The puzzle of motivation | Dan Pink | TED

11,911,357 views ใƒป 2009-08-25

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yifat Adler ืžื‘ืงืจ: Avihu Turzion
00:13
I need to make a confession at the outset here.
0
13302
2516
ืขืœื™ ืœื”ืชื•ื•ื“ื•ืช ืขื•ื“ ื‘ืชื—ื™ืœืช ื“ื‘ืจื™.
00:15
A little over 20 years ago, I did something that I regret,
1
15842
4753
ืœืคื ื™ ื›-20 ืฉื ื™ื ืขืฉื™ืชื™ ืžืฉื”ื• ืฉืื ื™ ืžืชื—ืจื˜ ืขืœื™ื•,
00:21
something that I'm not particularly proud of.
2
21671
2671
ืžืฉื”ื• ืฉืื ื™ ืœื ืžืชื’ืื” ื‘ื•,
00:25
Something that, in many ways, I wish no one would ever know,
3
25041
3375
ืžืฉื”ื• ืฉืžืกื™ื‘ื•ืช ืจื‘ื•ืช, ืื ื™ ืžืงื•ื•ื” ืฉืืฃ ืื—ื“ ืœื ื™ื’ืœื” ืœืขื•ืœื,
00:28
but here I feel kind of obliged to reveal.
4
28440
3259
ืื‘ืœ ื›ืืŸ ืื ื™ ืžืจื’ื™ืฉ ืฉืžื—ื•ื‘ืชื™ ืœื’ืœื•ืชื•.
00:31
(Laughter)
5
31723
1020
[ืฆื—ื•ืง]
00:34
In the late 1980s,
6
34000
2024
ื‘ืกื•ืฃ ืฉื ื•ืช ื”-80,
00:36
in a moment of youthful indiscretion,
7
36048
3395
ื‘ืจื’ืข ืฉืœ ื—ื•ืกืจ ืฉื™ืงื•ืœ ื“ืขืช,
00:39
I went to law school.
8
39467
1501
ื ืจืฉืžืชื™ ืœืœื™ืžื•ื“ื™ ืžืฉืคื˜ื™ื.
00:40
(Laughter)
9
40992
1938
[ืฆื—ื•ืง]
00:45
In America, law is a professional degree:
10
45666
2437
ื‘ืืžืจื™ืงื”, ืชื•ืืจ ื‘ืžืฉืคื˜ื™ื ื”ื•ื ืชื•ืืจ ืžืงืฆื•ืขื™.
00:48
after your university degree, you go on to law school.
11
48127
2705
ืžืงื‘ืœื™ื ืชื•ืืจ ืจืืฉื•ืŸ, ื•ืื– ื ืจืฉืžื™ื ืœื‘ื™ืช ื”ืกืคืจ ืœืžืฉืคื˜ื™ื.
00:50
When I got to law school,
12
50856
1440
ื•ื›ืฉื”ื’ืขืชื™ ืœื‘ื™ืช ื”ืกืคืจ ืœืžืฉืคื˜ื™ื,
00:53
I didn't do very well.
13
53133
1297
ืœื ื›ืœ ื›ืš ื”ืœืš ืœื™.
00:55
To put it mildly, I didn't do very well.
14
55743
1921
ื‘ืœืฉื•ืŸ ื”ืžืขื˜ื”. ืœื ืžืžืฉ ื”ืœืš ืœื™.
00:57
I, in fact, graduated in the part of my law school class
15
57688
3007
ืœืžืขืฉื”, ืื ื™ ื”ื™ื™ืชื™ ืฉื™ื™ืš ืœื—ืœืง ืฉืœ ื”ื›ื™ืชื”
01:00
that made the top 90% possible.
16
60719
3417
ืฉืื™ืคืฉืจ ืืช ืงื™ื•ืžื ืฉืœ 90 ื”ืื—ื•ื– ื”ืžื•ื‘ื™ืœื™ื.
01:04
(Laughter)
17
64160
2222
[ืฆื—ื•ืง]
01:08
Thank you.
18
68160
1048
ืชื•ื“ื”.
01:10
I never practiced law a day in my life;
19
70985
3555
ืžืขื•ืœื ืœื ืขืกืงืชื™ ื‘ืžืฉืคื˜ื™ื.
01:14
I pretty much wasn't allowed to.
20
74564
1984
ืคืฉื•ื˜ ืœื ื”ื™ื” ืœื™ ืจืฉื™ื•ืŸ.
01:16
(Laughter)
21
76572
1597
[ืฆื—ื•ืง]
01:19
But today, against my better judgment,
22
79310
3481
ืื‘ืœ ื”ื™ื•ื, ื‘ื ื™ื’ื•ื“ ืœืฉื™ืงื•ืœ ื“ืขืชื™,
01:22
against the advice of my own wife,
23
82815
2321
ื•ื‘ื ื™ื’ื•ื“ ืœืขืฆืชื” ืฉืœ ืืฉืชื™,
01:25
I want to try to dust off some of those legal skills --
24
85160
3976
ื‘ืจืฆื•ื ื™ ืœื”ืกื™ืจ ืืช ื”ืื‘ืง ืžื”ื›ื™ืฉื•ืจื™ื ื”ืžืฉืคื˜ื™ื™ื ื”ืืœื”,
01:29
what's left of those legal skills.
25
89160
2359
ืžืžื” ืฉื ื•ืชืจ ืžื”ื›ื™ืฉื•ืจื™ื ื”ืžืฉืคื˜ื™ื™ื ื”ืืœื”.
01:31
I don't want to tell you a story.
26
91543
1746
ืื ื™ ืœื ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืกื™ืคื•ืจ.
01:34
I want to make a case.
27
94160
2364
ืื ื™ ืจื•ืฆื” ืœื‘ื ื•ืช ื˜ื™ืขื•ืŸ.
01:36
I want to make a hard-headed,
28
96548
2366
ืื ื™ ืจื•ืฆื” ืœื‘ื ื•ืช ื˜ื™ืขื•ืŸ ืžื•ืฆืง,
01:38
evidence-based,
29
98938
1198
ื”ืžื‘ื•ืกืก ืขืœ ืขื•ื‘ื“ื•ืช,
01:40
dare I say lawyerly case,
30
100160
3174
ื•ืื ื™ ืžืขื– ืœื•ืžืจ ื˜ื™ืขื•ืŸ ืขื•ืจืš-ื“ื™ื ื™,
01:43
for rethinking how we run our businesses.
31
103358
2749
ืœื—ืฉื™ื‘ื” ืžื—ื“ืฉ ืขืœ ื”ื“ืจืš ื‘ื” ืื ื• ืžื ื”ืœื™ื ืืช ื”ืขืกืงื™ื ืฉืœื ื•.
01:47
So, ladies and gentlemen of the jury,
32
107953
1985
ืื ื›ืš, ื’ื‘ื™ืจื•ืชื™ ื•ืจื‘ื•ืชื™, ื—ื‘ืจื™ ื—ื‘ืจ ื”ืžื•ืฉื‘ืขื™ื,
01:49
take a look at this.
33
109962
1443
ื”ืชื‘ื•ื ื ื• ื‘ื“ื‘ืจ ื”ื‘ื.
01:51
This is called the candle problem.
34
111429
2307
ื–ื•ื”ื™ ื‘ืขื™ื™ืช ื”ื ืจ.
01:53
Some of you might know it.
35
113760
1674
ื™ืชื›ืŸ ืฉื—ืœืงื›ื ื›ื‘ืจ ืจืื” ืื•ืชื”.
01:55
It's created in 1945
36
115458
1678
ื”ื™ื ื ื•ืฆืจื” ื‘-1945
01:57
by a psychologist named Karl Duncker.
37
117160
1976
ืข"ื™ ืคืกื™ื›ื•ืœื•ื’ ื‘ืฉื ืงืจืœ ื“ื•ื ืงืจ.
01:59
He created this experiment
38
119160
1976
ืงืจืœ ื“ื•ื ืงืจ ื”ืžืฆื™ื ืืช ื”ื ื™ืกื•ื™ ื”ื–ื”
02:01
that is used in many other experiments in behavioral science.
39
121160
3131
ืฉื ืžืฆื ื‘ืฉื™ืžื•ืฉ ื‘ืžื“ืขื™ ื”ื”ืชื ื”ื’ื•ืช ื‘ืžื’ื•ื•ืŸ ื ื™ืกื•ื™ื™ื.
02:04
And here's how it works. Suppose I'm the experimenter.
40
124315
2821
ื•ื›ื›ื” ื”ื•ื ื”ื•ืœืš. ื ื ื™ื— ืฉืื ื™ ืขื•ืจืš ื”ื ื™ืกื•ื™ื™ื.
02:07
I bring you into a room.
41
127160
1620
ืื ื™ ืžื›ื ื™ืก ืืชื›ื ืœื—ื“ืจ.
02:08
I give you a candle, some thumbtacks and some matches.
42
128804
4224
ืื ื™ ื ื•ืชืŸ ืœื›ื ื ืจ, ื›ืžื” ื ืขืฆื™ื ื•ื›ืžื” ื’ืคืจื•ืจื™ื.
02:13
And I say to you,
43
133052
1071
ื•ืื ื™ ืื•ืžืจ ืœื›ื,
02:14
"Your job is to attach the candle to the wall
44
134147
2989
"ื”ืžืฉื™ืžื” ืฉืœื›ื ื”ื™ื ืœื—ื‘ืจ ืืช ื”ื ืจ ืืœ ื”ืงื™ืจ
02:17
so the wax doesn't drip onto the table."
45
137160
3126
ื›ืš ืฉืœื ืชื˜ืคื˜ืฃ ืฉืขื•ื•ื” ืขืœ ื”ืฉื•ืœื—ืŸ."
02:20
Now what would you do?
46
140310
1535
ืžื” ื”ื™ื™ืชื ืขื•ืฉื™ื?
02:21
Many people begin trying to thumbtack the candle to the wall.
47
141869
3595
ื”ืจื‘ื” ืื ืฉื™ื ืžืชื—ื™ืœื™ื ืœื ืกื•ืช ืœื—ื‘ืจ ืืช ื”ื ืจ ืœืงื™ืจ ืขื ื”ื ืขืฆื™ื.
02:25
Doesn't work.
48
145488
1338
ื–ื” ืœื ืขื•ื‘ื“.
02:26
I saw somebody kind of make the motion over here --
49
146850
4730
ืจืื™ืชื™ ืžื™ืฉื”ื• ืกื•ื’ ืฉืœ ืขื•ืฉื” ืืช ื”ืชื ื•ืขื” ืคื” --
02:31
some people have a great idea where they light the match,
50
151604
3104
ืœื—ืœืง ืžื”ืื ืฉื™ื ื™ืฉ ืจืขื™ื•ืŸ ื ืคืœื ื‘ื• ื”ื ืžื“ืœื™ืงื™ื ืืช ื”ื’ืคืจื•ืจ,
02:34
melt the side of the candle, try to adhere it to the wall.
51
154732
2929
ืžืžื™ืกื™ื ืืช ื”ืฆื“ ืฉืœ ื”ื ืจ ื•ืžื ืกื™ื ืœื”ื“ื‘ื™ืง ืื•ืชื• ืœืงื™ืจ.
02:37
It's an awesome idea. Doesn't work.
