Hans Rosling: Debunking third-world myths with the best stats you've ever seen

2,176,367 views

2007-01-14 ・ TED


New videos

Hans Rosling: Debunking third-world myths with the best stats you've ever seen

2,176,367 views ・ 2007-01-14

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Davorin Jelačić Recezent: Tilen Pigac - EFZG
00:25
About 10 years ago, I took on the task to teach global development
0
25626
4355
Prije 10 godina, počeo sam švedske dodiplomce
podučavati globalnom razvoju. To je bilo nakon što sam
00:30
to Swedish undergraduate students.
1
30005
2146
00:32
That was after having spent about 20 years,
2
32175
2881
oko 20 godina proveo proučavajući glad u Africi s afričkim institucijama,
00:35
together with African institutions,
3
35080
1877
00:36
studying hunger in Africa.
4
36981
1598
pa se od mene nekako očekivalo da znam ponešto o svijetu.
00:38
So I was sort of expected to know a little about the world.
5
38603
3998
Na našem medicinskom sveučilištu, Karolinska Institute, pokrenuo sam
00:42
And I started, in our medical university, Karolinska Institute,
6
42625
3351
00:46
an undergraduate course called Global Health.
7
46000
3530
dodiplomski kolegij nazvan Globalno zdravlje. Ali kad dobijete
00:49
But when you get that opportunity, you get a little nervous.
8
49554
2822
takvu priliku, postanete malo nervozni. Mislio sam, studenti
00:52
I thought, these students coming to us actually have the highest grade
9
52400
3334
koji k nama dođu imaju najviše ocjene koje možete dobiti
00:55
you can get in the Swedish college system,
10
55758
2023
u švedskom školskom sustavu - pa možda znaju sve
00:57
so I thought, maybe they know everything I'm going to teach them about.
11
57805
3365
o onome o čemu ću ih podučavati. Pa sam im dao preliminarni test.
01:01
So I did a pretest when they came.
12
61194
1997
01:03
And one of the questions from which I learned a lot was this one:
13
63215
3493
Jedno od pitanja na kojemu sam mnogo naučio bilo je ovo:
01:06
"Which country has the highest child mortality of these five pairs?"
14
66732
4269
"Koja zemlja ima najvišu stopu dječje smrtnosti od ovih pet parova?"
I tako sam ih spojio, da u svakom paru država
01:11
And I put them together so that in each pair of countries,
15
71890
3070
01:14
one has twice the child mortality of the other.
16
74984
3445
jedan član ima dvostruko veću dječju smrtnost od drugog. To je značilo
01:18
And this means that it's much bigger, the difference,
17
78453
4245
da je razlika mnogo veća od netočnosti u podacima.
01:22
than the uncertainty of the data.
18
82722
1802
01:24
I won't put you at a test here, but it's Turkey,
19
84548
2311
Vas ovdje neću izložiti testu, ali riječ je o Turskoj
01:26
which is highest there, Poland, Russia, Pakistan and South Africa.
20
86883
4327
koja je najveća ovdje, pa Poljska, Rusija, Pakistan i Južnoafrička republika.
01:31
And these were the results of the Swedish students.
21
91234
2422
A ovo su bili rezultati švedskih studenata. Uradio sam sve tako da sam dobio
01:33
I did it so I got the confidence interval, which is pretty narrow.
22
93680
3170
interval sigurnosti koji je prilično uzak, i bio sam sretan,
01:36
And I got happy, of course -- a 1.8 right answer out of five possible.
23
96874
3985
naravno: 1,8 točnih odgovora od pet mogućih. To znači
01:40
That means there was a place for a professor of international health
24
100883
3211
da ima mjesta za profesora međunarodnog zdravlja -
01:44
and for my course.
25
104118
1166
(Smijeh) i za moj kolegij.
01:45
(Laughter)
26
105308
1033
01:46
But one late night, when I was compiling the report,
27
106365
4039
No kasno jedne noći, dok sam sastavljao izvješće,
01:50
I really realized my discovery.
28
110428
2566
doista sam shvatio svoje nalaze. Pokazao sam
01:53
I have shown that Swedish top students know, statistically,
29
113018
4925
da najbolji švedski studenti o svijetu
01:57
significantly less about the world than the chimpanzees.
30
117967
3009
znaju statistički značajno manje nego čimpanze.
02:01
(Laughter)
31
121000
1976
(Smijeh)
02:03
Because the chimpanzee would score half right
32
123000
3459
Jer bi čimpanze pogodile pola odgovora da sam im dao
02:06
if I gave them two bananas with Sri Lanka and Turkey.
33
126483
2630
dvije banane sa Šri Lankom i Turskom. Bile bi u pravu u pola slučajeva.
02:09
They would be right half of the cases. But the students are not there.
34
129137
3422
Ali studenti nisu. Za mene problem nije bilo neznanje.
02:12
The problem for me was not ignorance; it was preconceived ideas.
35
132583
4215
Bile su to ranije usvojene ideje.
02:16
I did also an unethical study
36
136822
2737
Također sam neetički provjerio i profesore na Karolinska Institute
02:19
of the professors of the Karolinska Institute,
37
139583
2527
(Smijeh)
02:22
which hands out the Nobel Prize in Medicine,
38
142134
2541
-- koji dodjeljuje Nobelovu nagradu za medicinu,
02:24
and they are on par with the chimpanzee there.
39
144699
2296
i oni su bili u rangu sa čimpanzama.
(Smijeh)
02:27
(Laughter)
40
147019
2435
02:29
This is where I realized that there was really a need to communicate,
41
149478
4183
Tada sam shvatio da zaista postoji potreba za komunikacijom,
02:33
because the data of what's happening in the world
42
153685
2904
jer su podaci o tome što se događa u svijetu
02:36
and the child health of every country
43
156613
1961
i o zdravlju djece u svakoj zemlji dobro poznati.
