The puzzle of motivation | Dan Pink | TED

11,911,357 views ใƒป 2009-08-25

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Yong-Geun Song ๊ฒ€ํ† : Gyoung-tae Kim
์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ์šฐ์„  ๊ณ ๋ฐฑ ํ•  ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
00:13
I need to make a confession at the outset here.
0
13302
2516
00:15
A little over 20 years ago, I did something that I regret,
1
15842
4753
์•ฝ 20๋…„์ฏค ์ „์—
์ €๋Š” ์–ด๋–ค ํ›„ํšŒ ํ• ๋งŒํ•œ ์ผ,
00:21
something that I'm not particularly proud of.
2
21671
2671
์ ˆ๋Œ€ ์ž๋ž‘์Šค๋Ÿฝ์ง€ ์•Š์„,
00:25
Something that, in many ways, I wish no one would ever know,
3
25041
3375
์•„๋ฌด๋„ ์•Œ์ง€ ๋ชปํ–ˆ์œผ๋ฉด ํ•˜๋Š” ์ผ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
00:28
but here I feel kind of obliged to reveal.
4
28440
3259
ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ์„ ๋ฐํ˜€์•ผ๋งŒ ํ•˜๊ฒ ๋‹ค๋Š” ์˜๋ฌด๊ฐ ๊ฐ™์€ ๊ฒƒ์ด ๋“ญ๋‹ˆ๋‹ค.
00:31
(Laughter)
5
31723
1020
(์›ƒ์Œ)
00:34
In the late 1980s,
6
34000
2024
1980๋…„๋Œ€ ํ›„๋ฐ˜,
00:36
in a moment of youthful indiscretion,
7
36048
3395
์ฒ  ์—†๋˜ ์–ด๋ฆฐ ์‹œ์ ˆ์—
00:39
I went to law school.
8
39467
1501
์ €๋Š” ๋กœ์Šค์ฟจ์— ๊ฐ”์Šต๋‹ˆ๋‹ค.
00:40
(Laughter)
9
40992
1938
(์›ƒ์Œ)
00:45
In America, law is a professional degree:
10
45666
2437
๋ฏธ๊ตญ์˜ ๋ฒ•ํ•™์€ ์ „๋ฌธ ํ•™์œ„์ด๊ธฐ ๋•Œ๋ฌธ์—
00:48
after your university degree, you go on to law school.
11
48127
2705
ํ•™๋ถ€๋ฅผ ๋งˆ์น˜๊ณ  ๋‚˜์„œ์•ผ ๋กœ์Šค์ฟจ์„ ๊ฐˆ ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
00:50
When I got to law school,
12
50856
1440
์ €๋Š” ๋กœ์Šค์ฟจ์—์„œ
00:53
I didn't do very well.
13
53133
1297
๋ณ„๋กœ ์„ฑ์ ์ด ์ข‹์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
00:55
To put it mildly, I didn't do very well.
14
55743
1921
์ข€ ์ˆœํ™”ํ•˜์ž๋ฉด, ์ž˜ ํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
00:57
I, in fact, graduated in the part of my law school class
15
57688
3007
์‚ฌ์‹ค, ์ €๋Š” ๋กœ์Šค์ฟจ์„
01:00
that made the top 90% possible.
16
60719
3417
์ƒ์œ„ 90% ์˜ ์„ฑ์ ์œผ๋กœ ์กธ์—…ํ–ˆ์ง€์š”.
01:04
(Laughter)
17
64160
2222
(์›ƒ์Œ)
01:08
Thank you.
18
68160
1048
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
01:10
I never practiced law a day in my life;
19
70985
3555
์ €๋Š” ๋ฒ•๋ฅ  ์—…๋ฌด๋ฅผ ํ•˜์ง€๋Š” ์•Š์•˜์Šต๋‹ˆ๋‹ค.
01:14
I pretty much wasn't allowed to.
20
74564
1984
๊ทธ๋Ÿด ์ˆ˜ ์žˆ๋Š” ํ—ˆ๊ฐ€๋ฅผ ๋ฐ›์ง€ ๋ชปํ–ˆ์œผ๋‹ˆ๊นŒ์š”.
01:16
(Laughter)
21
76572
1597
(์›ƒ์Œ)
01:19
But today, against my better judgment,
22
79310
3481
ํ•˜์ง€๋งŒ ์˜ค๋Š˜์€, ์ €๋„ ๋ณ„๋กœ ์ž˜ํ•˜๋Š” ๊ฒƒ ๊ฐ™์ง€๋Š” ์•Š๊ณ ,
01:22
against the advice of my own wife,
23
82815
2321
๊ทธ๋ฆฌ๊ณ  ์•„๋‚ด๋„ ํ•˜์ง€ ๋ง๋ผ๊ณ  ํ–ˆ์ง€๋งŒ,
01:25
I want to try to dust off some of those legal skills --
24
85160
3976
์ด ์ž๋ฆฌ์—์„œ ์•ฝ๊ฐ„์˜ ๊ธฐ์ˆ ์„ ๋ณด์ด๋ ค ํ•ฉ๋‹ˆ๋‹ค.
01:29
what's left of those legal skills.
25
89160
2359
๊ทธ๋‚˜๋งˆ ๋‚จ์•„์žˆ๋Š” ๋ฒ•ํ•™ ๊ธฐ์ˆ ์„์š”.
01:31
I don't want to tell you a story.
26
91543
1746
์ €๋Š” ์ง„์ˆ ์„ ํ•˜๋ ค๊ณ  ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹™๋‹ˆ๋‹ค.
01:34
I want to make a case.
27
94160
2364
์ €๋Š” ๋ณ€๋ก ์„ ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
01:36
I want to make a hard-headed,
28
96548
2366
๋นˆํ‹ˆ์—†์ด, ์—ฌ๋Ÿฌ ์ฆ๊ฑฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ
01:38
evidence-based,
29
98938
1198
01:40
dare I say lawyerly case,
30
100160
3174
์˜ค๋Š˜์˜ ๋ณ€๋ก  ์ฃผ์ œ์ธ,
01:43
for rethinking how we run our businesses.
31
103358
2749
๋น„์ง€๋‹ˆ์Šค๋ฅผ ์šด์˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋‹ค์‹œ ์ƒ๊ฐํ•ด๋ณด์ฃ .
01:47
So, ladies and gentlemen of the jury,
32
107953
1985
์ž, ์—ฌ๋Ÿฌ ๋ฐฐ์‹ฌ์› ์—ฌ๋Ÿฌ๋ถ„, ์—ฌ๊ธฐ๋ฅผ ๋ด ์ฃผ์‹ญ์‹œ์˜ค.
01:49
take a look at this.
33
109962
1443
01:51
This is called the candle problem.
34
111429
2307
์ด๊ฒƒ์€ ์ด›๋ถˆ ๋ฌธ์ œ๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:53
Some of you might know it.
35
113760
1674
์ „์— ์ด ๋ฌธ์ œ๋ฅผ ๋ณด์‹  ๋ถ„๋“ค๋„ ์žˆ๊ฒ ์ฃ .
01:55
It's created in 1945
36
115458
1678
์ด ๋ฌธ์ œ๋Š” 1945๋…„๋„์—
01:57
by a psychologist named Karl Duncker.
37
117160
1976
์‹ฌ๋ฆฌํ•™์ž Karl Duncker ์— ์˜ํ•ด ๋งŒ๋“ค์–ด์กŒ์Šต๋‹ˆ๋‹ค.
01:59
He created this experiment
38
119160
1976
Karl Duncker ๋Š” ํ–‰๋™ ๊ณผํ•™์˜ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ธก๋ฉด์„ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•ด
02:01
that is used in many other experiments in behavioral science.
39
121160
3131
์ด ์‹คํ—˜์„ ๊ณ ์•ˆํ•ด ๋ƒˆ์Šต๋‹ˆ๋‹ค.
02:04
And here's how it works. Suppose I'm the experimenter.
40
124315
2821
์ด๋ ‡๊ฒŒ ์‹คํ—˜ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. : ์ œ๊ฐ€ ์‹คํ—˜์ž๋ผ๊ณ  ํ•˜๋ฉด
02:07
I bring you into a room.
41
127160
1620
ํ”ผ์‹คํ—˜์ž๋ฅผ ๋ฐฉ์œผ๋กœ ๋ฐ๋ ค์™€ ์ดˆ๋ฅผ ํ•˜๋‚˜ ์ค๋‹ˆ๋‹ค.
02:08
I give you a candle, some thumbtacks and some matches.
42
128804
4224
๊ทธ๋ฆฌ๊ณ  ์••์ •๋“ค๊ณผ ์„ฑ๋ƒฅ์„ ์ฃผ๊ณ ,
02:13
And I say to you,
43
133052
1071
์ด๋ ‡๊ฒŒ ๋งํ•ฉ๋‹ˆ๋‹ค.
02:14
"Your job is to attach the candle to the wall
44
134147
2989
"์ด ์ด›๋ถˆ์„ ๋ฒฝ์— ๋ถ™์ด๋˜,
02:17
so the wax doesn't drip onto the table."
45
137160
3126
์ด›๋†์ด ํ…Œ์ด๋ธ”์— ๋–จ์–ด์ง€์ง€ ์•Š๋„๋ก ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค." ์–ด๋–ป๊ฒŒ ํ•˜์‹œ๊ฒ ์Šต๋‹ˆ๊นŒ?
02:20
Now what would you do?
46
140310
1535
02:21
Many people begin trying to thumbtack the candle to the wall.
47
141869
3595
์ฒ˜์Œ์—๋Š” ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์••์ •์œผ๋กœ ์ดˆ๋ฅผ ๋ฒฝ์— ๋ถ™์ด๋ ค ํ•ฉ๋‹ˆ๋‹ค.
02:25
Doesn't work.
48
145488
1338
ํ•˜์ง€๋งŒ ์ž˜ ์•ˆ ๋ฉ๋‹ˆ๋‹ค.
02:26
I saw somebody kind of make the motion over here --
49
146850
4730
๊ฐœ์ค‘์—, ์–ด๋–ค ์‚ฌ๋žŒ๋“ค์€, ์ œ๊ฐ€ ๋ณธ ๋ฐ”๋กœ๋Š”,
์ด๋Ÿฐ ๋ฐฉ์‹๋„ ์ทจํ•ด ๋ด…๋‹ˆ๋‹ค.
02:31
some people have a great idea where they light the match,
50
151604
3104
์–ด๋–ค ์‚ฌ๋žŒ๋“ค์€ ์„ฑ๋ƒฅ์œผ๋กœ ์ดˆ์˜ ์˜†์„ ๋…น์—ฌ
๋ฒฝ์— ๋ถ™์ด๋Š” ๋†€๋ผ์šด ์•„์ด๋””์–ด๋ฅผ ๋ณด์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
02:34
melt the side of the candle, try to adhere it to the wall.
51
154732
2929
02:37
It's an awesome idea. Doesn't work.
52
157685
2095
๋Œ€๋‹จํ•œ ์•„์ด๋””์–ด์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ž˜ ์•ˆ๋ฉ๋‹ˆ๋‹ค.
02:40
And eventually, after five or ten minutes,
53
160827
2309
๊ทธ๋ฆฌ๊ณ  ๊ฒฐ๊ตญ์—์„œ์•ผ, ์•ฝ 5๋ถ„์—์„œ 10๋ถ„ ์ •๋„ ์ง€๋‚˜์„œ,
02:43
most people figure out the solution,
54
163160
1976
๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ๋“ค์ด ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๋ƒ…๋‹ˆ๋‹ค.
02:45
which you can see here.
55
165160
1745
๋ฐ”๋กœ ์ด๋Ÿฐ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
02:46
The key is to overcome what's called functional fixedness.
56
166929
3790
์ด ๋ฌธ์ œ๋ฅผ ํ’€๋ ค๋ฉด ๊ณ ์ •๊ด€๋…์—์„œ ๋ฒ—์–ด๋‚˜์•ผ ํ•ฉ๋‹ˆ๋‹ค.