52
157685
2095
ื–ื” ืจืขื™ื•ืŸ ืžืฆื•ื™ื™ืŸ ืื‘ืœ ื”ื•ื ืœื ืขื•ื‘ื“.
02:40
And eventually, after five or ten minutes,
53
160827
2309
ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ืื—ืจื™ 5 ืื• 10 ื“ืงื•ืช,
02:43
most people figure out the solution,
54
163160
1976
ืจื•ื‘ ื”ืื ืฉื™ื ืžื•ืฆืื™ื ืืช ื”ืคืชืจื•ืŸ,
02:45
which you can see here.
55
165160
1745
ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ืืŸ.
02:46
The key is to overcome what's called functional fixedness.
56
166929
3790
ื”ืžืคืชื— ื”ื•ื ืœื”ืชื’ื‘ืจ ืขืœ ืžื” ืฉื ืงืจื ืงื‘ืขื•ืŸ ืชืคืงื•ื“ื™.
02:50
You look at that box and you see it only as a receptacle for the tacks.
57
170743
3964
ืืชื ืžื‘ื™ื˜ื™ื ืขืœ ื”ืงื•ืคืกื” ื”ื–ืืช ื•ืืชื ืจื•ืื™ื ืื•ืชื” ืจืง ื›ื›ืœื™ ืงื™ื‘ื•ืœ ืœื ืขืฆื™ื.
02:54
But it can also have this other function,
58
174731
2006
ืื‘ืœ ื”ื™ื ื™ื›ื•ืœื” ืœืฉืžืฉ ื’ื
02:56
as a platform for the candle.
59
176761
2262
ื›ืžืฉื˜ื— ืขื‘ื•ืจ ื”ื ืจ.
02:59
The candle problem.
60
179047
1089
ื‘ืขื™ื™ืช ื”ื ืจ.
03:00
I want to tell you about an experiment using the candle problem,
61
180160
3971
ืขื›ืฉื™ื• ื‘ืจืฆื•ื ื™ ืœืกืคืจ ืœื›ื ืขืœ ื ื™ืกื•ื™ ืฉืžืฉืชืžืฉ ื‘ื‘ืขื™ื™ืช ื”ื ืจ,
03:04
done by a scientist named Sam Glucksberg,
62
184155
2459
ืฉื‘ื•ืฆืข ืข"ื™ ืžื“ืขืŸ ื‘ืฉื ืกื ื’ืœื•ืงืกื‘ืจื’,
03:06
who is now at Princeton University, US,
63
186638
2121
ืฉื ืžืฆื ืขื›ืฉื™ื• ื‘ืืจื”"ื‘ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืคืจื™ื ืกื˜ื•ืŸ.
03:08
This shows the power of incentives.
64
188783
3353
ื”ื•ื ืžืจืื” ืืช ื”ื›ื•ื— ืฉืœ ืชืžืจื™ืฆื™ื.
03:12
He gathered his participants and said:
65
192160
1976
ื”ื•ื ืืกืฃ ืืช ื”ืžืฉืชืชืคื™ื ื•ืืžืจ,
03:14
"I'm going to time you, how quickly you can solve this problem."
66
194160
3825
"ืื ื™ ืขื•ืžื“ ืœืžื“ื•ื“ ืœื›ื ื–ืžื ื™ื. ื›ืžื” ืžื”ืจ ืชื•ื›ืœื• ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื”."
03:18
To one group he said,
67
198009
1476
ืœืงื‘ื•ืฆื” ืื—ืช ื”ื•ื ืืžืจ,
03:19
"I'm going to time you to establish norms,
68
199509
2627
"ืื ื™ ืขื•ืžื“ ืœืžื“ื•ื“ ืœื›ื ื–ืžื ื™ื ื›ื“ื™ ืœืงื‘ื•ืข ื ื•ืจืžื•ืช,
03:22
averages for how long it typically takes someone to solve this sort of problem."
69
202160
4541
ืžืžื•ืฆืขื™ื ืฉืœ ื”ื–ืžืŸ ื”ืื•ืคื™ื™ื ื™ ื”ื“ืจื•ืฉ ืœืคืชืจื•ืŸ ื‘ืขื™ื” ืžื”ืกื•ื’ ื”ื–ื”."
03:26
To the second group he offered rewards.
70
206725
2411
ืœืงื‘ื•ืฆื” ื”ืฉื ื™ื™ื” ื”ื•ื ื”ืฆื™ืข ืคืจืกื™ื.
03:29
He said, "If you're in the top 25% of the fastest times,
71
209160
4723
ื”ื•ื ืืžืจ, "ืื ืชื”ื™ื• ื‘-25 ื”ืื—ื•ื– ื”ืขืœื™ื•ื ื™ื ืฉืœ ื”ื–ืžื ื™ื ื”ื’ื‘ื•ื”ื™ื ื‘ื™ื•ืชืจ
03:33
you get five dollars.
72
213907
1008
ืชืงื‘ืœื• 5 ื“ื•ืœืจ.
03:35
If you're the fastest of everyone we're testing here today,
73
215874
3753
ืื ืชื”ื™ื• ื”ื›ื™ ืžื”ื™ืจื™ื ืžื‘ื™ืŸ ื›ืœ ืžื™ ืฉื ื‘ื“ืง ื›ืืŸ ื”ื™ื•ื
03:39
you get 20 dollars."
74
219651
1485
ืชืงื‘ืœื• 20 ื“ื•ืœืจ."
03:41
Now this is several years ago, adjusted for inflation,
75
221160
2883
ื–ื” ื”ื™ื” ืœืคื ื™ ื›ืžื” ืฉื ื™ื, ืžื•ืชืื ืœืื™ื ืคืœืฆื™ื”.
03:44
it's a decent sum of money for a few minutes of work.
76
224067
2545
ืกื›ื•ื ื“ื™ ืžื›ื•ื‘ื“ ืขื‘ื•ืจ ื›ืžื” ื“ืงื•ืช ืฉืœ ืขื‘ื•ื“ื”.
03:46
It's a nice motivator.
77
226636
1500
ืžื ื™ืข ืœื ืจืข.
03:48
Question:
78
228160
1143
ืฉืืœื”: ื‘ื›ืžื” ื™ื•ืชืจ ืžื”ืจ
03:49
How much faster did this group solve the problem?
79
229327
3317
ืคืชืจื” ื”ืงื‘ื•ืฆื” ื”ื–ืืช ืืช ื”ื‘ืขื™ื”?
03:53
Answer:
80
233537
1246
ืชืฉื•ื‘ื”: ื–ื” ืœืงื— ืœื”ื, ื‘ืžืžื•ืฆืข,
03:54
It took them, on average, three and a half minutes longer.
81
234807
5642
ืฉืœื•ืฉ ื•ื—ืฆื™ ื“ืงื•ืช ื™ื•ืชืจ.
04:00
3.5 min longer.
82
240473
1215
ืฉืœื•ืฉ ื•ื—ืฆื™ ื“ืงื•ืช ื™ื•ืชืจ.
04:01
This makes no sense, right?
83
241712
1822
ื–ื” ืœื ื”ื’ื™ื•ื ื™. ื ื›ื•ืŸ?
04:03
I mean, I'm an American. I believe in free markets.
84
243558
3103
ืื ื™ ืžืชื›ื•ื•ืŸ, ืื ื™ ืืžืจื™ืงืื™. ืื ื™ ืžืืžื™ืŸ ื‘ืฉื•ื•ืงื™ื ื—ื•ืคืฉื™ื™ื.
04:06
That's not how it's supposed to work, right?
85
246685
2451
ื–ื” ืœื ืืžื•ืจ ืœืขื‘ื•ื“ ื›ื›ื”. ืœื?
04:09
(Laughter)
86
249160
1184
[ืฆื—ื•ืง]
04:10
If you want people to perform better, you reward them. Right?
87
250368
3915
ืื ืจื•ืฆื™ื ืฉืื ืฉื™ื ื™ืฉืคืจื• ืืช ื”ืชืคืงื•ื“ ืฉืœื”ื, ืžืชื’ืžืœื™ื ืื•ืชื. ื ื›ื•ืŸ?
04:14
Bonuses, commissions, their own reality show.
88
254307
2829
ื‘ื•ื ื•ืกื™ื, ืขืžืœื•ืช, ืชื•ื›ื ื™ืช ืจื™ืืœื™ื˜ื™ ืžืฉืœื”ื.
04:17
Incentivize them.
89
257160
2018
ื ื•ืชื ื™ื ืœื”ื ืชืžืจื™ืฆื™ื.
04:20
That's how business works.
90
260022
1383
ื›ื›ื” ืขืกืงื™ื ืคื•ืขืœื™ื.
04:21
But that's not happening here.
91
261429
2013
ืื‘ืœ ื–ื” ืœื ืžื” ืฉืงื•ืจื” ื›ืืŸ.
04:23
You've got an incentive designed
92
263466
1670
ื™ืฉ ืชืžืจื™ืฅ ืฉืžื˜ืจืชื•
04:25
to sharpen thinking and accelerate creativity,
93
265160
3796
ืœื—ื“ื“ ืืช ื”ื—ืฉื™ื‘ื” ื•ืœื”ืื™ืฅ ืืช ื”ื™ืฆื™ืจืชื™ื•ืช.
04:28
and it does just the opposite.
94
268980
2156
ื•ื”ื•ื ืขื•ืฉื” ื‘ื“ื™ื•ืง ื”ื”ืคืš.
04:31
It dulls thinking and blocks creativity.
95
271160
2976
ื”ื•ื ืžืขืจืคืœ ืืช ื”ื—ืฉื™ื‘ื” ื•ื—ื•ืกื ืืช ื”ื™ืฆื™ืจืชื™ื•ืช.
04:34
What's interesting about this experiment
96
274160
1931
ื•ืžื” ืฉืžืขื ื™ื™ืŸ ื‘ื ื™ืกื•ื™ ื”ื–ื”
04:36
is that it's not an aberration.
97
276115
1570
ื”ื•ื ืฉื”ื•ื ืœื ืžื”ื•ื•ื” ื—ืจื™ื’ื”.
04:37
This has been replicated over and over again
98
277709
3085
ื—ื–ืจื• ืขืœื™ื• ืฉื•ื‘ ื•ืฉื•ื‘ ื•ืฉื•ื‘
04:40
for nearly 40 years.
99
280818
3018
ื‘ืžืฉืš ื›ืžืขื˜ 40 ืฉื ื™ื.
04:43
These contingent motivators --
100
283860
2276
ื”ืชืžืจื™ืฆื™ื ื”ืืคืฉืจื™ื™ื ื”ืืœื” -
04:46
if you do this, then you get that --
101
286160
2374
ืื ืชืขืฉื” ื›ื›ื”, ืชืงื‘ืœ ืืช ื–ื” --
04:48
work in some circumstances.
102
288558
1578
ืขื•ื‘ื“ื™ื ื‘ื—ืœืง ืžื”ืžืงืจื™ื.
04:50
But for a lot of tasks, they actually either don't work
103
290160
3812
ืื‘ืœ ืขื‘ื•ืจ ืžืฉื™ืžื•ืช ืจื‘ื•ืช, ื”ื ืœืžืขืฉื” ืื• ืœื ืขื•ื‘ื“ื™ื
04:53
or, often, they do harm.
104
293996
1896
ืื•, ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช, ื’ื•ืจืžื™ื ืœื ื–ืง.
