The magic of Fibonacci numbers | Arthur Benjamin | TED

5,682,976 views ・ 2013-11-08

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Mile Živković Lektor: Miloš Milosavljević
00:12
So why do we learn mathematics?
0
12613
3039
Zašto učimo matematiku?
00:15
Essentially, for three reasons:
1
15652
2548
U suštini, iz tri razloga:
00:18
calculation,
2
18200
1628
računanje,
00:19
application,
3
19828
1900
primena
00:21
and last, and unfortunately least
4
21728
2687
i poslednje i nažalost najmanje bitno,
00:24
in terms of the time we give it,
5
24415
2105
što se tiče vremena koje mu posvećujemo,
00:26
inspiration.
6
26520
1922
nadahnuće.
00:28
Mathematics is the science of patterns,
7
28442
2272
Matematika je nauka o šablonima
00:30
and we study it to learn how to think logically,
8
30714
3358
i proučavamo je kako bismo saznali kako da mislimo logički,
00:34
critically and creatively,
9
34072
2527
kritički i kreativno,
00:36
but too much of the mathematics that we learn in school
10
36599
2926
ali previše matematike koju učimo u školama
00:39
is not effectively motivated,
11
39525
2319
nije valjano motivisano
00:41
and when our students ask,
12
41844
1425
i kada naši učenici pitaju:
00:43
"Why are we learning this?"
13
43269
1675
"Zašto učimo ovo?",
00:44
then they often hear that they'll need it
14
44944
1961
često čuju da će im to biti potrebno
00:46
in an upcoming math class or on a future test.
15
46905
3265
na nekom budućem testu ili času matematike.
00:50
But wouldn't it be great
16
50170
1802
Ali zar ne bi bilo sjajno
00:51
if every once in a while we did mathematics
17
51972
2518
kad bismo se, s vremena na vreme, bavili matematikom
00:54
simply because it was fun or beautiful
18
54490
2949
jednostavno jer je zabavna ili predivna
00:57
or because it excited the mind?
19
57439
2090
ili zato što je uzbudljiva za um?
00:59
Now, I know many people have not
20
59529
1722
Znam da dosta ljudi nije imalo
01:01
had the opportunity to see how this can happen,
21
61251
2319
priliku da vidi kako ovo može da se desi,
01:03
so let me give you a quick example
22
63570
1829
zato hajde da vam dam brz primer
01:05
with my favorite collection of numbers,
23
65399
2341
sa mojim omiljenim skupom brojeva,
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
Fibonačijevim brojevima. (Aplauz)
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
Da! Ovde već imam Fibonačijeve fanove.
01:12
That's great.
26
72520
1316
To je sjajno.
01:13
Now these numbers can be appreciated
27
73836
2116
Ove brojeve možete razumeti
01:15
in many different ways.
28
75952
1878
na mnogo različitih načina.
01:17
From the standpoint of calculation,
29
77830
2709
Sa stanovišta računanja,
01:20
they're as easy to understand
30
80539
1677
jednako ih je lako razumeti
01:22
as one plus one, which is two.
31
82216
2554
kao 1 + 1, što je 2.
01:24
Then one plus two is three,
32
84770
2003
1 + 2 je onda 3,
01:26
two plus three is five, three plus five is eight,
33
86773
3014
2 + 3 je 5, 3 + 5 je 8,
01:29
and so on.
34
89787
1525
i tako dalje.
01:31
Indeed, the person we call Fibonacci
35
91312
2177
Zaista, osoba koju nazivamo Fibonači
01:33
was actually named Leonardo of Pisa,
36
93489
3180
se zapravo zvala Leonardo od Pize
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
i ovi brojevi se pojavljuju u njegovoj knjizi "Liber Abaci",
01:39
which taught the Western world
38
99722
1650
koja je Zapadni svet naučila
01:41
the methods of arithmetic that we use today.
39
101372
2827
aritmetičkim metodama koje danas koristimo.
01:44
In terms of applications,
40
104199
1721
Što se tiče primene,
01:45
Fibonacci numbers appear in nature
41
105920
2183
Fibonačijevi brojevi se u prirodi
01:48
surprisingly often.
42
108103
1857
pojavljuju iznenađujuće često.
01:49
The number of petals on a flower
43
109960
1740
Broj latica na cvetu
01:51
is typically a Fibonacci number,
44
111700
1862
je tipično Fibonačijev broj,
01:53
or the number of spirals on a sunflower
45
113562
2770
ili broj spirala na suncokretu
01:56
or a pineapple
46
116332
1411
ili ananasu,
01:57
tends to be a Fibonacci number as well.
47
117743
2394
to su takođe uglavnom Fibonačijevi brojevi.
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
Zapravo postoji još dosta primena Fibonačijevih brojeva,
02:03
but what I find most inspirational about them
49
123640
2560
ali ono što je za mene najinspirativnije u vezi sa njima
02:06
are the beautiful number patterns they display.
50
126200
2734
su predivni šabloni brojeva koje oni prikazuju.
02:08
Let me show you one of my favorites.
51
128934
2194
Dozvolite da vam pokažem jedan od meni omiljenih.
02:11
Suppose you like to square numbers,
52
131128
2221
Recimo da volite da kvadrirate brojeve,
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
a iskreno, ko to ne voli? (Smeh)
02:16
Let's look at the squares
54
136040
2240
Hajde da pogledamo kvadrate
02:18
of the first few Fibonacci numbers.
55
138280
1851
prvih nekoliko Fibonačijevih brojeva.