02:38
is very well aware.
44
158598
1337
02:39
So we did this software, which displays it like this.
45
159959
2767
Napravili smo program koji podatke prikazuje ovako: svaki balon je jedna zemlja.
02:42
Every bubble here is a country.
46
162750
1958
02:44
This country over here is China.
47
164732
4989
Ova država ovdje je Kina. Ovo je Indija.
02:49
This is India.
48
169745
1163
02:50
The size of the bubble is the population,
49
170932
2247
Veličina balona je stanovništvo, a na ovoj osi sam stavio stopu rađanja.
02:53
and on this axis here, I put fertility rate.
50
173203
3556
02:56
Because my students, what they said
51
176783
2443
Zbog toga što su moji studenti rekli
02:59
when they looked upon the world, and I asked them,
52
179250
2559
kad su pogledali svijet, a ja sam ih pitao,
03:01
"What do you really think about the world?"
53
181833
2723
"Što zaista mislite o svijetu?"
Prvo sam otkrio da je udžbenik uglavnom Tintin.
03:04
Well, I first discovered that the textbook was Tintin, mainly.
54
184580
3269
03:07
(Laughter)
55
187873
1045
(Smijeh)
03:08
And they said, "The world is still 'we' and 'them.'
56
188942
2515
Rekli su, "Svijet je još uvijek 'mi' i 'oni.'
03:11
And 'we' is the Western world and 'them' is the Third World."
57
191481
3453
Mi smo Zapadni svijet, a oni su Treći svijet."
"A što smatrate pod Zapadnim svijetom?", upitao sam.
03:15
"And what do you mean with 'Western world?'" I said.
58
195381
2510
03:17
"Well, that's long life and small family.
59
197915
1977
"Pa, dug život i male obitelji, a Treći svijet su kratak život i velike obitelji."
03:19
And 'Third World' is short life and large family."
60
199916
2388
To su podaci koje sam mogao ovdje prikazati. Stopa rađanja je ovdje: broj djece po ženi,
03:23
So this is what I could display here.
61
203058
2385
03:25
I put fertility rate here --
62
205467
1657
03:27
number of children per woman: one, two, three, four,
63
207148
3138
jedno, dvoje, troje, četvero, sve do osmero djece po ženi.
03:30
up to about eight children per woman.
64
210310
2031
03:32
We have very good data since 1962, 1960, about,
65
212365
3980
Imamo vrlo dobre podatke od 1962. - 1960. - o veličini obitelji u svim zemljama.
03:36
on the size of families in all countries.
66
216369
2033
03:38
The error margin is narrow.
67
218426
1375
Margina pogreške je mala. Ovdje sam stavio očekivanu duljinu života pri rođenju,
03:39
Here, I put life expectancy at birth,
68
219825
2008
03:41
from 30 years in some countries, up to about 70 years.
69
221857
3467
od 30 godina u nekim zemljama, do nekih 70 godina.
03:45
And in 1962, there was really a group of countries here
70
225348
3403
1962. godine, ovdje se nalazila skupina zemalja.
03:48
that were industrialized countries,
71
228775
1857
Bile su to industrijalizirane zemlje, s malim obiteljima i dugim životnim vijekom.
03:50
and they had small families and long lives.
72
230656
3094
03:53
And these were the developing countries.
73
233774
2100
A ove su bile zemlje u razvoju:
03:55
They had large families and they had relatively short lives.
74
235898
3041
imale su velike obitelji i relativno kratki životni vijek.
03:58
Now, what has happened since 1962? We want to see the change.
75
238963
3681
Dakle, što se dogodilo od 1962? Želimo vidjeti promjenu.
04:02
Are the students right? It's still two types of countries?
76
242668
2937
Jesu li studenti u pravu? Postoje li još uvijek dvije vrste zemalja?
04:05
Or have these developing countries got smaller families and they live here?
77
245629
3736
Ili su zemlje u razvoju smanjile veličinu obitelji i sad žive ovdje?
04:09
Or have they got longer lives and live up there?
78
249389
2298
Ili imaju dulji životni vijek i žive ovdje?
04:11
Let's see. We start the world, eh?
79
251711
1841
Pogledajmo. Zaustavili smo svijet. Ovo je UN statistika
04:13
This is all UN statistics that have been available.
80
253576
2486
koja nam je dostupna. Idemo. Vidite li ovdje?
04:16
Here we go. Can you see there?
81
256086
1501
04:17
It's China there, moving against better health there, improving there.
82
257611
3287
Ovo je Kina, kreće se prema boljem zdravlju ovdje, napreduje.
04:20
All the green Latin American countries are moving towards smaller families.
83
260922
3645
Sve zelene latinoameričke države se kreću prema manjim obiteljima.
Ove žute ovdje su arapske države,
04:24
Your yellow ones here are the Arabic countries,
84
264591
2422
i one dobivaju veće obitelji, ali one -- ne, dulji život, ali ne veće obitelji.
04:27
and they get longer life, but not larger families.
85
267037
3901
04:30
The Africans are the green here. They still remain here.
86
270962
2622
Afrikanci su zeleni ovdje dolje. Oni su još uvijek ovdje.
04:33
This is India; Indonesia is moving on pretty fast.
87
273608
2641
Ovo je Indija. Indonezija se kreće prilično brzo.
04:36
In the '80s here, you have Bangladesh still among the African countries.
88
276273
4106
(Smijeh)
A 80-tih godina, Bangladeš je još uvijek među afričkim zemljama ovdje.
04:40
But now, Bangladesh -- it's a miracle that happens in the '80s --
89
280403
3228
Ali sada, Bangladeš -- ovo je čudo koje se događa u 80-tima:
04:43
the imams start to promote family planning,
90
283655
2413
imami počinju poticati obiteljsko planiranje.