04:56
This is one of the most robust findings in social science,
105
296848
4889
ื–ื”ื• ืื—ื“ ืžื”ืžืžืฆืื™ื ื”ื—ื–ืงื™ื ื•ื”ืขืงื‘ื™ื™ื ื‘ื™ื•ืชืจ ื‘ืžื“ืขื™ ื”ื—ื‘ืจื”,
05:02
and also one of the most ignored.
106
302945
2349
ื•ืื—ื“ ื”ืžืžืฆืื™ื ืฉื”ื›ื™ ืžืชืขืœืžื™ื ืžื”ื.
05:05
I spent the last couple of years
107
305318
1590
ื‘ื™ืœื™ืชื™ ืืช ื”ืฉื ืชื™ื™ื ื”ืื—ืจื•ื ื•ืช
05:06
looking at the science of human motivation,
108
306932
2071
ื‘ื”ืชื‘ื•ื ื ื•ืช ื‘ืžื“ืข ื”ืžื•ื˜ื™ื‘ืฆื™ื” ื”ืื ื•ืฉื™ืช.
05:09
particularly the dynamics of extrinsic motivators
109
309027
2362
ื•ื‘ืคืจื˜, ื‘ื“ื™ื ืžื™ืงื” ืฉืœ ืชืžืจื™ืฆื™ื ื—ื™ืฆื•ื ื™ื™ื
05:11
and intrinsic motivators.
110
311413
1723
ื•ืชืžืจื™ืฆื™ื ืคื ื™ืžื™ื™ื.
05:13
And I'm telling you, it's not even close.
111
313160
2412
ื•ืื ื™ ืื•ืžืจ ืœื›ื, ื–ื” ืืคื™ืœื• ืœื ืงืจื•ื‘.
05:15
If you look at the science, there is a mismatch
112
315596
2338
ืื ืžืกืชื›ืœื™ื ืขืœ ื”ืžื“ืข, ื™ืฉ ื—ื•ืกืจ ื”ืชืืžื”
05:17
between what science knows
113
317958
1853
ื‘ื™ืŸ ืžื” ืฉื”ืžื“ืข ื™ื•ื“ืข
05:19
and what business does.
114
319835
1411
ื•ื‘ื™ืŸ ืžื” ืฉืขืกืงื™ื ืขื•ืฉื™ื.
05:21
What's alarming here is that our business operating system --
115
321270
3246
ื•ืžื” ืฉืžื“ืื™ื’ ื›ืืŸ ื–ื” ืฉืžืขืจื›ืช ื”ื”ืคืขืœื” ื”ืขืกืงื™ืช ืฉืœื ื• -
05:24
think of the set of assumptions and protocols beneath our businesses,
116
324540
3308
ื—ื™ืฉื‘ื• ืขืœ ื”ื”ื ื—ื•ืช ื•ื”ืคืจื•ื˜ื•ืงื•ืœื™ื ืฉืขื•ืžื“ื™ื ื‘ื‘ืกื™ืก ื”ืขืกืงื™ื ืฉืœื ื•,
05:27
how we motivate people, how we apply our human resources--
117
327872
3709
ืื™ืš ืื ื—ื ื• ืžืžืจื™ืฆื™ื ืื ืฉื™ื, ืื™ืš ืื ื—ื ื• ืžื™ื™ืฉืžื™ื ืืช ื”ืžืฉืื‘ื™ื ื”ืื ื•ืฉื™ื™ื ืฉืœื ื•--
05:32
it's built entirely around these extrinsic motivators,
118
332630
3230
ื”ื›ืœ ื‘ื ื•ื™ ืœื—ืœื•ื˜ื™ืŸ ืกื‘ื™ื‘ ื”ืชืžืจื™ืฆื™ื ื”ื—ื™ืฆื•ื ื™ื™ื ื”ืืœื•,
05:35
around carrots and sticks.
119
335884
1571
ืกื‘ื™ื‘ ื’ื–ืจื™ื ื•ืžืงืœื•ืช.
05:37
That's actually fine for many kinds of 20th century tasks.
120
337479
4189
ื–ื” ื‘ืกื“ืจ ื’ืžื•ืจ ืขื‘ื•ืจ ืกื•ื’ื™ื ืจื‘ื™ื ืฉืœ ืžืฉื™ืžื•ืช ืฉืœ ื”ืžืื” ื”-20.
05:41
But for 21st century tasks,
121
341692
2111
ืื‘ืœ ืขื‘ื•ืจ ืžืฉื™ืžื•ืช ืฉืœ ื”ืžืื” ื”-21,
05:43
that mechanistic, reward-and-punishment approach
122
343827
3531
ื”ื’ื™ืฉื” ื”ืžื›ื ื™ืกื˜ื™ืช ื”ื–ืืช ืฉืœ ืฉื›ืจ ื•ืขื•ื ืฉ
05:47
doesn't work,
123
347382
1668
ืœื ืขื•ื‘ื“ืช.
05:49
often doesn't work,
124
349074
1482
ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื”ื™ื ืœื ืขื•ื‘ื“ืช
05:50
and often does harm.
125
350580
1171
ื•ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื’ื•ืจืžืช ืœื ื–ืงื™ื.
05:51
Let me show you.
126
351775
1183
ืืจืื” ืœื›ื ืืช ื›ื•ื•ื ืชื™.
05:52
Glucksberg did another similar experiment,
127
352982
3077
ื’ืœื•ืงืกื‘ืจื’ ืขืจืš ื ื™ืกื•ื™ ื“ื•ืžื” ื ื•ืกืฃ
05:56
he presented the problem in a slightly different way,
128
356083
2613
ื‘ื• ื”ื•ื ื”ืฆื™ื’ ืืช ื”ื‘ืขื™ื” ื‘ืฆื•ืจื” ืงืฆืช ืฉื•ื ื”,
05:58
like this up here.
129
358720
1020
ื›ืžื• ื–ื• ืฉื›ืืŸ.
06:00
Attach the candle to the wall so the wax doesn't drip onto the table.
130
360662
3277
ื—ื‘ืจื• ืืช ื”ื ืจ ืœืงื™ืจ ื›ืš ืฉืฉืขื•ื•ื” ืœื ืชื˜ืคื˜ืฃ ืขืœ ื”ืฉื•ืœื—ืŸ.
06:03
Same deal. You: we're timing for norms.
131
363963
2476
ืื•ืชื” ืขืกืงื”. ืืชื: ืื ื—ื ื• ืžื•ื“ื“ื™ื ื–ืžื ื™ื ืขื‘ื•ืจ ื ื•ืจืžื•ืช.
06:06
You: we're incentivizing.
132
366463
2442
ืืชื: ืื ื—ื ื• ื ื•ืชื ื™ื ืชืžืจื™ืฆื™ื.
06:08
What happened this time?
133
368929
1451
ืžื” ืงืจื” ืขื›ืฉื™ื•?
06:11
This time, the incentivized group kicked the other group's butt.
134
371360
6204
ื”ืคืขื, ื”ืงื‘ื•ืฆื” ืขื ื”ืชืžืจื™ืฆื™ื ื”ื‘ื™ืกื” ืืช ื”ืงื‘ื•ืฆื” ื”ืฉื ื™ื” ื‘ื’ื“ื•ืœ.
06:17
Why?
135
377588
1015
ืœืžื”?
06:19
Because when the tacks are out of the box,
136
379414
2507
ื›ื™ ื›ืฉื”ื ืขืฆื™ื ืžื—ื•ืฅ ืœืงื•ืคืกื”
06:21
it's pretty easy isn't it?
137
381945
1632
ื–ื” ื“ื™ ืงืœ ื ื›ื•ืŸ?
06:25
(Laughter)
138
385421
2450
[ืฆื—ื•ืง]
06:27
If-then rewards work really well for those sorts of tasks,
139
387895
4978
ืชื’ืžื•ืœื™ื ืฉืœ ืื-ืื– ืขื•ื‘ื“ื™ื ืžืฆื•ื™ื™ืŸ ืขื‘ื•ืจ ืžื˜ืœื•ืช ืžื”ืกื•ื’ ื”ื–ื”,
06:32
where there is a simple set of rules
140
392897
1716
ื›ืืฉืจ ื™ืฉ ืงื‘ื•ืฆืช ื›ืœืœื™ื ืคืฉื•ื˜ื”
06:34
and a clear destination to go to.
141
394637
2499
ื•ืžื˜ืจื” ื‘ืจื•ืจื” ืœื”ื’ื™ืข ืืœื™ื”.
06:37
Rewards, by their very nature,
142
397160
1976
ืชื’ืžื•ืœื™ื, ืžืขืฆื ื˜ื‘ืขื,
06:39
narrow our focus, concentrate the mind;
143
399160
1976
ืžืฆืžืฆืžื™ื ืืช ื”ื”ืชืžืงื“ื•ืช ืฉืœื ื•, ืžืจื›ื–ื™ื ืืช ื”ืชื•ื“ืขื”.
06:41
that's why they work in so many cases.
144
401160
2335
ื•ื–ืืช ื”ืกื™ื‘ื” ืœื›ืš ืฉื”ื ืคื•ืขืœื™ื ื‘ืžืงืจื™ื ื›ื” ืจื‘ื™ื.
06:43
So, for tasks like this,
145
403519
2079
ื•ื›ืš, ืขื‘ื•ืจ ืžืฉื™ืžื•ืช ื›ืืœื”,
06:45
a narrow focus, where you just see the goal right there,
146
405622
3353
ื”ืชืžืงื“ื•ืช ืžืฆื•ืžืฆืžืช, ื›ืฉืจื•ืื™ื ืžื™ื™ื“ ืืช ื”ืžื˜ืจื”,
06:48
zoom straight ahead to it,
147
408999
1380
ื•ื ืขื™ื ืืœื™ื” ื‘ืžื”ื™ืจื•ืช,
06:50
they work really well.
148
410403
1629
ืขื•ื‘ื“ื™ื ืžืฆื•ื™ื™ืŸ.
06:52
But for the real candle problem,
149
412056
2720
ืื‘ืœ ืขื‘ื•ืจ ื‘ืขื™ื™ืช ื”ื ืจ ื”ืืžื™ืชื™ืช,
06:54
you don't want to be looking like this.
150
414800
1992
ืœื ืจื•ืฆื™ื ืœื—ืคืฉ ื‘ื“ืจืš ื”ื–ืืช.
06:56
The solution is on the periphery. You want to be looking around.
151
416816
3130
ื”ืคืชืจื•ืŸ ืื™ื ื• ื›ืืŸ ืืœื ื‘ื”ื™ืงืฃ. ืฆืจื™ืš ืœื—ืคืฉ ืžืกื‘ื™ื‘.
06:59
That reward actually narrows our focus
152
419970
2627
ื”ืชื’ืžื•ืœ ืœืžืขืฉื” ืžืฆืžืฆื ืืช ื”ื”ืชืžืงื“ื•ืช ืฉืœื ื•
07:02
and restricts our possibility.
153
422621
1515
ื•ืžืฆืžืฆื ืืช ื”ืืคืฉืจื•ื™ื•ืช ืฉืœื ื•.
07:04
Let me tell you why this is so important.
154
424160
1970
ืืกื‘ื™ืจ ืืช ื—ืฉื™ื‘ื•ืชื• ื”ืจื‘ื” ืฉืœ ื”ื“ื‘ืจ.