02:50
You look at that box and you see it only as a receptacle for the tacks.
57
170743
3964
๋ณดํ†ต์˜ ๊ฒฝ์šฐ ์ƒ์ž๋ฅผ ๋ณด๋ฉด ๊ทธ์ € ์••์ •์„ ๋‹ด์•„ ๋‘๊ธฐ ์œ„ํ•œ ์šฉ๋„๋กœ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
02:54
But it can also have this other function,
58
174731
2006
ํ•˜์ง€๋งŒ ์ด์ฒ˜๋Ÿผ, ์ด›๋ถˆ์„ ๋‹ด๋Š” ๋‹ค๋ฅธ ๊ธฐ๋Šฅ์œผ๋กœ
02:56
as a platform for the candle.
59
176761
2262
์‚ฌ์šฉ๋  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด ์ด›๋ถˆ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
02:59
The candle problem.
60
179047
1089
03:00
I want to tell you about an experiment using the candle problem,
61
180160
3971
์ด์ œ ์ œ๊ฐ€ ์ด ์ด›๋ถˆ ๋ฌธ์ œ๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜์—
๋Œ€ํ•œ ์ด์•ผ๊ธฐ๋ฅผ ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
03:04
done by a scientist named Sam Glucksberg,
62
184155
2459
ํ”„๋ฆฐ์Šคํ„ด ๋Œ€ํ•™์˜ Sam Glucksberg ๋ผ๋Š”
03:06
who is now at Princeton University, US,
63
186638
2121
๊ณผํ•™์ž๊ฐ€ ํ–ˆ๋˜ ์‹คํ—˜์ธ๋ฐ์š”,
03:08
This shows the power of incentives.
64
188783
3353
์ด ์‹คํ—˜์€ ์ธ์„ผํ‹ฐ๋ธŒ์˜ ํž˜์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
03:12
He gathered his participants and said:
65
192160
1976
๊ทธ๋Š” ์ฐธ๊ฐ€์ž๋“ค์„ ๋ชจ์ง‘ํ•˜์—ฌ ์ด๋ ‡๊ฒŒ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
03:14
"I'm going to time you, how quickly you can solve this problem."
66
194160
3825
"๋ฌธ์ œ๋ฅผ ์–ผ๋งˆ๋‚˜ ๋นจ๋ฆฌ ํ’€ ์ˆ˜ ์žˆ๋Š”์ง€ ์‹œ๊ฐ„์„ ์žฌ๊ฒ ์Šต๋‹ˆ๋‹ค."
๊ทธ ์ค‘ ํ•œ ๊ทธ๋ฃน์—๊ฒŒ๋Š”
03:18
To one group he said,
67
198009
1476
03:19
"I'm going to time you to establish norms,
68
199509
2627
์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š”๋ฐ
03:22
averages for how long it typically takes someone to solve this sort of problem."
69
202160
4541
ํ‰๊ท ์ ์œผ๋กœ ์–ผ๋งˆ๋‚˜ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๋Š”์ง€๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด
์‹œ๊ฐ„์„ ์žฌ๊ฒ ๋‹ค๊ณ  ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:26
To the second group he offered rewards.
70
206725
2411
๋‹ค๋ฅธ ๊ทธ๋ฃน์—๊ฒŒ๋Š” ๋ณด์ƒ์„ ์ œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค.
03:29
He said, "If you're in the top 25% of the fastest times,
71
209160
4723
"๋งŒ์•ฝ ์ƒ์œ„ 25% ์ด๋‚ด๋กœ ๋นจ๋ฆฌ ํ‘ธ๋Š” ์‚ฌ๋žŒ์—๊ฒŒ๋Š”
03:33
you get five dollars.
72
213907
1008
$5 ๋ฅผ ์ง€๊ธ‰ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
03:35
If you're the fastest of everyone we're testing here today,
73
215874
3753
์˜ค๋Š˜ ์‹คํ—˜์—์„œ ๊ฐ€์žฅ ๋นจ๋ฆฌ ๋ฌธ์ œ๋ฅผ ํ‘ผ ์‚ฌ๋žŒ์€
03:39
you get 20 dollars."
74
219651
1485
$20 ๋ฅผ ๋ฐ›๊ฒŒ ๋ฉ๋‹ˆ๋‹ค."
03:41
Now this is several years ago, adjusted for inflation,
75
221160
2883
๋ช‡๋…„ ์ „์˜ ์ผ์ด๊ณ , ๊ทธ๊ฐ„์˜ ๋ฌผ๊ฐ€ ์ธ์ƒ์„ ๊ฐ์•ˆํ•ด ๋ณด์ž๋ฉด
03:44
it's a decent sum of money for a few minutes of work.
76
224067
2545
๋‹จ์ง€ ๋ช‡ ๋ถ„์˜ ์ž‘์—…์œผ๋กœ ๋ฒŒ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ๋Š” ์ƒ๋‹นํ•œ ์•ก์ˆ˜์ž…๋‹ˆ๋‹ค.
03:46
It's a nice motivator.
77
226636
1500
์ข‹์€ ๋™๊ธฐ ๋ถ€์—ฌ๊ฐ€ ๋˜์ง€์š”.
03:48
Question:
78
228160
1143
๋ฌธ์ œ๋Š” ์ด๊ฒƒ์ž…๋‹ˆ๋‹ค. : ์ด ๋™๊ธฐ ๋ถ€์—ฌ๋œ ๊ทธ๋ฃน์ด
03:49
How much faster did this group solve the problem?
79
229327
3317
๋‹ค๋ฅธ ๊ทธ๋ฃน์— ๋น„ํ•ด ์–ผ๋งˆ๋‚˜ ๋นจ๋ฆฌ ๋ฌธ์ œ๋ฅผ ํ’€์—ˆ์„๊นŒ์š”?
03:53
Answer:
80
233537
1246
๋‹ต์€ : ํ‰๊ท ์ ์œผ๋กœ,
03:54
It took them, on average, three and a half minutes longer.
81
234807
5642
3.5 ๋ถ„์ด ๋” ๊ฑธ๋ฆฌ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์Šต๋‹ˆ๋‹ค.
04:00
3.5 min longer.
82
240473
1215
3.5 ๋ถ„์ด '๋”' ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค. ์ „ํ˜€ ์ดํ•ด๊ฐ€ ๋˜์ง€ ์•Š๋Š” ์ผ์ด์ฃ ?
04:01
This makes no sense, right?
83
241712
1822
04:03
I mean, I'm an American. I believe in free markets.
84
243558
3103
์ €๋Š” ๋ฏธ๊ตญ์ธ์ด๊ณ , ์ž์œ  ๊ฒฝ์Ÿ ์‹œ์žฅ์˜ ํž˜์„ ๋ฏฟ์Šต๋‹ˆ๋‹ค.
04:06
That's not how it's supposed to work, right?
85
246685
2451
์ด๋ ‡๊ฒŒ ๋˜์–ด์„œ๋Š” ์•ˆ๋˜๋Š” ๊ฑฐ์ž–์•„์š”. ์•ˆ ๊ทธ๋ ‡์Šต๋‹ˆ๊นŒ?
04:09
(Laughter)
86
249160
1184
(์›ƒ์Œ)
04:10
If you want people to perform better, you reward them. Right?
87
250368
3915
๋งŒ์•ฝ ์–ด๋–ค ์‚ฌ๋žŒ์ด ์ผ์„ ๋” ์ž˜ ํ•˜๊ฒŒ ํ•˜๊ณ  ์‹ถ์œผ๋ฉด
๊ทธ ์‚ฌ๋žŒ์—๊ฒŒ ๋ณด์ƒ์„ ํ•ด ์ค˜์•ผ ํ•˜์ง€ ์•Š๊ฒ ์Šต๋‹ˆ๊นŒ?
04:14
Bonuses, commissions, their own reality show.
88
254307
2829
๋ณด๋„ˆ์Šค, ์ปค๋ฏธ์…˜, ์ธ์„ผํ‹ฐ๋ธŒ,
04:17
Incentivize them.
89
257160
2018
์ด๋Ÿฐ ๊ฒƒ๋“ค์„ ์ œ์‹œ ํ•ด์•ผ์ฃ . ๊ทธ๊ฒŒ ๋น„์ง€๋‹ˆ์Šค์—์„œ ํ†ต์šฉ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:20
That's how business works.
90
260022
1383
04:21
But that's not happening here.
91
261429
2013
ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ์—์„œ๋Š” ๊ทธ๋Ÿฐ ํšจ๊ณผ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
04:23
You've got an incentive designed
92
263466
1670
์ข€ ๋” ๋‚ ์นด๋กญ๊ฒŒ ์ƒ๊ฐํ•˜๊ณ  ์ฐฝ์˜์„ฑ์„ ๋” ๋ฐœํœ˜ํ•˜๋„๋ก
04:25
to sharpen thinking and accelerate creativity,
93
265160
3796
์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ๋ฐ›์•˜๋Š”๋ฐ๋„,
04:28
and it does just the opposite.
94
268980
2156
์ •ํ™•ํžˆ ๋ฐ˜๋Œ€์˜ ํšจ๊ณผ๋กœ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
04:31
It dulls thinking and blocks creativity.
95
271160
2976
์ƒ๊ฐ์€ ๊ตณ์–ด๋ฒ„๋ฆฌ๊ณ  ์ฐฝ์˜์„ฑ๋„ ๋ฐœํœ˜๋ฅผ ๋ชปํ•˜๊ฒŒ ๋˜์ง€์š”.
04:34
What's interesting about this experiment
96
274160
1931
๊ฒŒ๋‹ค๊ฐ€ ํฅ๋ฏธ๋กœ์šด ์‚ฌ์‹ค์€,์ด ๊ฒฐ๊ณผ๊ฐ€ ๊ทธ์ € ํ•œ ๋ฒˆ์˜ ์ž˜๋ชป๋œ ๊ฒฐ๊ณผ๊ฐ€ ์•„๋‹ˆ๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
04:36
is that it's not an aberration.
97
276115
1570
04:37
This has been replicated over and over again
98
277709
3085
์ด ์‹คํ—˜์€ ๊ฑฐ์˜ 40๋…„ ๋™์•ˆ
04:40
for nearly 40 years.
99
280818
3018
์žฌํ˜„๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค.
04:43
These contingent motivators --
100
283860
2276
์ด๋Ÿฐ ๋™๊ธฐ๋ถ€์—ฌ์ž๋“ค์€,
04:46
if you do this, then you get that --
101
286160
2374
์ด ๊ฒƒ์„ ํ•˜๋ฉด ์ €๊ฒƒ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์‹์œผ๋กœ
04:48
work in some circumstances.
102
288558
1578
ํ™˜๊ฒฝ์„ ์กฐ์„ฑํ•ฉ๋‹ˆ๋‹ค.
04:50
But for a lot of tasks, they actually either don't work
103
290160
3812
ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ, ์ด๋Š” ์˜๋„ํ•œ ํšจ๊ณผ๋ฅผ ๋‚ด์ง€ ๋ชปํ•˜๊ณ 
04:53
or, often, they do harm.
104
293996
1896
๋•Œ๋•Œ๋กœ ๋ฐฉํ•ด๊ฐ€ ๋˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
04:56
This is one of the most robust findings in social science,
105
296848
4889
์ด๊ฒƒ์ด ์‚ฌํšŒ ๊ณผํ•™์—์„œ ์ฐพ์•„๋‚ธ
๊ฐ€์žฅ ํ™•๊ณ ํ•œ ๋ฐœ๊ฒฌ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.
05:02
and also one of the most ignored.
106
302945
2349
ํ•˜์ง€๋งŒ ๊ฐ€์žฅ ๋ฌด์‹œ๋˜๋Š” ๋ฐœ๊ฒฌ์ด๊ธฐ๋„ ํ•˜์ง€์š”.