04:46
and they move up into that corner.
91
286092
1747
Pomiču se u ovaj kut gore. A u 90-tima, imamo strašnu epidemiju HIV-a
04:47
And in the '90s, we have the terrible HIV epidemic
92
287863
3298
04:51
that takes down the life expectancy of the African countries.
93
291185
3509
koja smanjuje očekivano trajanje života u afričkim zemljama,
04:54
And the rest of them all move up into the corner,
94
294718
3648
a sve druge se pomiču u ovaj kut gore
04:58
where we have long lives and small family,
95
298390
2386
gdje imamo dug život i malu obitelj, i imamo potpuno novi svijet.
05:00
and we have a completely new world.
96
300800
2114
05:02
(Applause)
97
302938
3214
(Pljesak)
05:13
(Applause ends)
98
313561
1097
05:15
Let me make a comparison directly
99
315567
1813
Dopustite da izravno usporedim Sjedinjene Države i Vijetnam.
05:17
between the United States of America and Vietnam.
100
317404
3014
05:20
1964:
101
320442
1199
1964: Amerika je imala male obitelji i dug život;
05:22
America had small families and long life;
102
322538
2611
05:25
Vietnam had large families and short lives.
103
325173
3349
Vijetnam velike obitelji i kratak život. I evo što se događa:
05:28
And this is what happens.
104
328546
1283
05:29
The data during the war indicate that even with all the death,
105
329853
5341
podaci tijekom rata pokazuju da je, usprkos poginulima,
05:35
there was an improvement of life expectancy.
106
335218
2229
došlo do produljenja očekivanog životnog vijeka. Do kraja godine,
05:37
By the end of the year, family planning started in Vietnam,
107
337471
2784
u Vijetnamu je počelo planiranje obitelji i kretanje prema manjim obiteljima.
05:40
and they went for smaller families.
108
340279
1694
05:41
And the United States up there is getting longer life,
109
341997
2569
A Sjedinjene Države ovdje gore idu prema duljem životu,
05:44
keeping family size.
110
344590
1188
zadržavajući veličinu obitelji. A sada u 80-tima,
05:45
And in the '80s now, they give up Communist planning
111
345802
3605
Vijetnam odustaje od komunističkog planiranja i usvaja tržišnu ekonomiju
05:49
and they go for market economy,
112
349431
1507
05:50
and it moves faster even than social life.
113
350962
2010
i kreće se brže čak i od društvenog života. A danas,
05:52
And today, we have in Vietnam
114
352996
2336
u Vijetnamu imamo isto trajanje života i istu veličinu obitelji
05:55
the same life expectancy and the same family size
115
355356
4802
evo, Vijetnam u 2003., kakva je bila u SAD 1974. godine, na kraju rata.
06:00
here in Vietnam, 2003,
116
360182
2763
06:02
as in United States, 1974, by the end of the war.
117
362969
4067
Mislim da svi mi - ako ne gledamo podatke --
06:07
I think we all, if we don't look at the data,
118
367513
3296
06:10
we underestimate the tremendous change in Asia,
119
370833
3221
podcijenjujemo strahovitu promjenu u Aziji u kojoj
06:14
which was in social change before we saw the economic change.
120
374078
4691
se dogodila društvena promjena prije nego što smo vidjeli ekonomsku promjenu.
06:18
So let's move over to another way here
121
378793
2367
Prijeđimo na drugi način na koji možemo prikazati
06:21
in which we could display the distribution in the world
122
381184
4487
distribuciju svjetskog dohotka. Ovo je svjetska distribucija dohotka.
06:25
of income.
123
385695
1280
06:26
This is the world distribution of income of people.
124
386999
3696
Jedan dolar, 10 dolara ili 100 dolara dnevno.
06:31
One dollar, 10 dollars or 100 dollars per day.
125
391499
3846
Nema više jaza između bogatih i siromašnih. To je mit.
06:36
There's no gap between rich and poor any longer. This is a myth.
126
396071
3412
06:39
There's a little hump here.
127
399507
2015
Ovdje postoji brežuljak. Ali ljudi postoje posvuda.
06:42
But there are people all the way.
128
402195
1640
06:43
And if we look where the income ends up,
129
403859
4386
A ako pogledamo gdje dohodak završava - dohodak --
06:48
this is 100 percent of the world's annual income.
130
408269
4195
ovo je 100 posto svjetskog godišnjeg dohotka. A najbogatijih 20 posto,
06:52
And the richest 20 percent,
131
412488
2465
06:54
they take out of that about 74 percent.
132
414977
4119
na njih otpada oko 74 posto. Na najsiromašnijih 20 posto
06:59
And the poorest 20 percent, they take about two percent.
133
419120
4916
otpada oko 2 posto. I ovo pokazuje da je koncept
07:04
And this shows that the concept of developing countries
134
424060
2755
07:06
is extremely doubtful.
135
426839
1567
zemalja u razvoju izrazito dvojben. Mi razmišljamo o pomoći,
07:08
We think about aid,
136
428430
1881
07:10
like these people here giving aid to these people here.
137
430335
3613
da ovi ovdje šalju pomoć ovim ljudima ovdje. Ali u sredini
07:13
But in the middle, we have most of the world population,
138
433972
3120
imamo najveći broj stanovnika, i na njih se odnosi 24 posto dohotka.
07:17
and they have now 24 percent of the income.
139
437116
2609
07:19
We heard it in other forms.
140
439749
1656
Čuli smo to i drugdje. A tko su oni?
07:21
And who are these?
141
441429
2701
Gdje su te različite zemlje? Pokazat ću vam u Africi.
07:24
Where are the different countries?
142
444154
2220
07:26
I can show you Africa.