07:07
In western Europe,
155
427336
3103
ื‘ืื™ืจื•ืคื” ื”ืžืขืจื‘ื™ืช,
07:10
in many parts of Asia,
156
430463
1085
ื‘ื—ืœืงื™ื ื’ื“ื•ืœื™ื ืฉืœ ืืกื™ื”,
07:11
in North America, in Australia,
157
431572
2775
ื‘ืฆืคื•ืŸ ืืžืจื™ืงื”, ื‘ืื•ืกื˜ืจืœื™ื”,
07:14
white-collar workers are doing less of this kind of work,
158
434371
3566
ืขื•ื‘ื“ื™ ื”ืฆื•ื•ืืจื•ืŸ ื”ืœื‘ืŸ ืขื•ืกืงื™ื ืคื—ื•ืช ื‘ืขื‘ื•ื“ื” ืžื”ืกื•ื’ ื”ื–ื”,
07:17
and more of this kind of work.
159
437961
2380
ื•ื™ื•ืชืจ ื‘ืกื•ื’ ื”ืขื‘ื•ื“ื” ื”ื–ื”.
07:22
That routine, rule-based, left-brain work --
160
442025
2971
ืขื‘ื•ื“ื” ืฉื’ืจืชื™ืช ื–ื• ืฉืœ ื”ืžื•ื— ื”ืฉืžืืœื™, ื”ืžื‘ื•ืกืกืช ืขืœ ื›ืœืœื™ื,
07:25
certain kinds of accounting, financial analysis,
161
445020
2716
ืกื•ื’ื™ื ืžืกื•ื™ื™ืžื™ื ืฉืœ ื”ื ื”ืœืช ื—ืฉื‘ื•ื ื•ืช ื•ืฉืœ ื ื™ืชื•ื— ืคื™ื ื ืกื™,
07:27
computer programming --
162
447760
1695
ืชื›ื ื•ืช ืžื—ืฉื‘ื™ื --
07:29
has become fairly easy to outsource,
163
449479
2195
ื”ืคื›ื• ืœื ื•ื—ื™ื ืœืžื™ืงื•ืจ ื—ื•ืฅ,
07:31
fairly easy to automate.
164
451698
2031
ื ื•ื—ื™ื ืœืื•ื˜ื•ืžืฆื™ื”.
07:33
Software can do it faster.
165
453753
2176
ืชื•ื›ื ื” ื™ื›ื•ืœื” ืœื‘ืฆืข ื–ืืช ืžื”ืจ ื™ื•ืชืจ.
07:35
Low-cost providers can do it cheaper.
166
455953
2325
ืกืคืงื™ื ื–ื•ืœื™ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช ื‘ืคื—ื•ืช ื›ืกืฃ.
07:38
So what really matters
167
458302
2968
ืื– ืžื” ืฉื‘ืืžืช ื—ืฉื•ื‘
07:41
are the more right-brained creative, conceptual kinds of abilities.
168
461294
4628
ื”ืŸ ื”ื™ื›ื•ืœื•ืช ื”ื™ืฆื™ืจืชื™ื•ืช ื•ื”ืชืคื™ืกืชื™ื•ืช ืฉืœ ื”ืฆื“ ื”ื™ืžื ื™ ืฉืœ ื”ืžื•ื—.
07:45
Think about your own work.
169
465946
2381
ื—ื™ืฉื‘ื• ืขืœ ื”ืขื‘ื•ื“ื” ืฉืœื›ื.
07:48
Think about your own work.
170
468351
1745
ื—ื™ืฉื‘ื• ืขืœ ื”ืขื‘ื•ื“ื” ืฉืœื›ื.
07:51
Are the problems that you face,
171
471033
1582
ื”ืื ื”ื‘ืขื™ื•ืช ืขืžืŸ ืืชื ืžืชืžื•ื“ื“ื™ื,
07:52
or even the problems we've been talking about here,
172
472639
2497
ืื• ืืคื™ืœื• ื”ื‘ืขื™ื•ืช ืฉื“ื™ื‘ืจื ื• ืขืœื™ื”ืŸ ื›ืืŸ,
07:55
do they have a clear set of rules,
173
475160
2888
ื”ืื ื™ืฉ ืœื”ืŸ ืžืขืจื›ืช ื›ืœืœื™ื ื‘ืจื•ืจื”
07:58
and a single solution?
174
478072
1587
ื•ืคืชืจื•ืŸ ื™ื—ื™ื“?
07:59
No. The rules are mystifying.
175
479683
2453
ืœื. ื”ื›ืœืœื™ื ืžืกืชื•ืจื™ื™ื.
08:02
The solution, if it exists at all,
176
482160
2246
ื”ืคืชืจื•ืŸ, ืื ื”ื•ื ืงื™ื™ื ื‘ื›ืœืœ,
08:04
is surprising and not obvious.
177
484430
2706
ื”ื•ื ืžืคืชื™ืข ื•ืœื ืžื•ื‘ืŸ ืžืืœื™ื•.
08:07
Everybody in this room
178
487160
2754
ื›ืœ ืื—ื“ ื‘ื—ื“ืจ ื”ื–ื”
08:09
is dealing with their own version of the candle problem.
179
489938
4198
ืขื•ืกืง ื‘ื’ื™ืจืกื” ืžืฉืœื• ืœื‘ืขื™ื™ืช ื”ื ืจ.
08:14
And for candle problems of any kind,
180
494160
3137
ื•ืœื›ืœ ืกื•ื’ื™ ื‘ืขื™ื•ืช ื”ื ืจ,
08:17
in any field,
181
497321
1670
ื‘ืชื—ื•ื ื›ืœืฉื”ื•,
08:19
those if-then rewards,
182
499015
2993
ื”ืชื’ืžื•ืœื™ื ื”ืืœื” ืฉืœ ืื-ืื–,
08:22
the things around which we've built so many of our businesses,
183
502032
4242
ื”ื“ื‘ืจื™ื ืกื‘ื™ื‘ื ื‘ื ื™ื ื• ืขืกืงื™ื ื›ื” ืจื‘ื™ื,
08:26
don't work!
184
506298
1833
ืœื ืขื•ื‘ื“ื™ื.
08:28
It makes me crazy.
185
508155
2456
ื–ื” ืžืฉื’ืข ืื•ืชื™.
08:30
And here's the thing.
186
510635
1936
ื•ื”ื ื” ื”ืขื ื™ื™ืŸ.
08:32
This is not a feeling.
187
512595
2056
ื–ื•ื”ื™ ืœื ืชื—ื•ืฉื”.
08:35
Okay? I'm a lawyer; I don't believe in feelings.
188
515856
3094
ืื•ืงื™? ืื ื™ ืขื•ืจืš ื“ื™ืŸ. ืื ื™ ืœื ืžืืžื™ืŸ ื‘ืชื—ื•ืฉื•ืช.
08:38
This is not a philosophy.
189
518974
3643
ื–ื•ื”ื™ ืœื ืคื™ืœื•ืกื•ืคื™ื”.
08:42
I'm an American; I don't believe in philosophy.
190
522641
2262
ืื ื™ ืืžืจื™ืงืื™. ืื ื™ ืœื ืžืืžื™ืŸ ื‘ืคื™ืœื•ืกื•ืคื™ื”.
08:44
(Laughter)
191
524927
1687
[ืฆื—ื•ืง]
08:47
This is a fact --
192
527525
2968
ื–ื•ื”ื™ ืขื•ื‘ื“ื” --
08:50
or, as we say in my hometown of Washington, D.C.,
193
530517
2444
ืื•, ื›ืคื™ ืฉืื ื• ืื•ืžืจื™ื ื‘ืขื™ืจ ืฉืœื™ ื•ื•ืฉื™ื ื’ื˜ื•ืŸ ื“ื™.ืกื™,
08:52
a true fact.
194
532985
1590
ืขื•ื‘ื“ื” ืืžื™ืชื™ืช.
08:54
(Laughter)
195
534599
2444
[ืฆื—ื•ืง]
08:57
(Applause)
196
537067
3794
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
09:00
Let me give you an example.
197
540885
1642
ืืฆื™ื’ ื‘ืคื ื™ื›ื ื“ื•ื’ืžื ืœื›ื•ื•ื ืชื™.
09:02
Let me marshal the evidence here.
198
542551
1585
ืืฆื™ื’ ืืช ื”ืขื•ื‘ื“ื•ืช ื›ืกื“ืจืŸ.
09:04
I'm not telling a story, I'm making a case.
199
544160
2113
ื›ื™ ืื ื™ ืœื ืžืกืคืจ ืกื™ืคื•ืจ. ืื ื™ ืžืฆื™ื’ ื˜ื™ืขื•ืŸ.
09:06
Ladies and gentlemen of the jury, some evidence:
200
546297
2271
ื’ื‘ื™ืจื•ืชื™ ื•ืจื‘ื•ืชื™ ื—ื‘ืจื™ ื—ื‘ืจ ื”ืžื•ืฉื‘ืขื™ื, ืขื•ื‘ื“ื•ืช:
09:08
Dan Ariely, one of the great economists of our time,
201
548592
3375
ื“ืŸ ืืจื™ืืœื™, ืื—ื“ ืžื’ื“ื•ืœื™ ื”ื›ืœื›ืœื ื™ื ืฉืœ ื™ืžื™ื ื•,
09:11
he and three colleagues did a study of some MIT students.
202
551991
3471
ื‘ื™ื—ื“ ืขื ืฉืœื•ืฉื” ืขืžื™ืชื™ื, ืขืจื›ื• ืžื—ืงืจ ืขืœ ืกื˜ื•ื“ื ื˜ื™ื ืฉืœ MIT.
09:15
They gave these MIT students a bunch of games,
203
555486
2650
ื”ื ื ืชื ื• ืœืกื˜ื•ื“ื ื˜ื™ื ื—ื‘ื™ืœืช ืžืฉื—ืงื™ื.
09:18
games that involved creativity,
204
558160
1976
ืžืฉื—ืงื™ื ืฉื“ื•ืจืฉื™ื ื™ืฆื™ืจืชื™ื•ืช,
09:20
and motor skills, and concentration.
205
560160
2278
ื›ื™ืฉื•ืจื™ื ืžื•ื˜ื•ืจื™ื™ื ื•ืจื™ื›ื•ื–.
09:22
And the offered them, for performance,
206
562462
2081
ื•ื”ื ื”ืฆื™ืขื• ืœื”ื, ืขื‘ื•ืจ ื”ื‘ื™ืฆื•ืขื™ื ืฉืœื”ื,
09:24
three levels of rewards:
207
564567
2014
3 ืจืžื•ืช ืฉืœ ืคืจืกื™ื.
09:26
small reward, medium reward, large reward.
208
566605
4246
ืชื’ืžื•ืœ ืงื˜ืŸ, ืชื’ืžื•ืœ ื‘ื™ื ื•ื ื™, ืชื’ืžื•ืœ ื’ื“ื•ืœ.
09:30
If you do really well you get the large reward, on down.
209
570875
4137
ืื•ืงื™? ืื ืืชื” ืžืฆืœื™ื— ืžืื•ื“ ืชืงื‘ืœ ืืช ื”ืคืจืก ื”ื’ื“ื•ืœ, ื•ื›ืŸ ื”ืœืื”.
09:35
What happened?
210
575036
1334
ืžื” ืงืจื”?