05:05
I spent the last couple of years
107
305318
1590
์ €๋Š” ์ง€๋‚œ ๋ช‡๋…„๊ฐ„ ์‚ฌ๋žŒ์—๊ฒŒ ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๊ฒƒ์„
05:06
looking at the science of human motivation,
108
306932
2071
์—ฐ๊ตฌํ•ด ์™”์Šต๋‹ˆ๋‹ค.
05:09
particularly the dynamics of extrinsic motivators
109
309027
2362
๊ทธ ์ค‘์—์„œ๋„ ์™ธ์  ๋™๊ธฐ ์œ ๋ฐœ์ž์™€ ๋‚ด์  ๋™๊ธฐ ์œ ๋ฐœ์ž์˜
05:11
and intrinsic motivators.
110
311413
1723
ํšจ๊ณผ์— ๋Œ€ํ•ด์„œ ์—ฐ๊ตฌ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:13
And I'm telling you, it's not even close.
111
313160
2412
๊ทธ ๊ด€์ ์—์„œ ๋ง์”€ ๋“œ๋ฆฌ์ž๋ฉด, ํ˜„์žฌ์˜ ์ธ์„ผํ‹ฐ๋ธŒ ํšจ๊ณผ๋Š” ์ „ํ˜€ ํšจ๊ณผ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
05:15
If you look at the science, there is a mismatch
112
315596
2338
์ด๋Ÿฌํ•œ ์‚ฌํšŒ๊ณผํ•™ ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด ์‚ฌํšŒ๊ณผํ•™์—์„œ ๋ฐํ˜€์ง„ ์‚ฌ์‹ค๊ณผ
05:17
between what science knows
113
317958
1853
๋น„์ง€๋‹ˆ์Šค์—์„œ ํ†ต์šฉ๋˜๋Š” ์‚ฌ์‹ค์˜ ๊ดด๋ฆฌ๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
05:19
and what business does.
114
319835
1411
05:21
What's alarming here is that our business operating system --
115
321270
3246
๋˜ํ•œ ์šฐ๋ฆฌ์˜ ๋น„์ง€๋‹ˆ์Šค ์šด์˜ ์‹œ์Šคํ…œ์ด
05:24
think of the set of assumptions and protocols beneath our businesses,
116
324540
3308
์–ด๋–ป๊ฒŒ ์‚ฌ๋žŒ์—๊ฒŒ ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๊ณ , ์ธ์žฌ๋ฅผ ํ™œ์šฉํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ
05:27
how we motivate people, how we apply our human resources--
117
327872
3709
๋น„์ง€๋‹ˆ์Šค์˜ ๊ธฐ๋ฐ˜์ด ๋˜๋Š” ๊ฐ€์ •๋“ค๊ณผ ๊ทœ์•ฝ๋“ค์ด --
05:32
it's built entirely around these extrinsic motivators,
118
332630
3230
์™„์ „ํžˆ ๋‹น๊ทผ๊ณผ ์ฑ„์ฐ ๊ฐ™์€ ์™ธ์ ์ธ ๋™๊ธฐ๋ถ€์—ฌ ํšจ๊ณผ์—๋งŒ ๊ธฐ๋Œ€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์€
05:35
around carrots and sticks.
119
335884
1571
๊ต‰์žฅํžˆ ์œ„ํ—˜ํ•œ ์ผ์ž…๋‹ˆ๋‹ค.
05:37
That's actually fine for many kinds of 20th century tasks.
120
337479
4189
์ด๋Ÿฐ ์ƒ๊ฐ์€ 20์„ธ๊ธฐ ๋•Œ์˜ ์ž‘์—…์— ์ ํ•ฉํ•œ ์ƒ๊ฐ์ž…๋‹ˆ๋‹ค.
05:41
But for 21st century tasks,
121
341692
2111
ํ•˜์ง€๋งŒ 21์„ธ๊ธฐ์˜ ์—…๋ฌด๋“ค์€,
05:43
that mechanistic, reward-and-punishment approach
122
343827
3531
๋ณด์ƒ๊ณผ ์ฒ˜๋ฒŒ ๊ฐ™์€ ๋ฐฉ์‹์€
05:47
doesn't work,
123
347382
1668
ํšจ๊ณผ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๋Œ€๊ฐœ ํšจ๊ณผ๊ฐ€ ์—†๊ณ , ๋•Œ๋•Œ๋กœ ์—ญํšจ๊ณผ๋ฅผ ๋ƒ…๋‹ˆ๋‹ค.
05:49
often doesn't work,
124
349074
1482
05:50
and often does harm.
125
350580
1171
05:51
Let me show you.
126
351775
1183
์˜ˆ๋ฅผ ํ•˜๋‚˜ ๋“ค์–ด๋ณด์ฃ .
05:52
Glucksberg did another similar experiment,
127
352982
3077
์œ„์—์„œ ์–˜๊ธฐํ–ˆ๋˜ Glucksberg ๋Š” ์ด์™€ ๋น„์Šทํ•œ ์‹คํ—˜์„ ๋‹ค์‹œ ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:56
he presented the problem in a slightly different way,
128
356083
2613
์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์•ฝ๊ฐ„ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ์–˜๊ธฐ๋ฅผ ํ–ˆ์ฃ .
05:58
like this up here.
129
358720
1020
์ด๋ ‡๊ฒŒ์š” : ์–‘์ดˆ๋ฅผ ๋ฒฝ์— ๋ถ™์ด๋˜,
06:00
Attach the candle to the wall so the wax doesn't drip onto the table.
130
360662
3277
์ด›๋†์ด ํ…Œ์ด๋ธ”์— ๋–จ์–ด์ง€์ง€ ์•Š๋„๋ก ํ•˜์‹ญ์‹œ์˜ค.
06:03
Same deal. You: we're timing for norms.
131
363963
2476
๊ฐ™์€ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ํ•œ ๊ทธ๋ฃน์€ ํ‰๊ท ์„ ์•Œ๊ธฐ ์œ„ํ•ด ์‹œ๊ฐ„์„ ์žฐ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
06:06
You: we're incentivizing.
132
366463
2442
๋‹ค๋ฅธ ๊ทธ๋ฃน์€ ์‹œ๊ฐ„์„ ์žฌ์„œ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ๋ฐ›๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
06:08
What happened this time?
133
368929
1451
์ด๋ฒˆ์—” ์–ด๋–ป๊ฒŒ ๋˜์—ˆ์„๊นŒ์š”?
06:11
This time, the incentivized group kicked the other group's butt.
134
371360
6204
์ด ์‹คํ—˜์—์„œ๋Š”, ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ๋ฐ›์€ ๊ทธ๋ฃน์ด
๋‹ค๋ฅธ ๊ทธ๋ฃน์„ ์™„์ „ํžˆ ์••๋„ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:17
Why?
135
377588
1015
์™œ๊ฒ ์Šต๋‹ˆ๊นŒ? ์••์ •๋“ค์ด ๋ฐ•์Šค์—์„œ ๋‚˜์™€ ์žˆ์œผ๋ฉด
06:19
Because when the tacks are out of the box,
136
379414
2507
06:21
it's pretty easy isn't it?
137
381945
1632
๋ฌธ์ œ ํ•ด๊ฒฐ์ด ๊ต‰์žฅํžˆ ๋‹จ์ˆœํ•˜์ฃ . ์•ˆ ๊ทธ๋ ‡์Šต๋‹ˆ๊นŒ?
06:25
(Laughter)
138
385421
2450
[๋ฐ”๋ณด๋ฅผ ์œ„ํ•œ ์ด›๋ถˆ ๋ฌธ์ œ] (์›ƒ์Œ)
06:27
If-then rewards work really well for those sorts of tasks,
139
387895
4978
ํ–‰์œ„์™€ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ๋ณด์ƒ์ •์ฑ…์€
์ด๋Ÿฌํ•œ ๋‹จ์ˆœํ•œ ๊ณต์‹๊ณผ
06:32
where there is a simple set of rules
140
392897
1716
๋ช…ํ™•ํ•œ ๋ชฉํ‘œ๋ฅผ ๊ฐ€์ง„ ์ž‘์—…์—
06:34
and a clear destination to go to.
141
394637
2499
์•„์ฃผ ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค.
06:37
Rewards, by their very nature,
142
397160
1976
๋ณด์ƒ์€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ
06:39
narrow our focus, concentrate the mind;
143
399160
1976
์‚ฌ๋žŒ์˜ ์‹œ์•ผ๋ฅผ ์ขํžˆ๊ณ , ์ƒ๊ฐ์„ ์ง‘์ค‘ํ•˜๊ฒŒ ํ•ด์„œ
06:41
that's why they work in so many cases.
144
401160
2335
๋‹จ์ˆœ/๋ช…ํ™•ํ•œ ์ž‘์—…์„ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
06:43
So, for tasks like this,
145
403519
2079
์ด๋Ÿฐ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ๋Š”
06:45
a narrow focus, where you just see the goal right there,
146
405622
3353
์ข์€ ์‹œ์•ผ๋กœ ๋ช…ํ™•ํ•œ ๋ชฉํ‘œ๋งŒ์„ ๋ฐ”๋ผ๋ณด๋ฉฐ
06:48
zoom straight ahead to it,
147
408999
1380
ํ•ด๊ฒฐํ•ด ๋‚˜๊ฐ€๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์—
06:50
they work really well.
148
410403
1629
๋ณด์ƒ์˜ ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
06:52
But for the real candle problem,
149
412056
2720
ํ•˜์ง€๋งŒ '์ง„์งœ' ์ด›๋ถˆ ๋ฌธ์ œ์— ๋Œ€ํ•ด์„œ๋Š”
06:54
you don't want to be looking like this.
150
414800
1992
๊ทธ๋Ÿฐ ์‹์˜ ์ข์€ ์‹œ์•ผ๋กœ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:56
The solution is on the periphery. You want to be looking around.
151
416816
3130
ํ•ด๋‹ต์€ ๋ˆˆ ์•ž์— ์žˆ์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค. ๋‹ต์€ ์ฃผ๋ณ€์— ์žˆ์Šต๋‹ˆ๋‹ค.
์ข€ ๋” ์ฃผ์œ„๋ฅผ ๋‘˜๋Ÿฌ ๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
06:59
That reward actually narrows our focus
152
419970
2627
๋ณด์ƒ์€ ์‹ค์ œ๋กœ ์šฐ๋ฆฌ์˜ ์‹œ์•ผ๋ฅผ ์ขํ˜€์„œ
07:02
and restricts our possibility.
153
422621
1515
๊ฐ€๋Šฅ์„ฑ์„ ์ œ์•ฝํ•ฉ๋‹ˆ๋‹ค.
07:04
Let me tell you why this is so important.
154
424160
1970
์ด๊ฒƒ์ด ์™œ ์ค‘์š”ํ•œ๊ฐ€ ํ•˜๋ฉด,
07:07
In western Europe,
155
427336
3103
์„œ๊ตฌ์—์„œ๋‚˜,
์•„์‹œ์•„์˜ ๋งŽ์€ ๋ถ€๋ถ„์—์„œ,
07:10
in many parts of Asia,
156
430463
1085
07:11
in North America, in Australia,
157
431572
2775
๋ถ๋ฏธ์ง€์—ญ, ์˜ค์ŠคํŠธ๋ ˆ์ผ๋ฆฌ์•„์—์„œ,
07:14
white-collar workers are doing less of this kind of work,
158
434371
3566
ํ™”์ดํŠธ์นผ๋ผ ๋…ธ๋™์ž๋“ค์ด ์ด๋Ÿฌํ•œ ์ž‘์—…์„
์ ์  ๋œ ํ•˜๊ฒŒ ๋˜๊ณ ,
07:17
and more of this kind of work.