143
446398
1546
07:27
This is Africa.
144
447968
1591
Ovo je Afrika. 10 posto svjetskog stanovništva, uglavnom u siromaštvu.
07:30
Ten percent of the world population,
145
450078
1763
07:31
most in poverty.
146
451865
1166
Ovo je OECD. Bogate zemlje. Gospodski klub UN-a.
07:33
This is OECD -- the rich countries, the country club of the UN.
147
453055
4375
07:37
And they are over here on this side. Quite an overlap between Africa and OECD.
148
457454
5416
One su na ovoj strani. Poprilično preklapanje između Afrike i OECD-a.
07:42
And this is Latin America.
149
462894
1348
A ovo je Južna Amerika. Uključuje svakoga na ovoj Zemlji,
07:44
It has everything on this earth, from the poorest to the richest
150
464266
3355
od najsiromašnijih do najbogatijih, ta južna Amerika.
07:47
in Latin America.
151
467645
1373
I na sve to možemo staviti istočnu Europu, istočnu Aziju,
07:49
And on top of that, we can put East Europe,
152
469042
3107
07:52
we can put East Asia, and we put South Asia.
153
472173
3175
i južnu Aziju. A kako je sve izgledalo ako se vratimo kroz vrijeme,
07:55
And what did it look like if we go back in time,
154
475372
3130
07:58
to about 1970?
155
478526
2093
negdje u 1970. godinu? Postojao je veći brijeg.
08:00
Then, there was more of a hump.
156
480643
2522
I najveći broj onih koji su živjeli u apsolutnoj bijedi su bili Azijci.
08:04
And most who lived in absolute poverty were Asians.
157
484242
3759
Svjetski problem je bilo siromaštvo u Aziji. A ako sad pokrenemo svijet unaprijed,
08:08
The problem in the world was the poverty in Asia.
158
488025
2947
08:10
And if I now let the world move forward,
159
490996
3118
08:14
you will see that while population increases,
160
494138
2612
vidimo da dok stanovništvo raste, stotine milijuna
08:16
there are hundreds of millions in Asia getting out of poverty,
161
496774
3313
ljudi u Aziji izlazi iz siromaštva, a neki drugi
08:20
and some others getting into poverty,
162
500111
1965
postaju siromašni, i to je obrazac koji imamo danas.
08:22
and this is the pattern we have today.
163
502100
1901
Najbolja projekcija Svjetske banke je da će se ovo dogoditi
08:24
And the best projection from the World Bank
164
504025
2071
08:26
is that this will happen,
165
506120
1914
i da nećemo imati podijeljen svijet. Večina ljudi će biti u sredini.
08:28
and we will not have a divided world.
166
508058
1848
08:29
We'll have most people in the middle.
167
509930
1895
08:31
Of course it's a logarithmic scale here,
168
511849
2027
Naravno, ovo ovdje je logoritamska skala,
08:33
but our concept of economy is growth with percent.
169
513900
3397
ali naš koncept gospodarstva je postotni rast. Gledamo
08:37
We look upon it as a possibility of percentile increase.
170
517321
5285
na gospodarstvo kao mogućnost postotnog povećanja. Ako to promijenim
08:42
If I change this and take GDP per capita instead of family income,
171
522630
4824
i uzmem BDP po stanovniku umjesto obiteljskog dohotka, i te pojedinačne
08:47
and I turn these individual data
172
527478
3771
podatke pretvorim u regionalne podatke o BDP-u,
08:51
into regional data of gross domestic product,
173
531273
3276
08:54
and I take the regions down here,
174
534573
1888
i prikažem regije ovdje dolje, veličina balona je i dalje stanovništvo.
08:56
the size of the bubble is still the population.
175
536485
2239
08:58
And you have the OECD there, and you have sub-Saharan Africa there,
176
538748
3198
I imate OECD ovdje, imate sub-saharsku Afriku ovdje,
09:01
and we take off the Arab states there,
177
541970
2241
i uzmemo arapske države ovdje,
09:04
coming both from Africa and from Asia,
178
544235
2218
i one afričke i one azijske, i prikažemo ih zasebno,
09:06
and we put them separately,
179
546477
1666
09:08
and we can expand this axis, and I can give it a new dimension here,
180
548167
5097
i možemo proširiti os, i mogu dodati novu dimenziju ovdje,
09:13
by adding the social values there, child survival.
181
553288
3349
dodajući društvene vrijednosti, preživljavanje djece.
09:16
Now I have money on that axis,
182
556661
1728
Sada imam novac na ovoj osi, i vjerojatnost preživljavanja djece na ovoj.
09:18
and I have the possibility of children to survive there.
183
558413
2743
09:21
In some countries, 99.7% of children survive to five years of age;
184
561180
4257
U nekim zemljama, 99,7 posto djece preživi do pete godine života;
09:25
others, only 70.
185
565461
1725
u drugim, samo 70 posto. I ovdje izgleda da postoji jaz
09:27
And here, it seems, there is a gap between OECD,
186
567210
3268
između OECD-a, južne Amerike, istočne Europe, istočne Azije,
09:30
Latin America, East Europe, East Asia,
187
570502
3254
09:33
Arab states, South Asia and sub-Saharan Africa.
188
573780
3885
arapskih država, južne Azije i sub-saharske Afrike.
09:37
The linearity is very strong between child survival and money.
189
577689
4908
Linearnost je vrlo jaka između preživljavanja djece i novca.
09:42
But let me split sub-Saharan Africa.
190
582621
3296
Ali, hajde da podijelim sub-saharsku Afriku. Zdravlje je ovdje, a bolje zdravlje je ovdje.
09:45
Health is there and better health is up there.
191
585941
4924
09:50
I can go here, and I can split sub-Saharan Africa into its countries.