09:36
As long as the task involved only mechanical skill
211
576394
2742
ื›ืืฉืจ ื”ืžืฉื™ืžื” ื“ืจืฉื” ืจืง ื›ื™ืฉื•ืจื™ื ืžื›ืื ื™ื™ื,
09:39
bonuses worked as they would be expected:
212
579160
1976
ื”ื‘ื•ื ื•ืกื™ื ืคืขืœื• ื›ืคื™ ืฉืฆื™ืคื• ืžื”ื:
09:41
the higher the pay, the better the performance.
213
581160
3697
ื›ื›ืœ ืฉื”ืชืฉืœื•ื ื”ื™ื” ื’ื‘ื•ื” ื™ื•ืชืจ, ื”ื‘ื™ืฆื•ืขื™ื ื”ื™ื• ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
09:44
Okay?
214
584881
1151
ืื•ืงื™ื™?
09:46
But once the task called for even rudimentary cognitive skill,
215
586056
5080
ืื‘ืœ ื›ืืฉืจ ื”ืžืฉื™ืžื” ื“ืจืฉื” ืืคื™ืœื• ื›ื™ืฉื•ืจื™ื ืงื•ื’ื ื™ื˜ื™ื‘ื™ื™ื ื‘ืกื™ืกื™ื™ื,
09:51
a larger reward led to poorer performance.
216
591160
6072
ืคืจืก ื’ื“ื•ืœ ื™ื•ืชืจ ื”ื•ื‘ื™ืœ ืœื‘ื™ืฆื•ืขื™ื ื’ืจื•ืขื™ื ื™ื•ืชืจ.
09:57
Then they said,
217
597256
1150
ืื– ื”ื ืืžืจื•,
09:58
"Let's see if there's any cultural bias here.
218
598430
2135
"ืื•ืงื™, ื‘ื•ืื• ื ื‘ื“ื•ืง ืื ื™ืฉ ื›ืืŸ ื”ื˜ื™ื” ืชืจื‘ื•ืชื™ืช.
10:00
Let's go to Madurai, India and test it."
219
600589
1953
ื‘ื•ืื• ื ืœืš ืœืžื“ื•ืจืื™ ื‘ื”ื•ื“ื• ื•ื ื‘ื“ื•ืง ืฉื."
10:02
Standard of living is lower.
220
602566
1570
ืจืžืช ื”ื—ื™ื™ื ื™ื•ืชืจ ื ืžื•ื›ื”.
10:04
In Madurai, a reward that is modest in North American standards,
221
604160
3477
ื‘ืžื“ื•ืจืื™, ืคืจืก ืฉื”ื•ื ืฆื ื•ืข ื‘ืžื•ื ื—ื™ื ืฉืœ ืฆืคื•ืŸ ืืžืจื™ืงื”,
10:07
is more meaningful there.
222
607661
1341
ื”ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืžืฉืžืขื•ืชื™.
10:09
Same deal. A bunch of games, three levels of rewards.
223
609859
3402
ืื•ืชื” ืขืกืงื”. ืงื‘ื•ืฆืช ืžืฉื—ืงื™ื, 3 ืจืžื•ืช ืฉืœ ืคืจืกื™ื.
10:13
What happens?
224
613285
1089
ืžื” ืงืจื”?
10:15
People offered the medium level of rewards
225
615301
3000
ื”ื”ืฉื’ื™ื ืฉืœ ื”ืื ืฉื™ื ืฉื”ืฆื™ืขื• ืœื”ื ืืช ื”ืจืžื” ื”ื‘ื™ื ื•ื ื™ืช ืฉืœ ื”ืคืจืกื™ื
10:18
did no better than people offered the small rewards.
226
618325
2580
ืœื ื”ื™ื• ื˜ื•ื‘ื™ื ื™ื•ืชืจ ืžืืœื” ืฉื”ืฆื™ืขื• ืœื”ื ืืช ื”ืคืจืกื™ื ื”ืงื˜ื ื™ื.
10:20
But this time, people offered the highest rewards,
227
620929
4479
ืื‘ืœ ื”ืคืขื, ื”ื”ืฉื’ื™ื ืฉืœ ื”ืื ืฉื™ื ืฉื”ืฆื™ืขื• ืœื”ื ืืช ื”ืคืจืกื™ื ื”ื’ื‘ื•ื”ื™ื ื‘ื™ื•ืชืจ,
10:25
they did the worst of all.
228
625432
1496
ื”ื™ื• ื”ื ืžื•ื›ื™ื ื‘ื™ื•ืชืจ.
10:28
In eight of the nine tasks we examined across three experiments,
229
628977
3373
ื‘-8 ืžืชื•ืš 9 ืžื”ืžืฉื™ืžื•ืช ืฉื‘ื“ืงื ื• ืœืื•ืจืš 3 ื ื™ืกื•ื™ื™ื,
10:32
higher incentives led to worse performance.
230
632374
3469
ืชืžืจื™ืฆื™ื ื’ื‘ื•ื”ื™ื ื™ื•ืชืจ ื”ื•ื‘ื™ืœื• ืœื‘ื™ืฆื•ืขื™ื ื ืžื•ื›ื™ื ื™ื•ืชืจ.
10:37
Is this some kind of touchy-feely socialist conspiracy going on here?
231
637634
5976
ื”ืื ืžืชืจื—ืฉ ื›ืืŸ ืกื•ื’ ื›ืœืฉื”ื• ืฉืœ ืงื ื•ื ื™ื” ืกื•ืฆื™ืืœื™ืกื˜ื™ืช ื“ื‘ื™ืงื”?
10:43
No, these are economists from MIT,
232
643634
2776
ืœื. ืืœื” ื”ื ื›ืœื›ืœื ื™ื ืžื”-MIT,
10:46
from Carnegie Mellon, from the University of Chicago.
233
646434
2702
ืžืงืจื ื’ื™ ืžืœื•ืŸ, ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืฉื™ืงื’ื•.
10:49
Do you know who sponsored this research?
234
649160
2621
ื•ืืชื ื™ื•ื“ืขื™ื ืžื™ ื”ื™ื” ื ื•ืชืŸ ื”ื—ืกื•ืช ืฉืœ ื”ืžื—ืงืจ ื”ื–ื”?
10:51
The Federal Reserve Bank of the United States.
235
651805
4120
ื‘ื ืง ื”ืคื“ืจืœ ืจื™ื–ืจื‘ ืฉืœ ืืจื”"ื‘.
10:55
That's the American experience.
236
655949
1820
ื–ื”ื• ื”ื ื™ืกื™ื•ืŸ ื”ืืžืจื™ืงืื™.
10:57
Let's go across the pond to the London School of Economics,
237
657793
2775
ื ื—ืฆื” ืืช ื”ืื•ืงื™ื™ื ื•ืก ืืœ ื‘ื™ืช ื”ืกืคืจ ืœื›ืœื›ืœื” ืฉืœ ืœื•ื ื“ื•ืŸ.
11:00
LSE, London School of Economics,
238
660592
2544
LSE - ื‘ื™ืช ื”ืกืคืจ ืœื›ืœื›ืœื” ืฉืœ ืœื•ื ื“ื•ืŸ.
11:03
alma mater of eleven Nobel Laureates in economics.
239
663160
3444
ื”"ืืœืžื” ืžืื˜ืจ" ืฉืœ 11 ื—ืชื ื™ ืคืจืก ื ื•ื‘ืœ ื‘ื›ืœื›ืœื”.
11:06
Training ground for great economic thinkers
240
666628
2508
ืžืงื•ื ื”ื”ื›ืฉืจื” ืฉืœ ื”ื•ื’ื™ื ื›ืœื›ืœื™ื™ื ื“ื’ื•ืœื™ื
11:09
like George Soros, and Friedrich Hayek,
241
669160
2976
ื›ืžื• ื’'ื•ืจื’' ืกื•ืจื•ืก, ื•ืคืจื™ื“ืจื™ืš ื”ืื™ื™ืง,
11:12
and Mick Jagger.
242
672160
1287
ื•ืžื™ืง ื’'ืื’ืจ.
11:13
(Laughter)
243
673471
1299
[ืฆื—ื•ืง]
11:14
Last month,
244
674794
1770
ื‘ื—ื•ื“ืฉ ื”ืื—ืจื•ืŸ,
11:16
just last month,
245
676588
1499
ืจืง ื‘ื—ื•ื“ืฉ ื”ืื—ืจื•ืŸ,
11:18
economists at LSE looked at 51 studies
246
678111
3025
ื›ืœื›ืœื ื™ื ื‘-LSE ื‘ื—ื ื• 51 ืžื—ืงืจื™ื
11:21
of pay-for-performance plans, inside of companies.
247
681160
2976
ืฉืœ ืžืคืขืœื™ื ืฉืžืฉืœืžื™ื ืขื‘ื•ืจ ื‘ื™ืฆื•ืขื™ื, ื‘ืชื•ืš ื—ื‘ืจื•ืช.
11:24
Here's what they said:
248
684160
1451
ื•ื–ื” ืžื” ืฉื”ื›ืœื›ืœื ื™ื ืฉื ืืžืจื•,
11:25
"We find that financial incentives
249
685635
1796
"ืžืฆืื ื• ืฉืชืžืจื™ืฆื™ื ื›ืกืคื™ื™ื
11:27
can result in a negative impact on overall performance."
250
687455
4053
ื™ื›ื•ืœื™ื ืœื’ืจื•ื ืœื”ืฉืคืขื” ืฉืœื™ืœื™ืช ืขืœ ื”ื‘ื™ืฆื•ืขื™ื ื”ื›ื•ืœืœื™ื."
11:32
There is a mismatch between what science knows
251
692936
3699
ื™ืฉ ื—ื•ืกืจ ื”ืชืืžื” ื‘ื™ืŸ ืžื” ืฉื”ืžื“ืข ื™ื•ื“ืข
11:36
and what business does.
252
696659
1477
ื•ืžื” ืฉื”ืขืกืงื™ื ืขื•ืฉื™ื.
11:38
And what worries me, as we stand here in the rubble
253
698160
3277
ืžื” ืฉืžื“ืื™ื’ ืื•ืชื™, ื›ืฉืื ื• ืขื•ืžื“ื™ื ื›ืืŸ ื‘ืขื™ื™ ื”ื—ื•ืจื‘ื•ืช
11:41
of the economic collapse,
254
701461
1675
ืฉืœ ื”ืžืคื•ืœืช ื”ื›ืœื›ืœื™ืช,
11:43
is that too many organizations are making their decisions,
255
703160
3976
ื–ื” ืฉื™ื•ืชืจ ืžื“ื™ ืืจื’ื•ื ื™ื ืžืงื‘ืœื™ื ื”ื—ืœื˜ื•ืช,
11:47
their policies about talent and people,
256
707160
2372
ื•ืงื•ื‘ืขื™ื ืืช ื”ืžื“ื™ื ื™ื•ืช ืฉืœื”ื ืœื’ื‘ื™ ื›ื™ืฉื•ืจื™ื ื•ืื ืฉื™ื,
11:49
based on assumptions that are outdated,
257
709556
4127
ืœืคื™ ื”ื ื—ื•ืช ืžื™ื•ืฉื ื•ืช,
11:53
unexamined,
258
713707
1190
ืฉืœื ื ื‘ื—ื ื•,
11:54
and rooted more in folklore than in science.
259
714921
2762
ื•ืฉื”ืฉื•ืจืฉ ืฉืœื”ืŸ ื”ื•ื ื™ื•ืชืจ ื‘ืคื•ืœืงืœื•ืจ ืžืืฉืจ ื‘ืžื“ืข.