159
437961
2380
๋Œ€์‹  ์ด๋Ÿฌํ•œ ์ž‘์—…์„ ์ ์  ๋” ๋งŽ์ด ํ•˜๊ฒŒ ๋œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:22
That routine, rule-based, left-brain work --
160
442025
2971
๋ฐ˜๋ณต์ ์ด๊ณ , ๊ทœ์น™ ๊ธฐ๋ฐ˜์˜, ์ขŒ๋‡Œ์— ๊ธฐ์ธํ•œ ์ž‘์—…๋“ค,
07:25
certain kinds of accounting, financial analysis,
161
445020
2716
ํšŒ๊ณ„์˜ ํŠน์ • ์ข…๋ฅ˜ ์ž‘์—…, ๊ฒฝ์ œ ๋ถ„์„์˜ ํŠน์ • ์ž‘์—…,
07:27
computer programming --
162
447760
1695
ํ”„๋กœ๊ทธ๋ž˜๋ฐ์˜ ํŠน์ • ์ž‘์—…๋“ค์€
07:29
has become fairly easy to outsource,
163
449479
2195
์ด์ œ ์•„์›ƒ์†Œ์‹ฑํ•˜๊ฑฐ๋‚˜ ์ž๋™ํ™” ํ•˜๋Š” ๊ฒƒ์ด
07:31
fairly easy to automate.
164
451698
2031
๋ฌด์ฒ™์ด๋‚˜ ํŽธํ•ด์กŒ์Šต๋‹ˆ๋‹ค.
07:33
Software can do it faster.
165
453753
2176
ํ”„๋กœ๊ทธ๋žจ์€ ์‚ฌ๋žŒ๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋นจ๋ฆฌ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:35
Low-cost providers can do it cheaper.
166
455953
2325
๋‹ค๋ฅธ ์ง€๋ฐฉ์˜ ์ €์ž„๊ธˆ ๋…ธ๋™์ž๋Š” ๋” ์‹ธ๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:38
So what really matters
167
458302
2968
์ด์ œ ์ •๋ง ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๊ฒƒ์€ ์šฐ๋‡Œ์— ๊ธฐ์ธํ•œ
07:41
are the more right-brained creative, conceptual kinds of abilities.
168
461294
4628
์ฐฝ์˜์ ์ด๊ณ , ๊ฐœ๋…ํ™”ํ•˜๋Š” ๋Šฅ๋ ฅ๋“ค์ž…๋‹ˆ๋‹ค.
07:45
Think about your own work.
169
465946
2381
์ž๊ธฐ ์ž์‹ ์ด ํ•˜๊ณ  ์žˆ๋Š” ์—…๋ฌด๋ฅผ ๋Œ์•„ ๋ณด์„ธ์š”.
07:48
Think about your own work.
170
468351
1745
์ž๊ธฐ ์ž์‹ ์ด ํ•˜๊ณ  ์žˆ๋Š” ์—…๋ฌด๋ฅผ ๋Œ์•„ ๋ณด์„ธ์š”.
07:51
Are the problems that you face,
171
471033
1582
์—ฌ๋Ÿฌ๋ถ„์ด ๋งž๋‹ฅ๋œจ๋ฆฐ ๋ฌธ์ œ ๋˜๋Š” ์šฐ๋ฆฌ๊ฐ€ ์—ฌ๊ธฐ์—์„œ
07:52
or even the problems we've been talking about here,
172
472639
2497
๋‹ค๋ฃจ์—ˆ๋˜ ๋ฌธ์ œ๋“ค์€,
07:55
do they have a clear set of rules,
173
475160
2888
๋ช…๋ฐฑํ•œ ๊ณต์‹์ด ์žˆ๊ณ , ํ•œ ๊ฐ€์ง€ ๋‹ต์ด ์žˆ๋Š” --
๊ทธ๋Ÿฐ ๋ฌธ์ œ์˜€์Šต๋‹ˆ๊นŒ? ์•„๋‹ˆ์˜ค.
07:58
and a single solution?
174
478072
1587
07:59
No. The rules are mystifying.
175
479683
2453
๊ทœ์น™์€ ์• ๋งคํ•˜๊ณ ,
08:02
The solution, if it exists at all,
176
482160
2246
ํ•ด๊ฒฐ์ฑ…์ด ์žˆ๋‹ค๊ณ  ํ•ด๋„,
08:04
is surprising and not obvious.
177
484430
2706
๋ป”ํ•œ ๋ฐฉ๋ฒ•์ด ์•„๋‹ˆ๋ผ, ์˜์™ธ์˜ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
08:07
Everybody in this room
178
487160
2754
์ด ๋ฐฉ์— ๊ณ„์‹  ์—ฌ๋Ÿฌ๋ถ„ ๋ชจ๋‘๊ฐ€
08:09
is dealing with their own version of the candle problem.
179
489938
4198
์ž๊ธฐ ์ž์‹  ๋ฒ„์ „์˜ ์ด›๋ถˆ ๋ฌธ์ œ๋ฅผ
๋‹ค๋ฃจ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:14
And for candle problems of any kind,
180
494160
3137
์–ด๋–ค ์ข…๋ฅ˜์˜, ์–ด๋–ค ๋ถ„์•ผ์˜
08:17
in any field,
181
497321
1670
์ด›๋ถˆ ๋ฌธ์ œ๋„
08:19
those if-then rewards,
182
499015
2993
๋Œ€๋ถ€๋ถ„์˜ ๋น„์ง€๋‹ˆ์Šค์—์„œ ์ƒ๊ฐํ•˜๋Š”
08:22
the things around which we've built so many of our businesses,
183
502032
4242
๋‹น๊ทผ๊ณผ ์ฑ„์ฐ ๊ฐ™์€ ๋ณด์ƒ์œผ๋กœ๋Š”
08:26
don't work!
184
506298
1833
ํšจ๊ณผ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
08:28
It makes me crazy.
185
508155
2456
๊ทธ๋Ÿฌ๊ณ ๋‚˜๋‹ˆ ์ด๊ฒŒ ์ •๋ง ๋†€๋ผ์šด ์ผ์ž…๋‹ˆ๋‹ค.
08:30
And here's the thing.
186
510635
1936
์ด๊ฑด ์ •๋ง -- ์ด๋Ÿฐ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:32
This is not a feeling.
187
512595
2056
์ด๊ฒƒ์€ ์–ด๋–ค ๊ฐ์ •์ด ์•„๋‹™๋‹ˆ๋‹ค.
08:35
Okay? I'm a lawyer; I don't believe in feelings.
188
515856
3094
์•„์‹œ์ฃ ? ์ „ ๋ณ€ํ˜ธ์‚ฌ์ž…๋‹ˆ๋‹ค. ์ €๋Š” ๊ฐ์ •์€ ๋ฏฟ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
08:38
This is not a philosophy.
189
518974
3643
์ด๊ฑด ์–ด๋–ค ์ฒ ํ•™๋„ ์•„๋‹™๋‹ˆ๋‹ค.
08:42
I'm an American; I don't believe in philosophy.
190
522641
2262
์ €๋Š” ๋ฏธ๊ตญ์ธ์ž…๋‹ˆ๋‹ค. ์ €๋Š” ์ฒ ํ•™์„ ๋ฏฟ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
08:44
(Laughter)
191
524927
1687
(์›ƒ์Œ)
08:47
This is a fact --
192
527525
2968
์ด๊ฑด ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
08:50
or, as we say in my hometown of Washington, D.C.,
193
530517
2444
ํ˜น์€, ์ œ ๊ณ ํ–ฅ์ธ ์›Œ์‹ฑํ„ด D.C. ๊ฐ™์€ ๊ณณ์—์„œ ๋ถ€๋ฅด๋Š” ๋Œ€๋กœ ํ•˜์ž๋ฉด,
08:52
a true fact.
194
532985
1590
์ง„์งœ ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
08:54
(Laughter)
195
534599
2444
(์›ƒ์Œ)
(๋ฐ•์ˆ˜)
08:57
(Applause)
196
537067
3794
09:00
Let me give you an example.
197
540885
1642
๋‹ค์‹œ ์˜ˆ๋ฅผ ๋” ๋“ค์–ด ๋ณด๋„๋ก ํ•˜์ฃ .
09:02
Let me marshal the evidence here.
198
542551
1585
๊ทธ ์ฆ๊ฑฐ๋“ค์„ ๋‚˜์—ดํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
09:04
I'm not telling a story, I'm making a case.
199
544160
2113
์ €๋Š” ์ง„์ˆ ์„ ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋ณ€๋ก ์„ ํ•˜๋Š” ์ค‘์ด๋‹ˆ๊นŒ์š”.
09:06
Ladies and gentlemen of the jury, some evidence:
200
546297
2271
๋ฐฐ์‹ฌ์› ์—ฌ๋Ÿฌ๋ถ„, ์—ฌ๊ธฐ ์ฆ๊ฑฐ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค. :
09:08
Dan Ariely, one of the great economists of our time,
201
548592
3375
์šฐ๋ฆฌ ์‹œ๋Œ€์˜ ์† ๊ผฝํžˆ๋Š” ๊ฒฝ์ œํ•™์ž์ธ Dan Ariely ์™€ ๊ทธ์˜ ์„ธ ๋ช…์˜ ๋™๋ฃŒ๋“ค์ด
09:11
he and three colleagues did a study of some MIT students.
202
551991
3471
MIT ํ•™์ƒ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์ด๋Ÿฐ ์—ฐ๊ตฌ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
09:15
They gave these MIT students a bunch of games,
203
555486
2650
MIT ํ•™์ƒ๋“ค์—๊ฒŒ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ฒŒ์ž„,
09:18
games that involved creativity,
204
558160
1976
์ฐฝ์˜์„ฑ๊ณผ, ์ž๋™์ฐจ ๊ธฐ์ˆ ๊ณผ, ์ง‘์ค‘๋ ฅ์„ ์š”ํ•˜๋Š”
09:20
and motor skills, and concentration.
205
560160
2278
๊ฒŒ์ž„๋“ค์„ ๋˜์ ธ์ฃผ๊ณ 
09:22
And the offered them, for performance,
206
562462
2081
ํšจ์œจ์„ฑ์„ ์œ„ํ•ด์„œ ๊ทธ๋“ค์—๊ฒŒ
09:24
three levels of rewards:
207
564567
2014
์„ธ ๋‹จ๊ณ„์˜ ๋ณด์ƒ์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค.
09:26
small reward, medium reward, large reward.
208
566605
4246
์ž‘์€ ๋ณด์ƒ, ์ค‘๊ฐ„ ๋ณด์ƒ, ํฐ ๋ณด์ƒ์„์š”.
09:30
If you do really well you get the large reward, on down.
209
570875
4137
๋งŒ์•ฝ ์ •๋ง ์ž˜ ํ•œ๋‹ค๋ฉด ํฐ ๋ณด์ƒ์„ ๋ฐ›๊ฒŒ ๋˜๊ฒ ์ฃ .
09:35
What happened?
210
575036
1334
์–ด๋–ป๊ฒŒ ๋˜์—ˆ์„๊นŒ์š”? ์ด ๋ฌธ์ œ๋Š” ๋‹จ์ง€ ๊ธฐ๊ณ„์ ์ธ ๊ธฐ์ˆ ๋งŒ ์žˆ์œผ๋ฉด ๋˜๋Š” ๋ฌธ์ œ์˜€๊ณ 
09:36
As long as the task involved only mechanical skill
211
576394
2742
09:39
bonuses worked as they would be expected:
212
579160
1976
๋ณด๋„ˆ์Šค๋Š” ์ •ํ™•ํžˆ ์˜ˆ์ƒํ•œ๋Œ€๋กœ ์ž‘์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.
09:41
the higher the pay, the better the performance.
213
581160
3697
๋†’์€ ๋ณด์ƒ์„ ๋ฐ›์€ ์ชฝ์ด ๋” ๋†’์€ ์„ฑ๊ณผ๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.