192
590889
4462
Mogu ovdje podijeliti sub-saharsku Afriku na pojedine zemlje.
09:55
And when it bursts,
193
595375
1202
Nakon raspršenja, veličina balona je veličina stanovništva jedne države.
09:56
the size of each country bubble is the size of the population.
194
596601
3646
10:00
Sierra Leone down there, Mauritius is up there.
195
600271
2540
Sierra Leone ovdje dolje. Mauricijus ovdje gore. Mauricijus je prva zemlja
10:02
Mauritius was the first country to get away with trade barriers,
196
602835
3656
koja se odrekla trgovinskih barijera, i mogli su prodavati svoj šećer.
10:06
and they could sell their sugar, they could sell their textiles,
197
606515
3525
Mogli su prodavati svoj tekstil pod istim uvjetima kao i Europa i Sjeverna Amerika.
10:10
on equal terms as the people in Europe and North America.
198
610064
3714
10:13
There's a huge difference [within] Africa.
199
613802
2132
Razlike u Africi su ogromne. Ghana je ovdje u sredini.
10:15
And Ghana is here in the middle.
200
615958
1868
10:17
In Sierra Leone, humanitarian aid.
201
617850
2592
U Sierra Leone, humanitarna pomoć.
10:20
Here in Uganda, development aid.
202
620466
3310
U Ugandi, razvojna pomoć. Ovdje, vrijeme za ulaganja, ovdje
10:23
Here, time to invest; there, you can go for a holiday.
203
623800
3295
možete ići na ljetovanje. Varijacije unutar Afrike su
10:27
There's tremendous variation within Africa,
204
627119
2742
ogromne, a rijetko ih shvaćamo - kao da je sve jednako.
10:29
which we very often make that it's equal everything.
205
629885
3091
10:33
I can split South Asia here. India's the big bubble in the middle.
206
633000
4239
Mogu podijeliti južnu Aziju ovdje. Indija je veliki balon u sredini.
10:37
But there's a huge difference between Afghanistan and Sri Lanka.
207
637263
4440
Ali ogromna je razlika između Afganistana i Šri Lanke.
10:41
I can split Arab states. How are they?
208
641727
2135
Mogu podijeliti arapske zemlje. Kakve su one? Ista klima, ista kultura,
10:43
Same climate, same culture, same religion -- huge difference.
209
643886
4132
ista religija. Ogromne razlike. Čak i među susjedima.
10:48
Even between neighbors --
210
648042
1222
10:49
Yemen, civil war;
211
649288
1245
U Jemenu, građanski rat. Ujedinjeni Arapski Emirati, novac koji je ujednačeno i dobro upotrijebljen.
10:50
United Arab Emirates, money, which was quite equally and well-used.
212
650557
4166
10:54
Not as the myth is.
213
654747
1782
Ne odgovara mitovima. To uključuje svu djecu stranih radnika koji su u zemlji.
10:56
And that includes all the children of the foreign workers
214
656553
4109
11:00
who are in the country.
215
660686
1574
Podaci su često bolji nego što mislite. Mnogi tvrde da su podaci loši.
11:02
Data is often better than you think. Many people say data is bad.
216
662284
3692
11:06
There is an uncertainty margin, but we can see the difference here:
217
666000
3143
Postoji margina nesigurnosti, ali ovdje možemo vidjeti razlike:
Kambodža, Singapur. Razlike su mnogo veće
11:09
Cambodia, Singapore.
218
669167
1362
11:10
The differences are much bigger than the weakness of the data.
219
670553
2971
od slabosti podataka. Istočna Europa:
11:13
East Europe: Soviet economy for a long time,
220
673548
4647
sovjetska ekonomija dugo vremena, ali izlaze nakon deset godina
11:18
but they come out after 10 years very, very differently.
221
678219
3212
jako, jako različito. A ovdje je Južna Amerika.
11:21
And there is Latin America.
222
681455
2733
Danas, ne moramo ići na Kubu da pronađemo zdravu zemlju u Južnoj Americi.
11:24
Today, we don't have to go to Cuba
223
684212
1646
11:25
to find a healthy country in Latin America.
224
685882
2028
11:27
Chile will have a lower child mortality than Cuba within some few years from now.
225
687934
4634
Čile će imati nižu stopu dječje smrtnosti od Kube u idućih nekoliko godina.
11:32
Here, we have high-income countries in the OECD.
226
692592
3055
A ovdje su zemlje OECD-a s visokim dohotkom.
11:35
And we get the whole pattern here of the world,
227
695671
3792
Ovdje vidimo čitav svjetski uzorak,
11:39
which is more or less like this.
228
699487
2151
koji je, više ili manje, ovakav. I ako pogledamo
11:41
And if we look at it, how the world looks,
229
701662
3940
kako svijet izgleda 1960., počinje se kretati. 1960.
11:46
in 1960, it starts to move.
230
706658
3318
11:50
This is Mao Zedong. He brought health to China.
231
710000
2632
Ovo je Mao Ce Tung. Donio je zdravlje u Kinu. I tada je umro.
11:52
And then he died.
232
712656
1166
11:53
And then Deng Xiaoping came and brought money to China,
233
713846
2612
Tada Deng Xiaoping dolazi i donosi novac u Kinu, i vodi ih opet u glavnu struju.
11:56
and brought them into the mainstream again.
234
716482
2054
11:58
And we have seen how countries move in different directions like this,
235
718560
4158
I vidjeli smo kako se zemlje gibaju u različitim smjerovima
12:02
so it's sort of difficult to get an example country
236
722742
5905
pa je nekako teško naći zemlju
koja bi bila primjer za svjetski uzorak.
12:08
which shows the pattern of the world.
237
728671
2145
12:10
But I would like to bring you back to about here, at 1960.
238
730840
6854
Želim vas vratiti ovdje, u 1960. godinu.