11:58
And if we really want to get out of this economic mess,
260
718564
2572
ื•ืื ืื ื• ืจื•ืฆื™ื ื‘ืืžืช ืœืฆืืช ืžื”ื‘ืœืื’ืŸ ื”ื›ืœื›ืœื™ ื”ื–ื”,
12:01
if we really want high performance
261
721160
2093
ื•ืื ืื ื• ืจื•ืฆื™ื ื‘ืืžืช ืœืงื‘ืœ ื‘ื™ืฆื•ืขื™ื ื’ื‘ื•ื”ื™ื
12:03
on those definitional tasks of the 21st century,
262
723277
2447
ื‘ืžื˜ืœื•ืช ืฉืœ ื”ืžืื” ื”-21,
12:05
the solution is not to do more of the wrong things,
263
725748
5940
ื”ืคืชืจื•ืŸ ืื™ื ื• ืœืขืฉื•ืช ืขื•ื“ ืžื”ื“ื‘ืจื™ื ื”ืฉื’ื•ื™ื™ื.
12:11
to entice people with a sweeter carrot,
264
731712
2323
ืœืชืช ืœืื ืฉื™ื ืชืžืจื™ืฆื™ื ืขื ื’ื–ืจ ืžืชื•ืง ื™ื•ืชืจ,
12:14
or threaten them with a sharper stick.
265
734059
2399
ืื• ืœืื™ื™ื ืขืœื™ื”ื ืขื ืžืงืœ ื—ื“ ื™ื•ืชืจ.
12:16
We need a whole new approach.
266
736482
1654
ืื ื• ื–ืงื•ืงื™ื ืœื’ื™ืฉื” ื—ื“ืฉื” ืœื’ืžืจื™.
12:18
The good news is that the scientists
267
738160
1976
ื•ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ื”ืŸ ืฉื”ืžื“ืขื ื™ื
12:20
who've been studying motivation have given us this new approach.
268
740160
3188
ืฉื—ืงืจื• ืžื•ื˜ื™ื‘ืฆื™ื” ื‘ื ื• ืืช ื”ื’ื™ืฉื” ื”ื—ื“ืฉื” ื”ื–ื•.
12:23
It's built much more around intrinsic motivation.
269
743372
3095
ื–ื•ื”ื™ ื’ื™ืฉื” ืฉื ื‘ื ืชื” ื™ื•ืชืจ ืกื‘ื™ื‘ ืžื•ื˜ื™ื‘ืฆื™ื” ืคื ื™ืžื™ืช.
12:26
Around the desire to do things because they matter,
270
746491
2455
ืกื‘ื™ื‘ ื”ืจืฆื•ืŸ ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ื™ ื”ื ื—ืฉื•ื‘ื™ื ืขื‘ื•ืจื ื•,
12:28
because we like it, they're interesting, or part of something important.
271
748970
3563
ื›ื™ ืื ื• ืจื•ืฆื™ื ืœื‘ืฆืขื, ื›ื™ ื”ื ืžืขื ื™ื™ื ื™ื, ื›ื™ ื”ื ื—ืœืง ืžืžืฉื”ื• ื—ืฉื•ื‘.
12:32
And to my mind, that new operating system for our businesses
272
752557
3579
ื•ืœื“ืขืชื™, ืžืขืจื›ืช ื”ื”ืคืขืœื” ื”ื—ื“ืฉื” ื”ื–ืืช ืขื‘ื•ืจ ื”ืขืกืงื™ื ืฉืœื ื•
12:36
revolves around three elements:
273
756160
1701
ืกื•ื‘ื‘ืช ืกื‘ื™ื‘ ืฉืœื•ืฉื” ืจื›ื™ื‘ื™ื:
12:37
autonomy, mastery and purpose.
274
757885
3251
ืื•ื˜ื•ื ื•ืžื™ื”, ืžื™ื•ืžื ื•ืช ื•ืžื˜ืจื”.
12:41
Autonomy: the urge to direct our own lives.
275
761160
2976
ืื•ื˜ื•ื ื•ืžื™ื” - ื”ื“ื—ืฃ ืœื›ื•ื•ืŸ ืืช ื—ื™ื™ื ื•.
12:44
Mastery: the desire to get better and better at something that matters.
276
764160
4245
ืžื™ื•ืžื ื•ืช - ื”ืจืฆื•ืŸ ืœื”ืฉืชืคืจ ื™ื•ืชืจ ื•ื™ื•ืชืจ ื‘ืžืฉื”ื• ืฉื—ืฉื•ื‘ ืœื ื•.
12:48
Purpose: the yearning to do what we do
277
768429
2707
ืžื˜ืจื” - ื”ืชืฉื•ืงื” ืœืขืฉื•ืช ืืช ืžื” ืฉืื ื• ืขื•ืฉื™ื
12:51
in the service of something larger than ourselves.
278
771160
3193
ื‘ืฉื™ืจื•ืช ืžืฉื”ื• ืฉื”ื•ื ื’ื“ื•ืœ ื™ื•ืชืจ ืžืื™ืชื ื•.
12:54
These are the building blocks of an entirely new operating system
279
774377
3294
ืืœื• ื”ื ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ืฉืœ ืžืขืจื›ืช ื”ืคืขืœื” ื—ื“ืฉื” ืœื’ืžืจื™
12:57
for our businesses.
280
777695
1441
ืขื‘ื•ืจ ื”ืขืกืงื™ื ืฉืœื ื•.
12:59
I want to talk today only about autonomy.
281
779160
2561
ื”ื™ื•ื ื‘ืจืฆื•ื ื™ ืœื“ื‘ืจ ืจืง ืขืœ ืื•ื˜ื•ื ื•ืžื™ื”.
13:03
In the 20th century, we came up with this idea of management.
282
783160
2976
ื‘ืžืื” ื”-20 ื”ื•ืคื™ืข ื”ืจืขื™ื•ืŸ ืฉืœ ื ื™ื”ื•ืœ.
13:06
Management did not emanate from nature.
283
786160
2294
ื”ื ื™ื”ื•ืœ ืœื ื”ื’ื™ืข ืžื”ื˜ื‘ืข.
13:08
Management is not a tree, it's a television set.
284
788478
3658
ื ื™ื”ื•ืœ ื”ื•ื ื›ืžื• - ื”ื•ื ืœื ืขืฅ. ื”ื•ื ืžื›ืฉื™ืจ ื˜ืœื‘ื™ื–ื™ื”.
13:12
Somebody invented it.
285
792160
2224
ืžื™ืฉื”ื• ื”ืžืฆื™ื ืื•ืชื•.
13:14
It doesn't mean it's going to work forever.
286
794408
2000
ื•ื–ื” ืœื ืื•ืžืจ ืฉื”ื•ื ื™ืขื‘ื•ื“ ืœื ืฆื—.
13:16
Management is great.
287
796432
2007
ื ื™ื”ื•ืœ ื–ื” ื“ื‘ืจ ื—ืฉื•ื‘.
13:18
Traditional notions of management are great
288
798463
2054
ืจืขื™ื•ื ื•ืช ืžืกื•ืจืชื™ื™ื ืœื’ื‘ื™ ื ื™ื”ื•ืœ ื”ื ื ื”ื“ืจื™ื
13:20
if you want compliance.
289
800541
1595
ืื ืจื•ืฆื™ื ืฆื™ื™ืชื ื•ืช.
13:22
But if you want engagement, self-direction works better.
290
802160
3183
ืื‘ืœ ืื ืจื•ืฆื™ื ืžืขื•ืจื‘ื•ืช, ื”ื›ื•ื•ื ื”-ืขืฆืžื™ืช ืชืขื‘ื•ื“ ื™ื•ืชืจ ื˜ื•ื‘.
13:25
Some examples of some kind of radical notions of self-direction.
291
805367
4040
ืืชืŸ ืœื›ื ืžืกืคืจ ื“ื•ื’ืžืื•ืช ืฉืœ ื›ืžื” ืจืขื™ื•ื ื•ืช ืžืจื—ื™ืงื™ ืœื›ืช ืœื’ื‘ื™ ื”ื›ื•ื•ื ื”-ืขืฆืžื™ืช.
13:29
You don't see a lot of it,
292
809431
2936
ืœื ืจื•ืื™ื ืืช ื–ื” ื”ืจื‘ื”,
13:32
but you see the first stirrings of something really interesting going on,
293
812391
3476
ืื‘ืœ ืจื•ืื™ื ืืช ื”ื ื™ืฆื ื™ื ื”ืจืืฉื•ื ื™ื ืฉืœ ืžืฉื”ื• ืžืขื ื™ื™ืŸ ื‘ื™ื•ืชืจ ืฉืžืชืจื—ืฉ.
13:35
what it means is paying people adequately and fairly, absolutely --
294
815891
3643
ืžื›ื™ื•ื•ืŸ ืฉืคื™ืจื•ืฉื• ืฉืœ ื“ื‘ืจ ื”ื•ื ืœืฉืœื ืœืื ืฉื™ื ื‘ืžื™ื“ื” ืžืกืคืงืช ื•ื”ื•ื’ื ืช ืœื’ืžืจื™.
13:39
getting the issue of money off the table,
295
819558
2285
ืœื”ื•ืจื™ื“ ืžืกื“ืจ ื”ื™ื•ื ืืช ื”ืขื ื™ื™ืŸ ื”ื›ืกืคื™.
13:41
and then giving people lots of autonomy.
296
821867
1975
ื•ืื– ืœืชืช ืœืื ืฉื™ื ื”ืžื•ืŸ ืื•ื˜ื•ื ื•ืžื™ื”.
13:43
Some examples.
297
823866
1270
ืืฆื™ื’ ื‘ืคื ื™ื›ื ื›ืžื” ื“ื•ื’ืžืื•ืช.
13:45
How many of you have heard of the company Atlassian?
298
825160
2945
ื›ืžื” ืžื›ื ืฉืžืขื• ืขืœ ืื˜ืœืกื™ืืŸ?
13:49
It looks like less than half.
299
829628
1508
ื ืจืื” ืฉืคื—ื•ืช ืžื—ืฆื™.
13:51
(Laughter)
300
831160
1405
[ืฆื—ื•ืง]
13:52
Atlassian is an Australian software company.
301
832589
4547
ืื˜ืœืกื™ืืŸ ื”ื™ื ื—ื‘ืจืช ืชื•ื›ื ืช ืื•ืกื˜ืจืœื™ืช.
13:57
And they do something incredibly cool.
302
837160
1971
ื•ื”ื ืขื•ืฉื™ื ืžืฉื”ื• ืžื“ืœื™ืง ื‘ื™ื•ืชืจ.
13:59
A few times a year they tell their engineers,
303
839155
2744
ืžืกืคืจ ืคืขืžื™ื ื‘ืฉื ื” ื”ื ืื•ืžืจื™ื ืœืžื”ื ื“ืกื™ื ืฉืœื”ื,
14:01
"Go for the next 24 hours and work on anything you want,
304
841923
4006
"ืงื—ื• ืืช 24 ื”ืฉืขื•ืช ื”ื‘ืื•ืช ื•ืชืขื‘ื“ื• ืขืœ ืžื” ืฉืืชื ืจื•ืฆื™ื,
14:05
as long as it's not part of your regular job.