09:44
Okay?
214
584881
1151
์ž, ๊ทธ๋Ÿฐ๋ฐ ์ž‘์—…์ด ๊ธฐ๋ณธ์ ์ธ ์ธ์ง€ ๋Šฅ๋ ฅ์—
09:46
But once the task called for even rudimentary cognitive skill,
215
586056
5080
์—ฐ๊ด€ ๋œ ๊ฒƒ์ผ ๋•Œ,
09:51
a larger reward led to poorer performance.
216
591160
6072
๋” ํฐ ๋ณด์ƒ์€ ์˜คํžˆ๋ ค ๋‚ฎ์€ ์„ฑ๊ณผ๋กœ ์ด์–ด์กŒ์Šต๋‹ˆ๋‹ค.
ํ˜น์ž๋Š” ์ด๋ ‡๊ฒŒ ๋ง ํ–ˆ์Šต๋‹ˆ๋‹ค.
09:57
Then they said,
217
597256
1150
09:58
"Let's see if there's any cultural bias here.
218
598430
2135
"์–ด์ฉŒ๋ฉด ์ด ๊ฒฐ๊ณผ๋Š” ๋ฌธํ™”์ ์ธ ์ฐจ์ด๋กœ ์ธํ•œ ๊ฒƒ์ผ ์ˆ˜๋„ ์žˆ์œผ๋‹ˆ๊นŒ
10:00
Let's go to Madurai, India and test it."
219
600589
1953
์ธ๋„์˜ ๋งˆ๋‘๋ผ์ด๋กœ ๊ฐ€์„œ ์‹คํ—˜์„ ํ•ด ๋ณด์ž"
10:02
Standard of living is lower.
220
602566
1570
์ƒํ™œ ์ˆ˜์ค€์ด ์ข€ ๋” ๋‚ฎ์€ ๊ณณ ๋ง์ด์ฃ .
10:04
In Madurai, a reward that is modest in North American standards,
221
604160
3477
๋ถ๋ฏธ์—์„œ๋Š” ๋ณดํ†ต์— ํ•ด๋‹นํ•˜๋Š” ๋ณด์ƒ์ด ๋งˆ๋‘๋ผ์ด์—์„œ๋Š”
10:07
is more meaningful there.
222
607661
1341
ํ›จ์”ฌ ๋” ํฐ ์˜๋ฏธ๋ฅผ ๊ฐ–์Šต๋‹ˆ๋‹ค.
10:09
Same deal. A bunch of games, three levels of rewards.
223
609859
3402
๋˜‘๊ฐ™์€ ์‹คํ—˜์„ ํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ช‡ ๊ฐ€์ง€ ๊ฒŒ์ž„์„ ์ฃผ๊ณ , ๋ณด์ƒ์— ์„ธ ๋‹จ๊ณ„๋ฅผ ๋‘์—ˆ์Šต๋‹ˆ๋‹ค.
10:13
What happens?
224
613285
1089
์–ด๋–ค ์ผ์ด ๋ฒŒ์–ด์กŒ์„๊นŒ์š”?
10:15
People offered the medium level of rewards
225
615301
3000
๋ณดํ†ต์˜ ๋ณด์ƒ์„ ์ œ์‹œ๋ฐ›์€ ์‚ฌ๋žŒ๋“ค์€
10:18
did no better than people offered the small rewards.
226
618325
2580
์ ์€ ๋ณด์ƒ์„ ์ œ์‹œ๋ฐ›์€ ์‚ฌ๋žŒ๋“ค ๋ณด๋‹ค ์ž˜ ํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
10:20
But this time, people offered the highest rewards,
227
620929
4479
ํ•˜์ง€๋งŒ ์ด๋ฒˆ ์‹คํ—˜์—์„œ๋Š”, ๊ฐ€์žฅ ๋†’์€ ๋ณด์ƒ์„ ์ œ์‹œ ๋ฐ›์€ ์‚ฌ๋žŒ๋“ค์ด
10:25
they did the worst of all.
228
625432
1496
๊ฐ€์žฅ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜๋นด์Šต๋‹ˆ๋‹ค.
10:28
In eight of the nine tasks we examined across three experiments,
229
628977
3373
3 ๋ฒˆ์˜ ์‹คํ—˜์„ ํ†ตํ•œ 9๊ฐ€์ง€ ์ž‘์—… ์ค‘ 8๊ฐ€์ง€ ์ž‘์—…์—์„œ
10:32
higher incentives led to worse performance.
230
632374
3469
์ธ์„ผํ‹ฐ๋ธŒ๊ฐ€ ๋†’์„ ์ˆ˜๋ก, ์„ฑ๊ณผ๋Š” ์•ˆ ์ข‹์•˜์Šต๋‹ˆ๋‹ค.
10:37
Is this some kind of touchy-feely socialist conspiracy going on here?
231
637634
5976
์—ฌ๊ธฐ์— ์–ด๋–ค ๊ฐ์ƒ์ ์ธ
์‚ฌํšŒ์ฃผ์˜์ž์˜ ์Œ๋ชจ๋ผ๋„ ์žˆ๋Š” ๊ฑธ๊นŒ์š”?
10:43
No, these are economists from MIT,
232
643634
2776
์•„๋‹™๋‹ˆ๋‹ค. ์ด ์‹คํ—˜์„ ์ฃผ๊ด€ํ•œ ๊ฒฝ์ œํ•™์ž๋“ค์€ MIT ์™€
10:46
from Carnegie Mellon, from the University of Chicago.
233
646434
2702
Carnegie Mellon, ๊ทธ๋ฆฌ๊ณ  Chicago ๋Œ€ํ•™์˜ ํ•™์ž๋“ค์ž…๋‹ˆ๋‹ค.
10:49
Do you know who sponsored this research?
234
649160
2621
๊ทธ๋ฆฌ๊ณ  ์ด ์—ฐ๊ตฌ๋ฅผ ๋ˆ„๊ฐ€ ํ›„์›ํ–ˆ๋Š”์ง€ ์•„์‹ญ๋‹ˆ๊นŒ?
10:51
The Federal Reserve Bank of the United States.
235
651805
4120
๋ฏธ๊ตญ ์—ฐ๋ฐฉ ์ค€๋น„ ์€ํ–‰์ž…๋‹ˆ๋‹ค.
10:55
That's the American experience.
236
655949
1820
์ด ์—ฐ๊ตฌ๋Š” ๋ฏธ๊ตญ์˜ ์‹คํ—˜์ด์—ˆ์Šต๋‹ˆ๋‹ค.
10:57
Let's go across the pond to the London School of Economics,
237
657793
2775
์ด์ œ ์žฅ์†Œ๋ฅผ ๋Ÿฐ๋˜ ์ •๊ฒฝ๋Œ€๋กœ ์˜ฎ๊ฒจ๋ณด์ฃ .
11:00
LSE, London School of Economics,
238
660592
2544
LSE, ๋Ÿฐ๋˜ ์ •์น˜ ๊ฒฝ์ œ ๋Œ€ํ•™๊ต ๋ง์ž…๋‹ˆ๋‹ค.
11:03
alma mater of eleven Nobel Laureates in economics.
239
663160
3444
๋…ธ๋ฒจ ๊ฒฝ์ œํ•™ ์ˆ˜์ƒ์ž๋ฅผ 11๋ช…์ด๋‚˜ ๋ฐฐ์ถœํ–ˆ์ง€์š”.
11:06
Training ground for great economic thinkers
240
666628
2508
์œ„๋Œ€ํ•œ ๊ฒฝ์ œ ์‚ฌ์ƒ๊ฐ€๋“ค์ด ์—ฌ๊ธฐ์„œ ๊ณต๋ถ€ํ–ˆ์—ˆ์ฃ .
11:09
like George Soros, and Friedrich Hayek,
241
669160
2976
์กฐ์ง€ ์†Œ๋กœ์Šค, ํ”„๋ฆฌ๋“œ๋ฆฌํžˆ ํ—ค์ด์—‘,
11:12
and Mick Jagger.
242
672160
1287
๋ฏน ์žฌ๊ฑฐ(์ฃผ:๋ก ๊ทธ๋ฃน ๋กค๋ง์Šคํ†ค์ฆˆ์˜ ๋ฆฌ๋”). (์›ƒ์Œ)
11:13
(Laughter)
243
673471
1299
11:14
Last month,
244
674794
1770
์ง€๋‚œ ๋‹ฌ์—, ์ •ํ™•ํžˆ ํ•œ ๋‹ฌ ์ „์—,
11:16
just last month,
245
676588
1499
11:18
economists at LSE looked at 51 studies
246
678111
3025
LSE ์˜ ๊ฒฝ์ œํ•™์ž๋“ค์€ ์„ฑ๊ณผ์ฃผ์˜๋ฅผ ๋„์ž…ํ•œ
11:21
of pay-for-performance plans, inside of companies.
247
681160
2976
51๊ฐœ ๊ธฐ์—…์˜ ์‚ฌ๋ก€๋ฅผ ์กฐ์‚ฌํ–ˆ์Šต๋‹ˆ๋‹ค.
11:24
Here's what they said:
248
684160
1451
๊ฒฝ์ œํ•™์ž๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๋ก ์„ ๋‚ด๋ฆฝ๋‹ˆ๋‹ค. "๊ฒฝ์ œ์  ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ€
11:25
"We find that financial incentives
249
685635
1796
11:27
can result in a negative impact on overall performance."
250
687455
4053
์ „์ฒด ์„ฑ๊ณผ์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค"
11:32
There is a mismatch between what science knows
251
692936
3699
์—ฌ๊ธฐ์„œ ์‚ฌํšŒ๊ณผํ•™์ด ๋ฐํ˜€๋‚ธ ์‚ฌ์‹ค๊ณผ
11:36
and what business does.
252
696659
1477
๋น„์ง€๋‹ˆ์Šค์—์„œ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์˜ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
11:38
And what worries me, as we stand here in the rubble
253
698160
3277
์ œ๊ฐ€ ๊ฑฑ์ •๋˜๋Š” ๊ฒƒ์€, ์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ ๊ฒฝ์ œ ์œ„๊ธฐ์˜
11:41
of the economic collapse,
254
701461
1675
์–ด๋ ค์šด ์ƒํ™ฉ์— ์žˆ์–ด,
11:43
is that too many organizations are making their decisions,
255
703160
3976
๋„ˆ๋ฌด๋‚˜ ๋งŽ์€ ์กฐ์ง๋“ค์ด
๋Šฅ๋ ฅ๊ณผ ์‚ฌ๋žŒ์— ๋Œ€ํ•œ ์ œ๋„๋ฅผ
11:47
their policies about talent and people,
256
707160
2372
๊ฒฐ์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด
11:49
based on assumptions that are outdated,
257
709556
4127
์ง„๋ถ€ํ•˜๊ณ  ๊ฒ€์ฆ๋˜์ง€๋„ ์•Š์€ ์ „์ œ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐ€์ •์„
11:53
unexamined,
258
713707
1190
11:54
and rooted more in folklore than in science.
259
714921
2762
๊ณผํ•™์ ์ธ ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๋ณด๋‹ค ๋” ์‹ ๋ขฐํ•˜๊ณ  ์‚ฌ์šฉํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:58
And if we really want to get out of this economic mess,
260
718564
2572
๊ทธ๋ฆฌ๊ณ  ์ •๋ง๋กœ ์ด ๊ฒฝ์ œ ์œ„๊ธฐ์—์„œ ํƒˆ์ถœํ•˜๊ณ ์ž ํ•œ๋‹ค๋ฉด,
12:01
if we really want high performance
261
721160
2093
์ •๋ง๋กœ 21์„ธ๊ธฐ ์‹์˜ ๊ฐœ๋…์ ์ธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š”๋ฐ
12:03
on those definitional tasks of the 21st century,
262
723277
2447
๋†’์€ ์„ฑ๊ณผ๋ฅผ ๋ณด์ด๊ณ ์ž ํ•œ๋‹ค๋ฉด,
12:05
the solution is not to do more of the wrong things,
263
725748
5940
์‚ฌ๋žŒ์— ๋Œ€ํ•ด ๋” ๋‹ฌ์ฝคํ•œ ๋‹น๊ทผ์œผ๋กœ ์œ ํ˜นํ•˜๊ณ ,
12:11
to entice people with a sweeter carrot,
264
731712
2323
ํ˜น์€ ๋” ๊ฐ€ํ˜นํ•œ ์ฒ˜๋ฒŒ๋กœ ์œ„ํ˜‘ํ•˜๋Š” ๋“ฑ์˜
12:14
or threaten them with a sharper stick.