Želio bih usporediti Južnu Koreju ovdje, s Brazilom
12:18
I would like to compare South Korea, which is this one,
239
738083
6991
12:25
with Brazil, which is this one.
240
745098
3358
koji je ovdje. Natpis mi je pobjegao. I želio bih usporediti Ugandu,
12:29
The label went away for me here.
241
749154
1782
12:30
And I would like to compare Uganda, which is there.
242
750960
2925
koja je ovdje. I mogu sve pokrenuti unaprijed, ovako.
12:34
I can run it forward, like this.
243
754699
3183
I vidite kako Južna Koreja vrlo, vrlo brzo napreduje,
12:39
And you can see how South Korea is making a very, very fast advancement,
244
759748
6996
12:46
whereas Brazil is much slower.
245
766768
2585
dok je Brazil puno sporiji.
12:49
And if we move back again, here, and we put trails on them, like this,
246
769377
6144
A ako se opet vratimo natrag, i uključimo im repove, ovako,
12:55
you can see again
247
775545
2403
vidite opet da je brzina razvoja
12:57
that the speed of development is very, very different,
248
777972
3332
jako, jako različita, i zemlje se kreću više ili manje
13:01
and the countries are moving more or less at the same rate
249
781328
5760
istom stopom kao i novac i zdravlje, ali čini se da možete
13:07
as money and health,
250
787112
1427
13:08
but it seems you can move much faster
251
788563
1929
napredovati puno brže ako ste prvo zdravi, nego ako ste prvo bogati.
13:10
if you are healthy first than if you are wealthy first.
252
790516
2918
13:14
And to show that, you can put on the way of United Arab Emirates.
253
794000
4158
Da bismo to pokazali, možemo pogledati put Ujedinjenih Arapskih Emirata.
13:18
They came from here, a mineral country.
254
798182
2674
Došli su odavde, zemlja s mineralima. Crpli su svu naftu,
13:20
They cached all the oil; they got all the money;
255
800880
2467
dobili sav novac, ali zdravlje ne možete kupiti u supermarketu.
13:23
but health cannot be bought at the supermarket.
256
803371
2436
Morate ulagati u zdravstvo. Morate školovati djecu.
13:26
You have to invest in health. You have to get kids into schooling.
257
806516
3147
13:29
You have to train health staff. You have to educate the population.
258
809687
3190
Morate obučiti zdravstvene djelatnike. Morate obrazovati stanovništvo.
13:32
And Sheikh Zayed did that in a fairly good way.
259
812901
2356
I šeik Sayed je to prilično dobro učinio.
13:35
In spite of falling oil prices, he brought this country up here.
260
815281
3963
Usprkos padu cijene nafte, doveo je svoju zemlju ovdje.
13:39
So we've got a much more mainstream appearance of the world,
261
819268
3708
Pa tako imamo puno ujednačeniji izgled svijeta,
13:43
where all countries tend to use their money
262
823000
2527
gdje sve zemlje koriste svoj novac bolje
13:45
better than they used it in the past.
263
825551
2295
nego što su ga koristile ranije. Ovo je, više ili manje,
13:49
Now, this is, more or less, if you look at the average data of the countries --
264
829269
6978
ako pogledate prosječne podatke po zemljama. Izgledaju ovako.
13:56
they are like this.
265
836271
1194
13:57
That's dangerous, to use average data,
266
837489
3409
To je opasno, koristiti prosječne podatke, jer postoje
14:00
because there is such a lot of difference within countries.
267
840922
3845
velike razlike i unutar zemalja. Pa ako pogledam ovdje, vidim
14:04
So if I go and look here,
268
844791
2494
14:07
we can see that Uganda today is where South Korea was in 1960.
269
847309
6545
da je Uganda danas ondje gdje je Južna Koreja bila 1960. Ako podijelim Ugandu
14:13
If I split Uganda, there's quite a difference within Uganda.
270
853878
3788
vidmo veliku razliku unutar Ugande. Ovo su petine u Ugandi.
14:17
These are the quintiles of Uganda.
271
857690
1988
14:19
The richest 20 percent of Ugandans are there.
272
859702
2180
Najbogatijih 20 posto u Ugandi su ovdje.
14:21
The poorest are down there.
273
861906
1471
Najsiromašniji su ovdje. Ako podijelim južnu Afriku, izgleda ovako.
14:23
If I split South Africa, it's like this.
274
863401
2831
14:26
And if I go down and look at Niger,
275
866256
3009
Ako se spustim i pogledam Nigeriju gdje je vladala strašna glad,
14:29
where there was such a terrible famine [recently],
276
869289
3493
izgleda ovako. 20 posto najsiromašnijih u Nigeriji je ovdje,
14:32
it's like this.
277
872806
1151
14:33
The 20 percent poorest of Niger is out here,
278
873981
2757
14:36
and the 20 percent richest of South Africa is there,
279
876762
2769
a 20 posto najbogatijih u južnoj Africi ovdje,
14:39
and yet we tend to discuss what solutions there should be in Africa.
280
879555
4421
a opet diskutiramo o mogućim rješenjima za Afriku.
14:44
Everything in this world exists in Africa.
281
884000
2567
U Africi imate sve što postoji na svijetu. I ne možete
14:46
And you can't discuss universal access to HIV [treatment]
282
886591
3275
razmatrati univerzalni pristup lijekovima za HIV za ovu petinu gore
14:49
for that quintile up here
283
889890
1919
14:51
with the same strategy as down here.
284
891833
2625
primijenjujući istu strategiju kao za ove dolje. Poboljšanje svijeta
14:54
The improvement of the world must be highly contextualized,
285
894482
3706
se mora staviti u kontekst, i nije relevantno promatrati ga
14:58
and it's not relevant to have it on a regional level.