305
845953
2110
ื‘ืชื ืื™ ืฉื–ื” ืœื ืงืฉื•ืจ ืœืขื‘ื•ื“ื” ื”ืจื’ื™ืœื” ืฉืœื›ื.
14:08
Work on anything you want."
306
848087
1390
ืชืขื‘ื“ื• ืขืœ ืžื” ืฉืืชื ืจื•ืฆื™ื."
14:09
Engineers use this time to come up with a cool patch for code,
307
849501
3763
ื•ื›ืš ื”ืžื”ื ื“ืกื™ื ืžื ืฆืœื™ื ืืช ื”ื–ืžืŸ ื”ื–ื” ืœื›ืชื•ื‘ ื˜ืœืื™ ืงื•ื“ ืžื’ื ื™ื‘
14:13
come up with an elegant hack.
308
853288
1442
ืœื”ืขืœื•ืช ื”ืืง ืžื’ื ื™ื‘.
14:14
Then they present all of the stuff that they've developed
309
854754
2966
ื•ืื– ื”ื ืžืฆื™ื’ื™ื ืืช ื›ืœ ืžื” ืฉื”ื ืคื™ืชื—ื•
14:17
to their teammates, to the rest of the company,
310
857744
2720
ืœื—ื‘ืจื™ื”ื ืœืฆื•ื•ืช, ืœืฉืืจ ื”ื—ื‘ืจื”,
14:20
in this wild and woolly all-hands meeting at the end of the day.
311
860488
3952
ื‘ืคื’ื™ืฉื” ื›ืœืœื™ืช ืคืจื•ืขื” ื•ื—ืกืจืช ื—ื•ืงื™ื ื‘ืกื•ืฃ ื”ื™ื•ื.
14:24
Being Australians, everybody has a beer.
312
864464
2195
ื•ืื–, ืžืื—ืจ ืฉื”ื ืื•ืกื˜ืจืœื™ื, ื›ื•ืœื ืฉื•ืชื™ื ื‘ื™ืจื”.
14:26
They call them FedEx Days.
313
866683
2020
ื”ื™ืžื™ื ื”ืืœื” ื ืงืจืื™ื ื™ืžื™ ืคื“ืงืก.
14:29
Why?
314
869612
1029
ืœืžื”?
14:31
Because you have to deliver something overnight.
315
871675
2388
ื›ื™ ื›ืœ ืื—ื“ ืฆืจื™ืš ืœืกืคืง ืžืฉื”ื• ื‘ืกื•ืฃ ื”ื™ื•ื.
14:34
It's pretty; not bad.
316
874977
1567
ื–ื” ื™ืคื”. ื–ื” ืœื ืจืข.
14:36
It's a huge trademark violation, but it's pretty clever.
317
876568
2668
ื–ืืช ืคื’ื™ืขื” ื—ืžื•ืจื” ื‘ืกื™ืžืŸ ื”ืžืกื—ืจื™. ืื‘ืœ ื–ื” ื“ื™ ื—ื›ื.
14:39
(Laughter)
318
879260
1337
[ืฆื—ื•ืง]
14:40
That one day of intense autonomy
319
880621
1678
ื™ื•ื ืื—ื“ ืฉืœ ืื•ื˜ื•ื ื•ืžื™ื” ืจื‘ื”
14:42
has produced a whole array of software fixes
320
882323
2052
ื”ื‘ื™ื ืœืฉื•ืจื” ืฉืœืžื” ืฉืœ ืชื™ืงื•ื ื™ ืชื•ื›ื ื”
14:44
that might never have existed.
321
884399
1737
ืฉืื—ืจืช ืœื ื”ื™ื• ืงื™ื™ืžื™ื.
14:46
It's worked so well that Atlassian has taken it to the next level
322
886160
3068
ื•ื–ื” ืขื‘ื“ ื›ืœ ื›ืš ื˜ื•ื‘ ืฉืื˜ืœืกื™ืืŸ ืขื‘ืจื” ืœืฉืœื‘ ื”ื‘ื
14:49
with 20% time --
323
889252
1058
ืขื 20 ืื—ื•ื– ืžื”ื–ืžืŸ --
14:50
done, famously, at Google --
324
890334
2168
ื“ื‘ืจ ืฉื›ื™ื“ื•ืข ื ืขืฉื” ื‘ื’ื•ื’ืœ.
14:52
where engineers can spend 20% of their time
325
892526
2062
ืฉื ืžื”ื ื“ืกื™ื ื™ื›ื•ืœื™ื ืœื‘ืœื•ืช 20 ืื—ื•ื–ื™ื ืžื”ื–ืžืŸ ืฉืœื”ื
14:54
working on anything they want.
326
894612
1945
ื‘ืขื‘ื•ื“ื” ืขืœ ืžื” ืฉื”ื ืจื•ืฆื™ื.
14:56
They have autonomy over their time,
327
896581
1667
ื™ืฉ ืœื”ื ืื•ื˜ื•ื ื•ืžื™ื” ืขืœ ื”ื–ืžืŸ ืฉืœื”ื,
14:58
their task, their team, their technique.
328
898272
2213
ื”ืžืฉื™ืžื•ืช ืฉืœื”ื, ื”ืฆื•ื•ืช ืฉืœื”ื, ื”ื˜ื›ื ื™ืงื•ืช ืฉืœื”ื.
15:00
Radical amounts of autonomy.
329
900509
1954
ื›ืžื•ื™ื•ืช ืงื™ืฆื•ื ื™ื•ืช ืฉืœ ืื•ื˜ื•ื ื•ืžื™ื”.
15:02
And at Google, as many of you know,
330
902487
3926
ื•ื‘ื’ื•ื’ืœ, ื›ืคื™ ืฉืจื‘ื™ื ืžื›ื ื™ื•ื“ืขื™ื,
15:06
about half of the new products in a typical year
331
906437
2333
ื›ืžื—ืฆื™ืช ืžื”ืžื•ืฆืจื™ื ื”ื—ื“ืฉื™ื ืฉืœ ืฉื ื” ื˜ื™ืคื•ืกื™ืช
15:08
are birthed during that 20% time:
332
908794
2476
ื ื•ืœื“ื™ื ื‘ื–ืžืŸ ื”-20 ืื—ื•ื–ื™ื.
15:11
things like Gmail, Orkut, Google News.
333
911294
2842
ื“ื‘ืจื™ื ื›ืžื• ื’'ื™ืžื™ื™ืœ, ืื•ืจืงื•ื˜, ื—ื“ืฉื•ืช ื’ื•ื’ืœ.
15:14
Let me give you an even more radical example of it:
334
914160
2920
ื•ืืฆื™ื’ ื‘ืคื ื™ื›ื ื“ื•ื’ืžื ืขื•ื“ ื™ื•ืชืจ ืงื™ืฆื•ื ื™ืช ืœื›ืš.
15:17
something called the Results Only Work Environment (the ROWE),
335
917104
3873
ื“ื‘ืจ ืฉื ืงืจื ืกื‘ื™ื‘ืช ืขื‘ื•ื“ื” ืฉืœ ืชื•ืฆืื•ืช ื‘ืœื‘ื“. ื”-ROWE.
15:21
created by two American consultants,
336
921001
2066
ื”ื™ื ื ื•ืฆืจื” ืข"ื™ ืฉื ื™ ื™ื•ืขืฆื™ื ืืžืจื™ืงืื™ื,
15:23
in place at a dozen companies around North America.
337
923091
2679
ื•ื”ื™ื ืžื™ื•ืฉืžืช ืข"ื™ ื›-12 ื—ื‘ืจื•ืช ื‘ืฆืคื•ืŸ ืืžืจื™ืงื”.
15:25
In a ROWE people don't have schedules.
338
925794
2605
ื‘-ROWE, ืœืื ืฉื™ื ืื™ืŸ ืœื•ื—ื•ืช ื–ืžื ื™ื.
15:29
They show up when they want.
339
929728
1647
ื”ื ืžื’ื™ืขื™ื ื›ืฉื”ื ืจื•ืฆื™ื.
15:31
They don't have to be in the office at a certain time, or any time.
340
931399
4054
ื”ื ืœื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ื‘ืžืฉืจื“ ื‘ืฉืขื” ืžืกื•ื™ื™ืžืช, ืื• ื‘ื›ืœืœ.
15:35
They just have to get their work done.
341
935477
1945
ื”ื ืจืง ืฆืจื™ื›ื™ื ืœืกื™ื™ื ืืช ื”ืžื˜ืœื•ืช ืฉืœื”ื.
15:37
How they do it, when they do it, where they do it, is totally up to them.
342
937446
4159
ืื™ืš ื”ื ืขื•ืฉื™ื ื–ืืช, ืžืชื™ ื”ื ืขื•ืฉื™ื ื–ืืช, ืื™ืคื” ื”ื ืขื•ืฉื™ื ื–ืืช - ื—ื•ืคืฉื™ ืœื‘ื—ื™ืจืชื.
15:42
Meetings in these kinds of environments are optional.
343
942644
3331
ืคื’ื™ืฉื•ืช ื‘ื›ืืœื” ืกื‘ื™ื‘ื•ืช ื”ืŸ ืื•ืคืฆื™ื ืœื™ื•ืช.
15:47
What happens?
344
947039
1461
ืžื” ืงื•ืจื”?
15:48
Almost across the board,
345
948524
1711
ื›ืžืขื˜ ืžื”ืงืฆื” ืืœ ื”ืงืฆื”,
15:50
productivity goes up, worker engagement goes up,
346
950259
3210
ืคืจื™ื•ืŸ ื”ืขื‘ื•ื“ื” ืขื•ืœื”, ืžืขื•ืจื‘ื•ืช ื”ืขื•ื‘ื“ื™ื ืขื•ืœื”,
15:53
worker satisfaction goes up, turnover goes down.
347
953493
3643
ืฉื‘ื™ืขื•ืช ื”ืจืฆื•ืŸ ืฉืœ ื”ืขื•ื‘ื“ื™ื ืขื•ืœื”, ื”ืชื—ืœื•ืคื” ื™ื•ืจื“ืช.
15:57
Autonomy, mastery and purpose,
348
957160
1976
ืื•ื˜ื•ื ื•ืžื™ื”, ืžื™ื•ืžื ื•ืช ื•ืžื˜ืจื”,
15:59
the building blocks of a new way of doing things.
349
959160
2612
ืืœื• ื”ื ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ืฉืœ ื”ื“ืจืš ื”ื—ื“ืฉื” ืœื‘ืฆืข ื“ื‘ืจื™ื.
16:01
Some of you might look at this and say,
350
961796
2340
ื—ืœืงื›ื ืื•ืœื™ ื™ืชื‘ื•ื ืŸ ื‘ื–ื” ื•ื™ืืžืจ,
16:04
"Hmm, that sounds nice, but it's Utopian."
351
964160
2460
"ื”ืžืžืž, ื–ื” ื ืฉืžืข ื ื—ืžื“. ืื‘ืœ ื–ืืช ืื•ื˜ื•ืคื™ื”."
16:07
And I say, "Nope.
352
967518
1480
ื•ืื ื™ ืื•ืžืจ, "ืœื.
16:10
I have proof."
353
970525
1568
ื™ืฉ ืœื™ ื”ื•ื›ื—ื”."
16:12
The mid-1990s, Microsoft started an encyclopedia called Encarta.
354
972638
3498
ื‘ืืžืฆืข ืฉื ื•ืช ื”-1990, ืžื™ืงืจื•ืกื•ืคื˜ ื”ืชื—ื™ืœื” ืื ืฆื™ืงืœื•ืคื“ื™ื” ื‘ืฉื ืื ื›ืจื˜ื.