265
734059
2399
์ž˜๋ชป๋œ ๊ฒฐ์ •์„ ํ•˜์ง€ ์•Š์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
12:16
We need a whole new approach.
266
736482
1654
์šฐ๋ฆฌ๋Š” ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์œผ๋กœ ์ ‘๊ทผํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
12:18
The good news is that the scientists
267
738160
1976
์ข‹์€ ์†Œ์‹์€, ๋™๊ธฐ ๋ถ€์—ฌ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜๋˜ ๊ณผํ•™์ž๋“ค์ด
12:20
who've been studying motivation have given us this new approach.
268
740160
3188
์šฐ๋ฆฌ์—๊ฒŒ ์ƒˆ๋กœ์šด ๊ด€์ ์„ ๊ฐ€์ ธ๋‹ค ์ฃผ์—ˆ๋‹ค๋Š” ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
12:23
It's built much more around intrinsic motivation.
269
743372
3095
๋‚ด์žฌ์ ์ธ ๋™๊ธฐ ๋ถ€์—ฌ์— ํ›จ์”ฌ ๋” ๊ฐ•์กฐ๋ฅผ ๋‘” ๊ด€์ ์ž…๋‹ˆ๋‹ค.
12:26
Around the desire to do things because they matter,
270
746491
2455
์ž์‹ ์˜ ๋ฌธ์ œ๊ฐ€ ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์ข‹์•„ํ•ด์„œ,
12:28
because we like it, they're interesting, or part of something important.
271
748970
3563
์žฌ๋ฏธ์žˆ์–ด์„œ, ๋˜๋Š” ์ค‘์š”ํ•œ ๊ฒƒ์˜ ์ผ๋ถ€์—ฌ์„œ
ํ•˜๊ณ ์ž ํ•˜๋Š” ์š•๋ง์— ๊ด€๋ จ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:32
And to my mind, that new operating system for our businesses
272
752557
3579
์ œ ์ƒ๊ฐ์—, ๋น„์ง€๋‹ˆ์Šค์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์šด์˜ ์‹œ์Šคํ…œ์€
12:36
revolves around three elements:
273
756160
1701
์„ธ ๊ฐ€์ง€ ์š”์†Œ๋ฅผ ์ถ•์œผ๋กœ ํ•ด์„œ ๋Œ์•„๊ฐ‘๋‹ˆ๋‹ค.
12:37
autonomy, mastery and purpose.
274
757885
3251
์ฃผ๋„์„ฑ, ์ „๋ฌธ์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋ชฉ์ ์ž…๋‹ˆ๋‹ค.
12:41
Autonomy: the urge to direct our own lives.
275
761160
2976
์ฃผ๋„์„ฑ์€ ์šฐ๋ฆฌ ์‚ถ์˜ ๋ฐฉํ–ฅ์„ ๊ฒฐ์ •ํ•˜๊ณ  ์‹ถ์–ดํ•˜๋Š” ์š•๋ง์ž…๋‹ˆ๋‹ค.
12:44
Mastery: the desire to get better and better at something that matters.
276
764160
4245
์ „๋ฌธ์„ฑ์€ ์˜๋ฏธ ์žˆ๋Š” ๊ฒƒ์— ์ข€ ๋” ์ž˜ ํ•˜๊ณ ์ž ํ•˜๋Š” ์š•๋ง์ž…๋‹ˆ๋‹ค.
12:48
Purpose: the yearning to do what we do
277
768429
2707
๋ชฉ์ ์€ ์šฐ๋ฆฌ ์ž์‹ ๋ณด๋‹ค ๋” ํฐ ๋ฌด์–ธ๊ฐ€๋ฅผ ํ–ฅํ•œ
12:51
in the service of something larger than ourselves.
278
771160
3193
๋ญ”๊ฐ€ ํ•˜๊ณ  ์‹ถ๋‹ค๋Š” ์—ด๋ง์ž…๋‹ˆ๋‹ค.
12:54
These are the building blocks of an entirely new operating system
279
774377
3294
์ด๊ฒƒ๋“ค์ด ์šฐ๋ฆฌ๋“ค์ด ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ๋น„์ง€๋‹ˆ์Šค ์šด์˜ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ
12:57
for our businesses.
280
777695
1441
์š”์†Œ์ž…๋‹ˆ๋‹ค.
12:59
I want to talk today only about autonomy.
281
779160
2561
์˜ค๋Š˜ ์—ฌ๊ธฐ์—์„œ๋Š” ์ฃผ๋„์„ฑ์— ๋Œ€ํ•ด์„œ ์–˜๊ธฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
13:03
In the 20th century, we came up with this idea of management.
282
783160
2976
20์„ธ๊ธฐ์—๋Š” ๊ด€๋ฆฌ๋ผ๋Š” ๊ฐœ๋…์ด ๋“ฑ์žฅํ–ˆ์Šต๋‹ˆ๋‹ค.
13:06
Management did not emanate from nature.
283
786160
2294
๊ด€๋ฆฌ๋ผ๋Š” ๊ฐœ๋…์€ ์ž์—ฐ์ ์ด์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
13:08
Management is not a tree, it's a television set.
284
788478
3658
๊ด€๋ฆฌ๋Š” -- ๋‚˜๋ฌด ๊ฐ™์€ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ,
ํ…”๋ ˆ๋น„์ „ ์„ธํŠธ ๊ฐ™์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:12
Somebody invented it.
285
792160
2224
์•„์‹œ๊ฒ ์ฃ ? ๋ˆ„๊ตฐ๊ฐ€ ๋งŒ๋“ค์–ด ๋‚ธ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:14
It doesn't mean it's going to work forever.
286
794408
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์ด ์˜์›ํžˆ ์ž‘์šฉ ํ•  ๊ฒƒ์ด๋ผ ์ƒ๊ฐ ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
13:16
Management is great.
287
796432
2007
๊ด€๋ฆฌ๋Š” ์ข‹์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:18
Traditional notions of management are great
288
798463
2054
๋‹จ์ˆœํžˆ ๋ณต์ข…ํ•˜๊ธฐ๋ฅผ ์›ํ•œ๋‹ค๋ฉด ์ „ํ†ต์ ์ธ ๊ด€๋ฆฌ์˜ ๊ฐœ๋…์€
13:20
if you want compliance.
289
800541
1595
๋งค์šฐ ์ข‹์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:22
But if you want engagement, self-direction works better.
290
802160
3183
ํ•˜์ง€๋งŒ ๋ฌด์–ธ๊ฐ€์— ๊ธฐ์—ฌํ•˜๊ณ , ์ž๊ธฐ์ฃผ๋„์ ์œผ๋กœ ๋” ์ž˜ ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด ๊ทธ๋ ‡์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
13:25
Some examples of some kind of radical notions of self-direction.
291
805367
4040
์—ฌ๊ธฐ์— ์ž๊ธฐ์ฃผ๋„์˜ ๊ทผ๋ณธ์ ์ธ ๊ด€๋…์— ๋Œ€ํ•ด์„œ
์„ค๋ช…์„ ํ•ด ๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
13:29
You don't see a lot of it,
292
809431
2936
์ž๊ธฐ ์ฃผ๋„๋ผ ํ•จ์€ -- ๋ณ„๋กœ ์ž˜ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ์•„๋‹ˆ์ง€๋งŒ,
13:32
but you see the first stirrings of something really interesting going on,
293
812391
3476
์•„์ฃผ ์žฌ๋ฏธ์žˆ์–ด ๋ณด์ด๋Š” ๊ฒƒ์„ ์ฒ˜์Œ ๋ณด์•˜์„ ๋•Œ ๋Š๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:35
what it means is paying people adequately and fairly, absolutely --
294
815891
3643
์‚ฌ๋žŒ์—๊ฒŒ ์ ๋‹นํžˆ, ๊ฝค, ํ˜น์€ ์ ˆ๋Œ€์ ์œผ๋กœ
๋ณด์ƒํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—
13:39
getting the issue of money off the table,
295
819558
2285
๋ˆ์€ ์ด ๋…ผ์ ์—์„œ ๋ฒ—์–ด๋‚˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
13:41
and then giving people lots of autonomy.
296
821867
1975
๊ทธ๋ ‡๊ฒŒ ํ•˜๋ฉด ์‚ฌ๋žŒ๋“ค์ด ์ข€ ๋” ์ฃผ๋„์ ์œผ๋กœ ์›€์ง์ž…๋‹ˆ๋‹ค.
13:43
Some examples.
297
823866
1270
์—ฌ๊ธฐ ์˜ˆ๋ฅผ ๋“ค์–ด๋ณด์ฃ .
13:45
How many of you have heard of the company Atlassian?
298
825160
2945
์—ฌ๊ธฐ์— ๊ณ„์‹  ๋ถ„๋“ค ์ค‘ Atlassian ์ด๋ผ๋Š” ํšŒ์‚ฌ์— ๋Œ€ํ•ด์„œ ๋“ค์–ด ๋ณด์‹  ๋ถ„?
13:49
It looks like less than half.
299
829628
1508
๋ฐ˜์ด ์ฑ„ ์•ˆ ๋˜๋Š” ๊ฒƒ ๊ฐ™๊ตฐ์š”.
13:51
(Laughter)
300
831160
1405
(์›ƒ์Œ)
13:52
Atlassian is an Australian software company.
301
832589
4547
Atlassian ์€ ํ˜ธ์ฃผ์˜ ์†Œํ”„ํŠธ์›จ์–ด ํšŒ์‚ฌ์ธ๋ฐ,
13:57
And they do something incredibly cool.
302
837160
1971
์•„์ฃผ ๋ฉ‹์ง„ ์ผ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
13:59
A few times a year they tell their engineers,
303
839155
2744
์ผ๋…„์— ๋ช‡ ๋ฒˆ, ํšŒ์‚ฌ์˜ ์—”์ง€๋‹ˆ์–ด๋“ค์—๊ฒŒ
14:01
"Go for the next 24 hours and work on anything you want,
304
841923
4006
"์ง€๊ธˆ๋ถ€ํ„ฐ 24์‹œ๊ฐ„๋™์•ˆ ์ •๊ทœ ์—…๋ฌด๊ฐ€ ์•„๋‹ˆ๋ผ ํ•˜์ง€ ๋ชปํ–ˆ๋˜
14:05
as long as it's not part of your regular job.
305
845953
2110
๊ฒƒ์„ ์ฐพ์•„ ํ•˜์‹ญ์‹œ์˜ค.
๋ฌด์—‡์ด๋“  ์ข‹์Šต๋‹ˆ๋‹ค."
14:08
Work on anything you want."
306
848087
1390
14:09
Engineers use this time to come up with a cool patch for code,
307
849501
3763
์ด ๋•Œ ์—”์ง€๋‹ˆ์–ด๋“ค์€ ์ด ์‹œ๊ฐ„๋™์•ˆ
์ฝ”๋“œ๋ฅผ ์ˆ˜์ •ํ•˜๊ฑฐ๋‚˜, ์—„์ฒญ๋‚œ ์ œํ’ˆ ์•„์ด๋””์–ด๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด์—ˆ์Šต๋‹ˆ๋‹ค.