286
898212
3653
na regionalnoj razini. Moramo biti mnogo precizniji.
15:01
We must be much more detailed.
287
901889
1530
Otkrivamo da su studenti uzbuđeni kad mogu koristiti ovo.
15:04
We find that students get very excited when they can use this.
288
904070
3326
15:07
And even more, policy makers and the corporate sectors
289
907420
3618
A još više kreatora politika i korporativnih sektora želi
15:11
would like to see how the world is changing.
290
911062
3661
vidjeti kako se svijet mijenja. Pa, zašto se onda to ne događa?
15:14
Now, why doesn't this take place?
291
914747
1875
15:16
Why are we not using the data we have?
292
916646
2303
Zašto ne koristimo podatke koje imamo? Imamo podatke u Ujedinjenim Narodima,
15:18
We have data in the United Nations, in the national statistical agencies
293
918973
3810
u nacionalnim statističkim uredima,
15:22
and in universities and other nongovernmental organizations.
294
922807
3169
na sveučilištima i drugim nevladinim organizacijama.
15:26
Because the data is hidden down in the databases.
295
926000
2737
Zato što su podaci skriveni u bazama podataka.
15:28
And the public is there, and the internet is there,
296
928761
2530
Javnost je ovdje, Internet je ovdje, ali još uvijek ne koristimo podatke učinkovito.
15:31
but we have still not used it effectively.
297
931315
2160
15:33
All that information we saw changing in the world
298
933499
2675
Sve te informacije koje smo vidjeli da se mijenjaju u svijetu,
15:36
does not include publicly funded statistics.
299
936198
2941
ne uključuju statistiku koja se financira javno. Postoje neke mrežne stranice
15:39
There are some web pages like this, you know,
300
939163
2371
poput ove, ali one se osvježavaju iz baza podataka,
15:41
but they take some nourishment down from the databases,
301
941558
4703
15:46
but people put prices on them, stupid passwords and boring statistics.
302
946285
4972
ali ljudi ih naplaćuju, glupe zaporke i dosadna statistika.
15:51
(Laughter)
303
951281
1108
(Smijeh) (Pljesak)
15:52
And this won't work.
304
952413
1422
15:53
(Applause)
305
953859
2556
I to ne funkcionira. Pa što je onda potrebno? Imamo baze podataka.
15:56
So what is needed? We have the databases.
306
956439
2422
15:58
It's not a new database that you need.
307
958885
1867
Nije nova baza ono što nam treba. Imamo divne oblikovne alate,
16:00
We have wonderful design tools and more and more are added up here.
308
960776
3805
i sve više i više ih se dodaje. Pa smo započeli
16:04
So we started a nonprofit venture linking data to design,
309
964605
6130
neprofitni pothvat kojeg smo nazvali - povezujući podatke i dizajn -
16:10
we called "Gapminder,"
310
970759
1156
zovemo ga Gapminder, po londonskoj podzemnoj željeznici gdje vas upozoravaju,
16:11
from the London Underground, where they warn you, "Mind the gap."
311
971939
3097
"mind the gap" (pazite na jaz). Mislili smo da je Gapminder prikladno ime.
16:15
So we thought Gapminder was appropriate.
312
975060
1959
I počeli smo pisati programe koji na ovakav način povezuju podatke.
16:17
And we started to write software which could link the data like this.
313
977043
4181
I nije bilo tako teško. Trebalo je nešto ljudskih godina, i napravili smo animacije.
16:21
And it wasn't that difficult.
314
981248
1547
16:22
It took some person years, and we have produced animations.
315
982819
3723
16:26
You can take a data set and put it there.
316
986566
2233
Možete uzeti niz podataka i staviti ga ovdje.
16:28
We are liberating UN data, some few UN organization.
317
988823
4476
Oslobađamo UN-ove podatke, nekih UN organizacija.
16:33
Some countries accept that their databases can go out on the world.
318
993323
4278
Neke zemlje prihvaćaju da njihove baze izlaze u svijet,
16:37
But what we really need is, of course, a search function,
319
997625
3245
ali ono što stvarno trebamo je, naravno, funkcija pretraživanja
16:40
a search function where we can copy the data up to a searchable format
320
1000894
4502
gdje možemo kopirati podatke u formatu priladnom za pretraživanje
16:45
and get it out in the world.
321
1005420
1518
i pustiti ih u svijet. I što čujemo u svojim obilascima?
16:46
And what do we hear when we go around?
322
1006962
2165
Radio sam i antropologiju prema glavnim statističkim jedinicama. Svi kažu,
16:49
I've done anthropology on the main statistical units.
323
1009151
3118
16:52
Everyone says, "It's impossible. This can't be done.
324
1012293
3009
"Nemoguće. To se ne može. Naše informacije su toliko specifične
16:55
Our information is so peculiar in detail,
325
1015326
2510
16:57
so that cannot be searched as others can be searched.
326
1017860
3104
u svojim detaljima da ih se ne može pretraživati kako se pretražuje druge.
17:00
We cannot give the data free to the students,
327
1020988
2355
Ne možemo dati podatke besplatno studentima, besplatno svjetskim poduzetnicima."
17:03
free to the entrepreneurs of the world."
328
1023367
2126
Ali to je ono što bismo voljeli vidjeti, zar ne?
17:06
But this is what we would like to see, isn't it?
329
1026256
2346
Podaci koji se financiraju iz javnih izvora su ovdje dolje.
17:09
The publicly funded data is down here.
330
1029175
2424
17:11
And we would like flowers to grow out on the net.
331
1031623
3035
A mi bismo željeli da cvjetovi rastu na Internetu.
17:14
One of the crucial points is to make them searchable,
332
1034682
3270
A jedan od ključnih elemenata je učiniti ih prikladnim za pretraživanje, a onda
17:17
and then people can use the different design tools to animate it there.