16:16
They had deployed all the right incentives,
355
976160
3317
ื”ื ื”ืฉืชืžืฉื• ื‘ื›ืœ ื”ืชืžืจื™ืฆื™ื ื”ื ื›ื•ื ื™ื.
16:19
They paid professionals to write and edit thousands of articles.
356
979501
3849
ื›ืœ ื”ืชืžืจื™ืฆื™ื ื”ื ื›ื•ื ื™ื. ื”ื ืฉืœืžื• ืœืื ืฉื™ ืžืงืฆื•ืข ืœื›ืชื•ื‘ ื•ืœืขืจื•ืš ืืœืคื™ ืžืืžืจื™ื.
16:23
Well-compensated managers oversaw the whole thing
357
983374
2589
ืฉืœืžื• ื”ื™ื˜ื‘ ืœืžื ื”ืœื™ื ืฉืคื™ืงื—ื• ืขืœ ื›ืœ ื”ืคืจื•ื™ื™ืงื˜
16:25
to make sure it came in on budget and on time.
358
985987
2258
ื›ื“ื™ ืœื•ื•ื“ื ืฉื”ื•ื ื™ืขืžื•ื“ ื‘ืžื’ื‘ืœื•ืช ื”ืชืงืฆื™ื‘ ื•ื”ื–ืžืŸ.
16:30
A few years later, another encyclopedia got started.
359
990160
2504
ืื—ืจื™ ืžืกืคืจ ืฉื ื™ื - ื”ืชื—ื™ืœื” ืื ืฆื™ืงืœื•ืคื“ื™ื” ื—ื“ืฉื”.
16:32
Different model, right?
360
992688
1397
ืžื•ื“ืœ ืื—ืจ, ื ื›ื•ืŸ?
16:35
Do it for fun.
361
995506
1660
ืขืฉื” ื–ืืช ืœื”ื ืืชืš.
16:37
No one gets paid a cent, or a euro or a yen.
362
997190
2567
ืืฃ ืื—ื“ ืœื ืžืงื‘ืœ ืกื ื˜, ืื• ืื™ืจื• ืื• ื™ืŸ ืื—ื“.
16:41
Do it because you like to do it.
363
1001256
1924
ืขืฉื” ื–ืืช ื›ื™ ืืชื” ืื•ื”ื‘ ืœืขืฉื•ืช ืืช ื–ื”.
16:43
Just 10 years ago,
364
1003204
1932
ืื ืจืง ืœืคื ื™ ืขืฉืจ ืฉื ื™ื
16:45
if you had gone to an economist, anywhere,
365
1005160
2249
ื”ื™ื™ืชื ืคื•ื ื™ื ืœื›ืœื›ืœืŸ ื‘ืžืงื•ื ื›ืœืฉื”ื•,
16:47
"Hey, I've got these two different models for creating an encyclopedia.
366
1007433
3575
ื•ืื•ืžืจื™ื, "ื”ื™, ื™ืฉ ืœื™ 2 ืžื•ื“ืœื™ื ืฉื•ื ื™ื ืœื™ืฆื™ืจื” ืฉืœ ืื ืฆื™ืงืœื•ืคื“ื™ื”.
16:51
If they went head to head, who would win?"
367
1011032
2921
ืื ื”ื ื”ื™ื• ืžืชื—ืจื™ื ืจืืฉ ื‘ืจืืฉ, ืžื™ ืžื”ื ื”ื™ื” ืžื ืฆื—?"
16:53
10 years ago you could not have found a single sober economist
368
1013977
3566
ืœืคื ื™ 10 ืฉื ื™ื ืœื ื”ื™ื™ืชื ื™ื›ื•ืœื™ื ืœืžืฆื•ื ื›ืœื›ืœืŸ ืฉืงื•ืœ ืื—ื“
16:57
anywhere on planet Earth
369
1017567
2220
ืขืœ ืคื ื™ ื›ื“ื•ืจ ื”ืืจืฅ
16:59
who would have predicted the Wikipedia model.
370
1019811
2872
ืฉื”ื™ื” ื—ื•ื–ื” ืืช ื”ืžื•ื“ืœ ืฉืœ ื•ื™ืงื™ืคื“ื™ื”.
17:02
This is the titanic battle between these two approaches.
371
1022707
2699
ื–ื”ื• ืงืจื‘ ืื“ื™ืจื™ื ื‘ื™ืŸ ืฉืชื™ ื”ื’ื™ืฉื•ืช ื”ืืœื”.
17:05
This is the Ali-Frazier of motivation, right?
372
1025430
3068
ื–ื”ื• ื”ืขืœื™-ืคืจื™ื™ื–ืจ ืฉืœ ื”ืžื•ื˜ื™ื‘ืฆื™ื”.
17:08
This is the Thrilla in Manila.
373
1028522
1839
ื–ื”ื• ื”ืžื•ืชื—ืŸ ื‘ืžื ื™ืœื”.
17:10
Intrinsic motivators versus extrinsic motivators.
374
1030385
3169
ืชืžืจื™ืฆื™ื ืคื ื™ืžื™ื™ื ื ื’ื“ ืชืžืจื™ืฆื™ื ื—ื™ืฆื•ื ื™ื™ื.
17:13
Autonomy, mastery and purpose,
375
1033578
1558
ืื•ื˜ื•ื ื•ืžื™ื”, ืžื™ื•ืžื ื•ืช ื•ืžื˜ืจื”
17:15
versus carrot and sticks, and who wins?
376
1035160
2557
ื ื’ื“ ืžืงืœ ื•ื’ื–ืจ. ื•ืžื™ ืžื ืฆื—?
17:17
Intrinsic motivation, autonomy, mastery and purpose, in a knockout.
377
1037741
3530
ืชืžืจื™ืฆื™ื ืคื ื™ืžื™ื™ื - ืื•ื˜ื•ื ื•ืžื™ื”, ืžื™ื•ืžื ื•ืช ื•ืžื˜ืจื” ืžื ืฆื—ื™ื ื‘ื ื•ืงืืื•ื˜.
17:21
Let me wrap up.
378
1041295
1000
ื•ืœืกื™ื›ื•ื,
17:24
There is a mismatch between what science knows and what business does.
379
1044683
3303
ื™ืฉ ื—ื•ืกืจ ื”ืชืืžื” ื‘ื™ืŸ ืžื” ืฉื”ืžื“ืข ื™ื•ื“ืข ืœืžื” ืฉื”ืขืกืงื™ื ืขื•ืฉื™ื.
17:28
Here is what science knows.
380
1048010
1587
ื–ื” ืžื” ืฉื”ืžื“ืข ื™ื•ื“ืข.
17:29
One: Those 20th century rewards,
381
1049621
1683
1: ื”ืชื’ืžื•ืœื™ื ืฉืœ ื”ืžืื” ื”-20,
17:31
those motivators we think are a natural part of business,
382
1051328
2980
ื”ืชืžืจื™ืฆื™ื ืฉืื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื ื—ืœืง ื˜ื‘ืขื™ ืฉืœ ื”ืขืกืงื™ื,
17:34
do work, but only in a surprisingly narrow band of circumstances.
383
1054332
3701
ืขื•ื‘ื“ื™ื, ืื‘ืœ ืจืง ื‘ืชื—ื•ื ืฆืจ ืœื”ืคืชื™ืข ืฉืœ ื ืกื™ื‘ื•ืช.
17:38
Two: Those if-then rewards often destroy creativity.
384
1058057
4793
2: ืชื’ืžื•ืœื™ื ืฉืœ ืื-ืื– ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื”ื•ืจืกื™ื ื™ืฆื™ืจืชื™ื•ืช.
17:42
Three: The secret to high performance isn't rewards and punishments,
385
1062874
3800
3: ื”ืกื•ื“ ืœื‘ื™ืฆื•ืขื™ื ื’ื‘ื•ื”ื™ื ืื™ื ื• ืคืจืกื™ื ื•ืขื•ื ืฉื™ื,
17:46
but that unseen intrinsic drive--
386
1066698
1610
ืืœื ื”ื“ื—ืฃ ื”ืคื ื™ืžื™ ื”ื‘ืœืชื™ ื ืจืื”.
17:48
the drive to do things for their own sake.
387
1068332
2804
ื”ื“ื—ืฃ ืœืขืฉื•ืช ื“ื‘ืจื™ื ืขื‘ื•ืจ ืขืฆืžืš.
17:51
The drive to do things cause they matter.
388
1071160
1976
ื”ื“ื—ืฃ ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ื™ ืื›ืคืช ืœืš.
17:53
And here's the best part.
389
1073160
1976
ื•ื–ื”ื• ื”ื—ืœืง ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ.
17:55
We already know this.
390
1075160
1220
ืื ื• ื›ื‘ืจ ื™ื•ื“ืขื™ื ื–ืืช.
17:56
The science confirms what we know in our hearts.
391
1076404
2550
ื”ืžื“ืข ืžืืฉืจ ืืช ืžื” ืฉืื ื• ื™ื•ื“ืขื™ื ื‘ืœื™ื‘ื ื•.
17:58
So, if we repair this mismatch between science and business,
392
1078978
4830
ื•ื›ืš, ืื ื ืชืงืŸ ืืช ื—ื•ืกืจ ื”ื”ืชืืžื” ื”ื–ื” ื‘ื™ืŸ ืžื” ืฉื”ืžื“ืข ื™ื•ื“ืข ื•ืžื” ืฉื”ืขืกืงื™ื ืขื•ืฉื™ื,
18:03
if we bring our motivation, notions of motivation
393
1083832
2933
ืื ื ื‘ื™ื ืืช ื”ืžื•ื˜ื™ื‘ืฆื™ื”, ืืช ืžื•ืฉื’ื™ ื”ืžื•ื˜ื™ื‘ืฆื™ื”
18:06
into the 21st century,
394
1086789
1727
ืืœ ื”ืžืื” ื”-21,
18:08
if we get past this lazy, dangerous, ideology
395
1088540
4014
ืื ื ื ื˜ื•ืฉ ืืช ื”ืื™ื“ื™ืื•ืœื•ื’ื™ื” ื”ืขืฆืœื” ื•ื”ืžืกื•ื›ื ืช
18:12
of carrots and sticks,
396
1092578
2032
ืฉืœ ื”ืžืงืœื•ืช ื•ื”ื’ื–ืจื™ื,
18:14
we can strengthen our businesses,
397
1094634
2729
ื ื•ื›ืœ ืœื—ื–ืง ืืช ื”ืขืกืงื™ื ืฉืœื ื•,
18:17
we can solve a lot of those candle problems,
398
1097387
2582
ื ื•ื›ืœ ืœืคืชื•ืจ ืจื‘ื•ืช ืžื‘ืขื™ื•ืช ื”ื ืจ,
18:19
and maybe, maybe --
399
1099993
2732
ื•ืื•ืœื™, ืื•ืœื™, ืื•ืœื™
18:24
we can change the world.
400
1104160
1753
ื ื•ื›ืœ ืœืฉื ื•ืช ืืช ื”ืขื•ืœื.
18:25
I rest my case.
401
1105937
1305
ืกื™ื™ืžืชื™ ืืช ื˜ื™ืขื•ื ื™ื™.
18:27
(Applause)
402
1107266
3000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7