14:13
come up with an elegant hack.
308
853288
1442
14:14
Then they present all of the stuff that they've developed
309
854754
2966
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋“ค์ด ์ด ์‹œ๊ฐ„๋™์•ˆ ๋งŒ๋“ค์–ด ๋‚ธ ๊ฒƒ์„
14:17
to their teammates, to the rest of the company,
310
857744
2720
ํŒ€ ๋™๋ฃŒ๋“ค๊ณผ ๋‹ค๋ฅธ ํšŒ์‚ฌ ์ง์›๋“ค ์•ž์—์„œ ๋ฐœํ‘œ ํ–ˆ์Šต๋‹ˆ๋‹ค.
14:20
in this wild and woolly all-hands meeting at the end of the day.
311
860488
3952
๊ทธ ๋‚ ์„ ๋งˆ๊ฐํ•˜๋ฉด์„œ ๊ทธ๋Ÿฌํ•œ ๋น„ ๊ฒฉ์‹์ ์ธ
๋ฏธํŒ…์„ ๊ฐ€์กŒ์Šต๋‹ˆ๋‹ค.
14:24
Being Australians, everybody has a beer.
312
864464
2195
๊ทธ ๋‹ค์Œ์—๋Š”, ํ˜ธ์ฃผ์ธ๋“ค์ด๋‹ˆ, ๋ชจ๋‘๋“ค ๋งฅ์ฃผ๋ฅผ ๋งˆ์‹œ๋Ÿฌ ๊ฐ”์ฃ .
14:26
They call them FedEx Days.
313
866683
2020
๊ทธ ๋‚ ์„ FedEx Day ๋ผ๊ณ  ๋ถˆ๋ €์Šต๋‹ˆ๋‹ค.
14:29
Why?
314
869612
1029
์™œ๋ƒํ•˜๋ฉด ๊ทธ ๋‚  ๋ฐค ์ƒˆ๋„๋ก ๋ฌด์–ธ๊ฐ€๋ฅผ ๋ณด๋‚ด์•ผ ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
14:31
Because you have to deliver something overnight.
315
871675
2388
14:34
It's pretty; not bad.
316
874977
1567
๋ฉ‹์ง€์ง€ ์•Š๋‚˜์š”? ๋ญ ์ƒํ‘œ๊ถŒ์„ ์นจํ•ดํ•œ๊ฒƒ ๊ฐ™๊ธด ํ•˜์ง€๋งŒ,
14:36
It's a huge trademark violation, but it's pretty clever.
317
876568
2668
๋”ฑ ์–ด์šธ๋ฆฌ๋Š” ์ด๋ฆ„์ด์—์š”.
14:39
(Laughter)
318
879260
1337
(์›ƒ์Œ)
14:40
That one day of intense autonomy
319
880621
1678
์ฃผ๋„์ ์œผ๋กœ ์ผ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ทธ ํ•˜๋ฃจ๋™์•ˆ
14:42
has produced a whole array of software fixes
320
882323
2052
๊ทธ๋Ÿฐ ํ™œ๋™์ด ์—†์—ˆ์œผ๋ฉด ๋‚˜์˜ฌ ์ˆ˜ ์—†์—ˆ์„
14:44
that might never have existed.
321
884399
1737
์—„์ฒญ๋‚˜๊ฒŒ ๋งŽ์€ ์†Œํ”„ํŠธ์›จ์–ด๋“ค์ด ๋“ฑ์žฅํ–ˆ์Šต๋‹ˆ๋‹ค.
14:46
It's worked so well that Atlassian has taken it to the next level
322
886160
3068
์ด ์ •์ฑ…์€ ํšจ๊ณผ๊ฐ€ ์ •๋ง ์ข‹์•„์„œ Attlasian ์€ ์ด ์‹œ๊ฐ„์„ ์ „์ฒด ์ผ๊ณผ ์‹œ๊ฐ„์˜
20% ๋กœ ๋Œ์–ด์˜ฌ๋ ธ์Šต๋‹ˆ๋‹ค.
14:49
with 20% time --
323
889252
1058
14:50
done, famously, at Google --
324
890334
2168
Google ์—์„œ ๊ทธ๋žฌ๋˜ ๊ฒƒ ์ฒ˜๋Ÿผ,
14:52
where engineers can spend 20% of their time
325
892526
2062
์—”์ง€๋‹ˆ์–ด๋“ค์ด ์ผ๊ณผ ์‹œ๊ฐ„ ์ค‘ 20% ์˜ ์‹œ๊ฐ„์„
14:54
working on anything they want.
326
894612
1945
๋ฌด์—‡์ด๋“  ์›ํ•˜๋Š” ๊ฒƒ์— ์“ธ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ ์ฒ˜๋Ÿผ์š”.
14:56
They have autonomy over their time,
327
896581
1667
๊ทธ๋“ค์€ ๊ทธ๋“ค์˜ ์‹œ๊ฐ„๊ณผ, ์ž‘์—…๊ณผ, ํŒ€๊ณผ, ๊ธฐ์ˆ ์˜
14:58
their task, their team, their technique.
328
898272
2213
์ฃผ๋„๊ถŒ์„ ๊ฐ–๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
15:00
Radical amounts of autonomy.
329
900509
1954
์ถฉ๋ถ„ํžˆ ํ•„์š”ํ•œ ๋งŒํผ์˜ ์ฃผ๋„๊ถŒ ๋ง์ž…๋‹ˆ๋‹ค.
15:02
And at Google, as many of you know,
330
902487
3926
๊ทธ๋ฆฌ๊ณ  Google ์—์„œ๋Š”, ๋งŽ์€ ๋ถ„๋“ค์ด ์•„์‹œ๋‹ค์‹œํ”ผ,
15:06
about half of the new products in a typical year
331
906437
2333
๊ทธ ํ•ด์˜ ์ ˆ๋ฐ˜ ์ •๋„์˜ ์ƒˆ๋กœ์šด ์ƒ์‚ฐํ’ˆ๋“ค์ด
15:08
are birthed during that 20% time:
332
908794
2476
์ด 20% ์˜ ์‹œ๊ฐ„์—์„œ ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค.
15:11
things like Gmail, Orkut, Google News.
333
911294
2842
Gmail, Orkut, Google News ๊ฐ™์€ ๊ฒƒ๋“ค์ด์š”.
15:14
Let me give you an even more radical example of it:
334
914160
2920
์ด๋ณด๋‹ค ๋” ๊ธ‰์ง„์ ์ธ ์˜ˆ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
15:17
something called the Results Only Work Environment (the ROWE),
335
917104
3873
"๊ฒฐ๊ณผ๋งŒ ๋‚ด๋ฉด ๋˜๋Š” ์ž‘์—… ํ™˜๊ฒฝ" (Results Only Work Environment) ์ด๋ผ๋Š” ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค
ROWE ๋ผ๊ณ  ํ•˜์ฃ .
15:21
created by two American consultants,
336
921001
2066
๋ถ๋ฏธ์˜ ์ƒ๋‹น์ˆ˜ ํšŒ์‚ฌ๋“ค์„ ์ปจ์„คํŒ… ํ•œ ๋‘ ๋ช…์˜
15:23
in place at a dozen companies around North America.
337
923091
2679
๋ฏธ๊ตญ ์ปจ์„คํ„ดํŠธ๊ฐ€ ๋งŒ๋“ค์–ด ๋‚ธ ๊ฐœ๋…์ž…๋‹ˆ๋‹ค.
15:25
In a ROWE people don't have schedules.
338
925794
2605
ROWE ์˜ ์ž‘์—…์ž๋Š” ์ •๊ทœ ์ผ์ •์ด ์—†์Šต๋‹ˆ๋‹ค.
15:29
They show up when they want.
339
929728
1647
๊ทธ์ € ํšŒ์‚ฌ์— ์˜ค๊ณ  ์‹ถ์„ ๋•Œ ์˜ต๋‹ˆ๋‹ค.
15:31
They don't have to be in the office at a certain time, or any time.
340
931399
4054
์–ด๋–ค ์‹œ๊ฐ„์— ๊ผญ ํšŒ์‚ฌ์— ์žˆ์„ ํ•„์š”๋„ ์—†๊ณ ,
์•„์˜ˆ ์˜ค์ง€ ์•Š์•„๋„ ๋ฉ๋‹ˆ๋‹ค.
15:35
They just have to get their work done.
341
935477
1945
๊ทธ๋“ค์€ ๊ทธ์ € ์ž๊ธฐ๊ฐ€ ๋งก์€ ์ผ๋งŒ ์™„์ˆ˜ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.
15:37
How they do it, when they do it, where they do it, is totally up to them.
342
937446
4159
์–ด๋–ป๊ฒŒ, ์–ธ์ œ, ์–ด๋””์„œ ํ•˜๋Š”์ง€๋Š”,
์ „์ ์œผ๋กœ ์ž‘์—…์ž์—๊ฒŒ ๋‹ฌ๋ ค ์žˆ์Šต๋‹ˆ๋‹ค.
15:42
Meetings in these kinds of environments are optional.
343
942644
3331
์ด ํ™˜๊ฒฝ์—์„œ ํšŒ์˜๋Š” ์„ ํƒ ์‚ฌํ•ญ์ž…๋‹ˆ๋‹ค.
์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”?
15:47
What happens?
344
947039
1461
15:48
Almost across the board,
345
948524
1711
๋†€๋ž๊ฒŒ๋„, ์ƒ์‚ฐ์„ฑ์ด ํ–ฅ์ƒ๋˜๊ณ ,
15:50
productivity goes up, worker engagement goes up,
346
950259
3210
์ž‘์—…์ž๋“ค์˜ ๊ธฐ์—ฌ๋„๋Š” ํ–ฅ์ƒ๋˜๊ณ ,
15:53
worker satisfaction goes up, turnover goes down.
347
953493
3643
์ž‘์—…์ž ๋งŒ์กฑ๋„๋„ ํ–ฅ์ƒ๋˜๊ณ , ๋ถˆ๋Ÿ‰์€ ์ค„์—ˆ์Šต๋‹ˆ๋‹ค.
15:57
Autonomy, mastery and purpose,
348
957160
1976
์ฃผ๋„์„ฑ, ์ „๋ฌธ์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋ชฉ์ ์€
15:59
the building blocks of a new way of doing things.
349
959160
2612
์ž‘์—…์„ ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์˜ ์š”์†Œ๋“ค์ž…๋‹ˆ๋‹ค.
16:01
Some of you might look at this and say,
350
961796
2340
์–ด์ฉŒ๋ฉด ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์ด๋ ‡๊ฒŒ ๋ง ํ• ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
16:04
"Hmm, that sounds nice, but it's Utopian."
351
964160
2460
"ํ , ๊ดœ์ฐฎ์€ ๊ฒƒ ๊ฐ™์€๋ฐ, ๋„ˆ๋ฌด ๊ณต์ƒ์ ์ด์•ผ."
16:07
And I say, "Nope.
352
967518
1480
๊ทธ๋Ÿฌ๋ฉด ์ œ๊ฐ€ ์ด๋ ‡๊ฒŒ ๋งํ•ฉ๋‹ˆ๋‹ค. "์•„๋‡จ, ์ฆ๊ฑฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค."
16:10
I have proof."
353
970525
1568
16:12
The mid-1990s, Microsoft started an encyclopedia called Encarta.
354
972638
3498
1990๋…„๋Œ€ ์ค‘๋ฐ˜, Microsoft ๋Š” Encarta ๋ผ๋Š”
๋ฐฑ๊ณผ์‚ฌ์ „ ์‚ฌ์—…์„ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
16:16
They had deployed all the right incentives,
355
976160
3317
๊ทธ๋“ค์€ ๋ชจ๋“  ์ ์ ˆํ•œ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ๊ฐ–๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
๋ชจ๋“  ์ ์ ˆํ•œ ์ธ์„ผํ‹ฐ๋ธŒ ๋ง์ž…๋‹ˆ๋‹ค.
