ķ‰ė“±ķ•˜ģ§€ ģ•Šź³ , ėÆøźµ­ģ„ ķžė— 볓며 ģ—¬źø°ģ—ģ„œ ė‚˜ķƒ€ė‚˜ź³  ģžˆģŠµė‹ˆė‹¤.
18:12
almost like a ghost, isn't it?
351
1092366
2292
ź±°ģ˜ 유령 ź°™ģŠµė‹ˆė‹¤. ź·øė ‡ģ§€ģš”?
18:14
(Laughter)
352
1094682
1294
(ģ›ƒģŒ)
18:16
It's pretty scary.
353
1096000
1587
꽤 ģ„¬ģ°Ÿķ•œ ģ¼ģž…ė‹ˆė‹¤. ķ•˜ģ§€ė§Œ ģ“ ėŖØė“  정볓넼 ź°–ź³  ģžˆėŠ” ź²ƒģ“ ģƒė‹¹ķžˆ ģ¤‘ģš”ķ•˜ė‹¤ź³  ģƒź°ķ•©ė‹ˆė‹¤.
18:17
(Laughter)
354
1097611
2261
18:22
But I think it's very important to have all this information.
355
1102762
3910
18:26
We need really to see it.
356
1106696
2730
ģš°ė¦¬ėŠ” ģ •ė§ė”œ ģ“ 정볓넼 ė³¼ ķ•„ģš”ź°€ ģžˆģŠµė‹ˆė‹¤. ģ“ź²ƒģ„ ė³“ėŠ” ėŒ€ģ‹ ,
18:29
And instead of looking at this,
357
1109450
2883
18:32
I would like to end up by showing the internet users per 1,000.
358
1112357
5383
1:00명당 ģøķ„°ė„· ģ‚¬ģš©ģžė“¤ģ„ ė³“ģ—¬ė“œė¦¬ź³  ģ‹¶ģŠµė‹ˆė‹¤.
18:37
In this software, we access about 500 variables
359
1117764
2924
ģ“ ģ†Œķ”„ķŠøģ›Øģ–“ģ—ģ„œ, ģš°ė¦¬ėŠ” ėŖØė“  ė‚˜ė¼ė“¤ė”œė¶€ķ„°ģ˜ 약 500ź°œģ˜ ė³€ģˆ˜ė“¤ģ— 꽤 ģ‰½ź²Œ ģ ‘ģ†ķ•©ė‹ˆė‹¤.
18:40
from all the countries quite easily.
360
1120712
2267
ģ“ź²ƒģ„ ė°”ź¾øėŠ”ė°ėŠ” ģ‹œź°„ģ“ 좀 ź±øė¦¬ģ§€ė§Œ
18:43
It takes some time to change for this,
361
1123003
3134
18:46
but on the axes, you can quite easily get any variable you would like to have.
362
1126161
5818
ģ¶• ģœ„ģ—ģ„œ, ģ›ķ•˜ėŠ” ģ–“ė–¤ ė³€ģˆ˜ė“  ģ‰½ź²Œ ė³¼ 수 ģžˆģŠµė‹ˆė‹¤.
ė°ģ“ķ„°ė² ģ“ģŠ¤ź°€ ė¬“ė£Œģ“ź³ ,
18:52
And the thing would be to get up the databases free,
363
1132003
4383
18:56
to get them searchable, and with a second click,
364
1136410
2809
ź²€ģƒ‰ģ“ ź°€ėŠ„ķ•˜ź³ , ė‘ė²ˆģ§ø 큓릭으딜, 정볓넼
18:59
to get them into the graphic formats, where you can instantly understand them.
365
1139243
5056
ź·øėž˜ķ”½ ķ˜•ģ‹ģœ¼ė”œ 옮길 수 ģžˆģ–“, ģ¦‰ģ‹œ 정볓넼 ģ“ķ•“ķ•  수 ģžˆģ„ ź²ƒģž…ė‹ˆė‹¤.
19:04
Now, statisticians don't like it, because they say
366
1144323
3426
ģ§€źøˆ, ķ†µź³„ķ•™ģžė“¤ģ€ ģ“ź²ƒģ„ ģ¢‹ģ•„ķ•˜ģ§€ ģ•ŠģŠµė‹ˆė‹¤. ģ“ź²ƒģ“ ķ˜„ģ‹¤ģ„ 볓여주지 ģ•ŠėŠ”ė‹¤ź³ 
19:07
that this will not show the reality;
367
1147773
6917
ė§ķ•©ė‹ˆė‹¤. ģš°ė¦¬ėŠ” 통계학적, ė¶„ģ„ķ•™ģ  ė°©ė²•ģ„ ź°–ź³  ģžˆģ–“ģ•¼ ķ•©ė‹ˆė‹¤.
19:14
we have to have statistical, analytical methods.
368
1154714
2288
ź·øėŸ¬ė‚˜ ģ“ź²ƒģ€ ź°€ģ„¤ģ„ ģƒģ„±ķ•“ ģ¤ė‹ˆė‹¤.
19:17
But this is hypothesis-generating.
369
1157026
1950
19:19
I end now with the world.