333
1037976
4287
ljudi mogu koristiti drukčiji oblikovni alat da ih ovdje animiraju.
Imam sasvim dobre vijesti za vas. Dobre su vijesti da sadašnji,
17:22
And I have pretty good news for you.
334
1042287
2294
17:24
I have good news that the [current],
335
1044605
2194
17:26
new head of UN statistics doesn't say it's impossible.
336
1046823
3486
novi direktor UN Statistike ne kaže da je to nemoguće.
17:30
He only says, "We can't do it."
337
1050333
1856
On kaže samo, "Mi to ne možemo."
17:32
(Laughter)
338
1052772
3532
(Smijeh)
17:36
And that's a quite clever guy, huh?
339
1056328
1883
Tip je stvarno pametan, ha?
17:38
(Laughter)
340
1058235
1849
(Smijeh)
17:40
So we can see a lot happening in data in the coming years.
341
1060108
4365
U narednim godinama vidjet ćemo da se puno toga događa s podacima.
17:44
We will be able to look at income distributions in completely new ways.
342
1064497
4376
Moći ćemo promatrati distribuciju dohotka na sasvim nove načine.
17:48
This is the income distribution of China, 1970.
343
1068897
5079
Ovo je distribucija dohotka Kine 1970. godine.
17:54
This is the income distribution of the United States, 1970.
344
1074000
4796
Distribucija dohotka Sjedinjenih Država, 1970.
17:58
Almost no overlap.
345
1078820
1851
Skoro da i nema preklapanja. Skoro da i nema. I što se dogodilo?
18:00
Almost no overlap.
346
1080695
1411
18:02
And what has happened?
347
1082130
1716
18:03
What has happened is this:
348
1083870
1481
Što se dogodilo je sljedeće: Kina raste, ne vlada više takva jednakost,
18:05
that China is growing, it's not so equal any longer,
349
1085375
2972
18:08
and it's appearing here, overlooking the United States,
350
1088371
3971
i to se pojavljuje ovdje, nad Sjedinjenim Državama.
18:12
almost like a ghost, isn't it?
351
1092366
2292
Skoro kao duh, zar ne?
18:14
(Laughter)
352
1094682
1294
(Smijeh)
18:16
It's pretty scary.
353
1096000
1587
Ovo je zastrašujuće. Ali mislim da je vrlo važno da imamo sve te informacije.
18:17
(Laughter)
354
1097611
2261
18:22
But I think it's very important to have all this information.
355
1102762
3910
18:26
We need really to see it.
356
1106696
2730
Stvarno ih moramo vidjeti. I umjesto da gledamo ovo,
18:29
And instead of looking at this,
357
1109450
2883
18:32
I would like to end up by showing the internet users per 1,000.
358
1112357
5383
htio bih završiti s prikazom korisnika Interneta na 1.000 stanovnika.
18:37
In this software, we access about 500 variables
359
1117764
2924
Ovim programom imamo lak pristup do 500 varijabli iz svih zemalja.
18:40
from all the countries quite easily.
360
1120712
2267
Treba nešto vremena da ovo promijenimo,
18:43
It takes some time to change for this,
361
1123003
3134
18:46
but on the axes, you can quite easily get any variable you would like to have.
362
1126161
5818
ali na osima možete lako dobiti svaku varijablu koju želite.
I bitno bi bilo objaviti baze podataka besplatno,
18:52
And the thing would be to get up the databases free,
363
1132003
4383
18:56
to get them searchable, and with a second click,
364
1136410
2809
prilagoditi ih pretraživanju, i drugim klikom, pretvoriti ih
18:59
to get them into the graphic formats, where you can instantly understand them.
365
1139243
5056
u grafički oblik u kojem ih smjesta možemo razumjeti.
19:04
Now, statisticians don't like it, because they say
366
1144323
3426
Sad, statističari to ne vole jer kažu da ovo
19:07
that this will not show the reality;
367
1147773
6917
ne prikazuje stvarnost; moramo rabiti statističke, analitičke metode.
19:14
we have to have statistical, analytical methods.
368
1154714
2288
Ali to je stvaranje hipoteza.
19:17
But this is hypothesis-generating.
369
1157026
1950
19:19
I end now with the world.
370
1159000
1905
Završavam sa svijetom. Ovdje, dolazi Internet.
19:22
There, the internet is coming.
371
1162021
1485
19:23
The number of internet users are going up like this.
372
1163530
2483
Broj Internet korisnika raste ovako. Ovo je BDP po stanovniku.
19:26
This is the GDP per capita.
373
1166037
2111
I ovo je nova tehnologija što dolazi, ali se zadivljujuće
19:28
And it's a new technology coming in, but then amazingly,
374
1168172
3500
19:31
how well it fits to the economy of the countries.
375
1171696
4027
dobro uklapa u gospodarstvo zemalja. Evo zašto će računalo
19:35
That's why the $100 computer will be so important.
376
1175747
2992
od 100 dolara biti tako važno. No, trend je lijep.
19:38
But it's a nice tendency.
377
1178763
1405
19:40
It's as if the world is flattening off, isn't it?
378
1180192
2771
Izgleda kao da se svijet splošćuje, zar ne? Ove zemlje
19:42
These countries are lifting more than the economy,
379
1182987
2538
se dižu brže od ekonomije i bit će zanimljivo
19:45
and it will be very interesting to follow this over the year,
380
1185549
2956
promatrati ovo tijekom godine kako bih ja volio da možete
19:48
as I would like you to be able to do with all the publicly funded data.
381
1188529
3650
s podacima financiranim iz javnih izvora. Hvala vam lijepo.
19:52
Thank you very much.
382
1192203
1182
19:53
(Applause)
383
1193409
3000
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7