16:19
They paid professionals to write and edit thousands of articles.
356
979501
3849
๊ทธ๋“ค์€ ๋ฌธ์„œ๋ฅผ ์ž‘์„ฑํ•˜๊ณ  ์ˆ˜์ •ํ•˜๋Š”๋ฐ ์ „๋ฌธ๊ฐ€๋“ค์„ ๊ณ ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.
16:23
Well-compensated managers oversaw the whole thing
357
983374
2589
์ข‹์€ ๋Œ€์šฐ๋ฅผ ๋ฐ›๋Š” ๊ด€๋ฆฌ์ž๋“ค์ด ์ •ํ•ด์ง„ ์˜ˆ์‚ฐ๊ณผ ์‹œ๊ฐ„ ๋‚ด์—
16:25
to make sure it came in on budget and on time.
358
985987
2258
๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋„๋ก ์ „์ฒด๋ฅผ ๊ด€๋ฆฌํ–ˆ์Šต๋‹ˆ๋‹ค.
16:30
A few years later, another encyclopedia got started.
359
990160
2504
๊ทธ๋กœ๋ถ€ํ„ฐ ๋ช‡๋…„ ํ›„์— ๋‹ค๋ฅธ ๋ฐฑ๊ณผ์‚ฌ์ „ ํ”„๋กœ์ ํŠธ๊ฐ€ ์‹œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
16:32
Different model, right?
360
992688
1397
๋‹ค๋ฅธ ๋ชจ๋ธ์ด์ฃ . ์•„์‹ญ๋‹ˆ๊นŒ?
16:35
Do it for fun.
361
995506
1660
์žฌ๋ฏธ๋กœ ํ•˜๊ณ , ๊ทธ ๋ˆ„๊ตฌ๋„ ํ•œ ํ‘ผ๋„ ๋ฐ›์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
16:37
No one gets paid a cent, or a euro or a yen.
362
997190
2567
๊ทธ๊ฒƒ์ด ์žฌ๋ฏธ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ•ฉ๋‹ˆ๋‹ค.
16:41
Do it because you like to do it.
363
1001256
1924
๋งŒ์•ฝ 10๋…„ ์ „์— ์•„๋ฌด ๊ฒฝ์ œํ•™์ž์—๊ฒŒ๋‚˜
16:43
Just 10 years ago,
364
1003204
1932
16:45
if you had gone to an economist, anywhere,
365
1005160
2249
๊ฐ€์„œ ๋ฌผ์–ด๋ณธ๋‹ค๋ฉด,
16:47
"Hey, I've got these two different models for creating an encyclopedia.
366
1007433
3575
"์—ฌ๊ธฐ ๋ฐฑ๊ณผ์‚ฌ์ ์€ ๋งŒ๋“œ๋Š” ๊ฒฝ์Ÿ์ ์ธ ๋‘ ํ”„๋กœ์ ํŠธ ๋ชจ๋ธ์ด ์žˆ๋Š”๋ฐ,
16:51
If they went head to head, who would win?"
367
1011032
2921
๋ˆ„๊ฐ€ ์ด๊ธธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๊นŒ?"
16:53
10 years ago you could not have found a single sober economist
368
1013977
3566
10๋…„ ์ „์ด๋ผ๋ฉด ์ œ ์ •์‹ ์ธ ์–ด๋Š ๊ฒฝ์ œํ•™์ž๋„ Wikipedia ๋ชจ๋ธ์ด
16:57
anywhere on planet Earth
369
1017567
2220
์ด๊ธธ ๊ฒƒ์ด๋ผ๊ณ 
16:59
who would have predicted the Wikipedia model.
370
1019811
2872
๋ƒ‰์ •ํ•˜๊ฒŒ ๋ง ํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
17:02
This is the titanic battle between these two approaches.
371
1022707
2699
์ด๊ฒƒ์€ ๋‘ ๊ด€์ ์˜ ๊ฑฐ๋Œ€ํ•œ ๋Œ€๊ฒฐ์ž…๋‹ˆ๋‹ค.
17:05
This is the Ali-Frazier of motivation, right?
372
1025430
3068
๋น„์œ ํ•˜์ž๋ฉด ๋™๊ธฐ ๋ถ€์—ฌ ๋ชจ๋ธ์˜ Ali - Frazier ๋ณต์‹ฑ ๊ฒฝ๊ธฐ ๊ฐ™์€ ๊ฒƒ์ด๊ฒ ์ฃ ?
17:08
This is the Thrilla in Manila.
373
1028522
1839
์„ธ๊ธฐ์˜ ๋Œ€๊ฒฐ์ž…๋‹ˆ๋‹ค.
17:10
Intrinsic motivators versus extrinsic motivators.
374
1030385
3169
๊ทธ๋ ‡์ง€ ์•Š์Šต๋‹ˆ๊นŒ? ๋‚ด์  ๋™๊ธฐ๋ถ€์—ฌ ๋Œ€ ์™ธ์  ๋™๊ธฐ๋ถ€์—ฌ ๋ชจ๋ธ.
17:13
Autonomy, mastery and purpose,
375
1033578
1558
์ฃผ๋„์„ฑ, ์ „๋ฌธ์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๋ชฉ์  ๋Œ€
17:15
versus carrot and sticks, and who wins?
376
1035160
2557
๋‹น๊ทผ๊ณผ ์ฑ„์ฐ์ด์ฃ . ๊ทธ๋ฆฌ๊ณ  ๋ˆ„๊ฐ€ ์ด๊ฒผ์Šต๋‹ˆ๊นŒ?
17:17
Intrinsic motivation, autonomy, mastery and purpose, in a knockout.
377
1037741
3530
๋‚ด์  ๋™๊ธฐ๋ถ€์—ฌ์ž…๋‹ˆ๋‹ค. ์ฃผ๋„์„ฑ, ์ „๋ฌธ์„ฑ ๊ทธ๋ฆฌ๊ณ  ๋ชฉ์ ์ž…๋‹ˆ๋‹ค.
์™„๋ฒฝํ•˜๊ฒŒ ์Šน๋ฆฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด์ œ ์ •๋ฆฌ ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
17:21
Let me wrap up.
378
1041295
1000
17:24
There is a mismatch between what science knows and what business does.
379
1044683
3303
์‚ฌํšŒ๊ณผํ•™์ด ๋ฐํ˜€๋‚ธ ์‚ฌ์‹ค์€ ๋น„์ง€๋‹ˆ์Šค์—์„œ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ๊ณผ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค.
์‚ฌํšŒ๊ณผํ•™์ด ๋ฐํ˜€๋‚ธ ์‚ฌ์‹ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
17:28
Here is what science knows.
380
1048010
1587
17:29
One: Those 20th century rewards,
381
1049621
1683
ํ•˜๋‚˜ : ๋น„์ง€๋‹ˆ์Šค์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ถ€๋ถ„์œผ๋กœ ์—ฌ๊ฒจ์กŒ๋˜
17:31
those motivators we think are a natural part of business,
382
1051328
2980
20์„ธ๊ธฐ ์‹์˜ ๋ณด์ƒ์„ ํ†ตํ•œ ๋™๊ธฐ ๋ถ€์—ฌ ๋ฐฉ์‹์€
17:34
do work, but only in a surprisingly narrow band of circumstances.
383
1054332
3701
์•„์ฃผ, ๊ต‰์žฅํžˆ, ์ข์€ ๋ฒ”์œ„์—์„œ๋งŒ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค.
17:38
Two: Those if-then rewards often destroy creativity.
384
1058057
4793
๋‘˜ : ์ด๋Ÿฌํ•œ if-then ๋ณด์ƒ์€ ์ฐฝ์˜์„ฑ์„ ํŒŒ๊ดดํ•œ๋‹ค.
17:42
Three: The secret to high performance isn't rewards and punishments,
385
1062874
3800
์…‹ : ๋†’์€ ์„ฑ๊ณผ์˜ ๋น„๋ฐ€์€
๋ณด์ƒ๊ณผ ์ฒ˜๋ฒŒ์— ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ,
17:46
but that unseen intrinsic drive--
386
1066698
1610
๋‚ด์žฌ์ ์ธ ์š•๊ตฌ์— ๊ธฐ์ธํ•œ๋‹ค.
17:48
the drive to do things for their own sake.
387
1068332
2804
์ž์‹ ์˜ ๊ฒƒ์„ ํ•˜๊ณ  ์‹ถ์–ดํ•˜๋Š” ์š•๋ง,
17:51
The drive to do things cause they matter.
388
1071160
1976
์ž์‹ ์—๊ฒŒ ์ค‘์š”ํ•œ ๊ฒƒ์„ ํ•˜๊ณ  ์‹ถ์–ด ํ•˜๋Š” ์š•๋ง,
17:53
And here's the best part.
389
1073160
1976
๊ทธ๋ฆฌ๊ณ  ์—ฌ๊ธฐ๊ฐ€ ๊ฐ€์žฅ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
17:55
We already know this.
390
1075160
1220
์šฐ๋ฆฌ๋Š” ์ด๋ฏธ ๊ทธ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ๋‹ค. ๊ณผํ•™์€ ์šฐ๋ฆฌ ๋งˆ์Œ ์†์— ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜๋Š” ๊ฒƒ ๋ฟ์ด๋‹ค.
17:56
The science confirms what we know in our hearts.
391
1076404
2550
17:58
So, if we repair this mismatch between science and business,
392
1078978
4830
๊ทธ๋Ÿฌ๋‹ˆ, ์ด์ œ ์šฐ๋ฆฌ๊ฐ€ ์‚ฌํšŒ๊ณผํ•™๊ณผ ๋น„์ง€๋‹ˆ์Šค๊ฐ€ ์•Œ๊ณ  ์žˆ๋Š”
๊ดด๋ฆฌ๋ฅผ ๊ณ ์ณ ๋‚˜๊ฐ„๋‹ค๋ฉด,
18:03
if we bring our motivation, notions of motivation
393
1083832
2933
์šฐ๋ฆฌ์˜ ๋™๊ธฐ ๋ถ€์—ฌ๋ผ๋Š” ๊ฐœ๋…์„
18:06
into the 21st century,
394
1086789
1727
21์„ธ๊ธฐ์— ํ™œ์šฉํ•œ๋‹ค๋ฉด,
18:08
if we get past this lazy, dangerous, ideology
395
1088540
4014
์ด ๊ฒŒ์œผ๋ฅด๊ณ , ์œ„ํ—˜ํ•˜๊ณ , ๊ด€๋…์ ์ธ
18:12
of carrots and sticks,
396
1092578
2032
์ฑ„์ฐ๊ณผ ๋‹น๊ทผ์„ ๋ฒ—์–ด๋‚œ๋‹ค๋ฉด,
18:14
we can strengthen our businesses,
397
1094634
2729
์šฐ๋ฆฌ์˜ ๋น„์ง€๋‹ˆ์Šค๋ฅผ ๋” ๊ฐ•๋ ฅํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ๊ณ ,
18:17
we can solve a lot of those candle problems,
398
1097387
2582
์ˆ˜ ๋งŽ์€ ์ด›๋ถˆ ๋ฌธ์ œ๋ฅผ ํ’€ ์ˆ˜ ์žˆ์œผ๋ฉฐ,
18:19
and maybe, maybe --
399
1099993
2732
๊ทธ๋ฆฌ๊ณ  ์•„๋งˆ, ์•„๋งˆ๋„, ํ˜น์‹œ๋ผ๋„,
18:24
we can change the world.
400
1104160
1753
์„ธ์ƒ์„ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
18:25
I rest my case.
401
1105937
1305
์ด์ƒ, ๋ณ€๋ก ์„ ๋งˆ์น˜๊ฒ ์Šต๋‹ˆ๋‹ค.
18:27
(Applause)
402
1107266
3000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7