370
1159000
1905
ģ“ģ œ ģ„øź³„ė”œ ėė‚©ė‹ˆė‹¤. ź±°źø°ģ—ģ„œ, ģøķ„°ė„·ģ“ ė“¤ģ–“ģ˜µė‹ˆė‹¤.
19:22
There, the internet is coming.
371
1162021
1485
19:23
The number of internet users are going up like this.
372
1163530
2483
ģøķ„°ė„· ģ‚¬ģš©ģžė“¤ģ˜ ģˆ˜ėŠ” ģ“ė ‡ź²Œ ģ˜¬ė¼ź°€ź³  ģžˆģŠµė‹ˆė‹¤. ģ“ź²ƒģ“ 1ģøė‹¹ źµ­ėÆ¼ģ†Œė“ģž…ė‹ˆė‹¤.
19:26
This is the GDP per capita.
373
1166037
2111
ģ‹ źø°ģˆ ģ“ ė„ģž…ė˜ź³  ģžˆģ§€ė§Œ, ź·ø ė‹¤ģŒģ—ėŠ” ė†€ėžź²Œė„,
19:28
And it's a new technology coming in, but then amazingly,
374
1168172
3500
19:31
how well it fits to the economy of the countries.
375
1171696
4027
ģ—¬ėŸ¬ ė‚˜ė¼ė“¤ģ˜ ź²½ģ œģ— ģ–¼ė§ˆė‚˜ ģž˜ ė“¤ģ–“ė§žėŠ”ģ§€ģš”. ģ“ź²ƒģ“ ė°”ė”œ
19:35
That's why the $100 computer will be so important.
376
1175747
2992
100ė‹¬ėŸ¬ģ§œė¦¬ 컓퓨터가 ź·øė ‡ź²Œ ģ¤‘ģš”ķ•œ ģ“ģœ ź°€ 될 ź²ƒģž…ė‹ˆė‹¤. ķ•˜ģ§€ė§Œ ģ¢‹ģ€ ź²½ķ–„ģž…ė‹ˆė‹¤.
19:38
But it's a nice tendency.
377
1178763
1405
19:40
It's as if the world is flattening off, isn't it?
378
1180192
2771
세계가 경사가 점점 ģ™„ė§Œķ•“ģ øģ„œ ķ‰ķ‰ķ•˜ź²Œ 되고 ģžˆėŠ” 것 같지 ģ•ŠģŠµė‹ˆź¹Œ?
19:42
These countries are lifting more than the economy,
379
1182987
2538
ģ“ ė‚˜ė¼ė“¤ģ€ ź²½ģ œė³“ė‹¤ 훨씬 ė” ģ˜¬ė¼ź°€ź³  ģžˆź³ , ģ•žģœ¼ė”œ ź³„ģ† 추적핓 볓멓
19:45
and it will be very interesting to follow this over the year,
380
1185549
2956
아주 ģž¬ėÆøģžˆģ„ ź²ƒģž…ė‹ˆė‹¤. ģ—¬ėŸ¬ė¶„ģ“ ź³µģ ģø źø°źøˆģ˜ ģ§€ģ›ģ„ ė°›ėŠ”
19:48
as I would like you to be able to do with all the publicly funded data.
381
1188529
3650
ė°ģ“ķ„°ģ™€ ķ•Øź»˜ ķ•˜ģ‹¤ 수 ģžˆźø°ė„¼ ė°”ėžė‹ˆė‹¤. ėŒ€ė‹Øķžˆ ź°ģ‚¬ķ•©ė‹ˆė‹¤.
19:52
Thank you very much.
382
1192203
1182
19:53
(Applause)
383
1193409
3000
(ė°•ģˆ˜)
ģ“ ģ›¹ģ‚¬ģ“ķŠø 정볓

ģ“ ģ‚¬ģ“ķŠøėŠ” ģ˜ģ–“ ķ•™ģŠµģ— ģœ ģš©ķ•œ YouTube ė™ģ˜ģƒģ„ ģ†Œź°œķ•©ė‹ˆė‹¤. ģ „ 세계 ģµœź³ ģ˜ ģ„ ģƒė‹˜ė“¤ģ“ ź°€ė„“ģ¹˜ėŠ” ģ˜ģ–“ ģˆ˜ģ—…ģ„ 볓게 될 ź²ƒģž…ė‹ˆė‹¤. 각 ė™ģ˜ģƒ ķŽ˜ģ“ģ§€ģ— ķ‘œģ‹œė˜ėŠ” ģ˜ģ–“ ģžė§‰ģ„ ė”ėø” ķ“ė¦­ķ•˜ė©“ ź·øź³³ģ—ģ„œ ė™ģ˜ģƒģ“ ģž¬ģƒė©ė‹ˆė‹¤. ė¹„ė””ģ˜¤ ģž¬ģƒģ— ė§žģ¶° ģžė§‰ģ“ ģŠ¤ķ¬ė”¤ė©ė‹ˆė‹¤. ģ˜ź²¬ģ“ė‚˜ ģš”ģ²­ģ“ ģžˆėŠ” 경우 ģ“ ė¬øģ˜ ģ–‘ģ‹ģ„ ģ‚¬ģš©ķ•˜ģ—¬ ė¬øģ˜ķ•˜ģ‹­ģ‹œģ˜¤.

https://forms.gle/WvT1wiN1qDtmnspy7