02:20
So one squared is one,
56
140131
2030
1 na kvadrat je 1,
02:22
two squared is four, three squared is nine,
57
142161
2317
2 na kvadrat je 4. 3 na kvadrat je 9,
02:24
five squared is 25, and so on.
58
144478
3173
5 na kvadrat je 25, i tako dalje.
02:27
Now, it's no surprise
59
147651
1901
Ne iznenađuje činjenica
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
da kada dodate uzastopne Fibonačijeve brojeve,
02:32
you get the next Fibonacci number. Right?
61
152380
2032
dobijate sledeći Fibonačijev broj. Zar ne?
02:34
That's how they're created.
62
154412
1395
Tako oni nastaju.
02:35
But you wouldn't expect anything special
63
155807
1773
Ali ne biste očekivali da se desi ništa posebno
02:37
to happen when you add the squares together.
64
157580
3076
kada saberete kvadratne vrednosti.
02:40
But check this out.
65
160656
1346
Ali pogledajte ovo.
02:42
One plus one gives us two,
66
162002
2001
1 + 1 nam daje 2,
02:44
and one plus four gives us five.
67
164003
2762
i 1 + 4 daje 5.
02:46
And four plus nine is 13,
68
166765
2195
4 + 9 je 13,
02:48
nine plus 25 is 34,
69
168960
3213
9 + 25 je 34,
02:52
and yes, the pattern continues.
70
172173
2659
i da, šablon se nastavlja.
02:54
In fact, here's another one.
71
174832
1621
Zapravo, evo još jednog.
02:56
Suppose you wanted to look at
72
176453
1844
Recimo da želite da pogledate
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
sabiranje kvadratnih vrednosti prvih nekoliko Fibonačijevih brojeva.
03:00
Let's see what we get there.
74
180795
1608
Da vidimo šta tu dobijamo.
03:02
So one plus one plus four is six.
75
182403
2139
1 + 1 + 4 je 6.
03:04
Add nine to that, we get 15.
76
184542
3005
Tome dodajte 9, to je 15.
03:07
Add 25, we get 40.
77
187547
2213
Dodajte 25, to je 40.
03:09
Add 64, we get 104.
78
189760
2791
Dodajte 64 i to je 104.
03:12
Now look at those numbers.
79
192551
1652
Sada pogledajte te brojke.
03:14
Those are not Fibonacci numbers,
80
194203
2384
To nisu Fibonačijevi brojevi,
03:16
but if you look at them closely,
81
196587
1879
ali ako ih pogledate pažljivo,
03:18
you'll see the Fibonacci numbers
82
198466
1883
videćete Fibonačijeve brojeve
03:20
buried inside of them.
83
200349
2178
sakrivene unutar njih.
03:22
Do you see it? I'll show it to you.
84
202527
2070
Vidite li ih? Pokazaću vam.
03:24
Six is two times three, 15 is three times five,
85
204597
3733
6 je 2 puta 3, 15 je 3 puta 5,
03:28
40 is five times eight,
86
208330
2059
40 je 5 puta 8,
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
2, 3, 5, 8. Kome odajemo priznanje?
03:33
(Laughter)
88
213317
1187
(Smeh)
03:34
Fibonacci! Of course.
89
214504
2155
Fibonačiju! Naravno.
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
Koliko god da je zabavno otkrivati ove šablone,
03:40
it's even more satisfying to understand
91
220442
2482
još je veće zadovoljstvo razumeti
03:42
why they are true.
92
222924
1958
zašto su tačni.
03:44
Let's look at that last equation.
93
224882
1889
Hajde da pogledamo poslednju jednačinu.
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
Zašto bi kvadratne vrednosti brojeva 1, 1, 2, 3, 5 i 8
03:50
add up to eight times 13?
95
230639
2545
sabrane, dale 8 puta 13?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
Pokazaću vam uz pomoć jednostavnog crteža.
03:56
We'll start with a one-by-one square
97
236145
2687
Počećemo sa kvadratom dimenzija 1x1
03:58
and next to that put another one-by-one square.
98
238832
4165
i pored ćemo dodati još jedan kvadrat dimenzija 1x1.
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
Zajedno daju pravougaonik dimenzija 1x2.
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
Ispod toga, dodaću kvadrat dimenzija 2x2,
04:08
and next to that, a three-by-three square,
101
248954
2795
a pored toga, kvadrat dimenzija 3x3,
04:11
beneath that, a five-by-five square,
102
251749
2001
ispod toga, kvadrat dimenzija 5x5
04:13
and then an eight-by-eight square,
103
253750
1912
i onda kvadrat dimenzija 8x8,
04:15
creating one giant rectangle, right?
104
255662
2572
stvarajući jedan ogromni pravougaonik, zar ne?
04:18
Now let me ask you a simple question:
105
258234
1916
Dozvolite da vam postavim jednostavno pitanje:
04:20
what is the area of the rectangle?
106
260150
3656
koja je površina pravouganika?
04:23
Well, on the one hand,
107
263806
1971
Sa jedne strane,
04:25
it's the sum of the areas
108
265777
2530
to je zbir površina
04:28
of the squares inside it, right?
109
268307
1866
kvadrata unutar njega, zar ne?
04:30
Just as we created it.
110
270173
1359
Baš kao što smo ga napravili.
04:31
It's one squared plus one squared
111
271532
2172
To je 1 na kvadrat + 1 na kvadrat
04:33
plus two squared plus three squared
112
273704
2233
+ 2 na kvadrat + 3 na kvadrat
04:35
plus five squared plus eight squared. Right?
113
275937
2599
+ 5 na kvadrat + 8 na kvadrat. Zar ne?
04:38
That's the area.
114
278536
1857
To je površina.
04:40
On the other hand, because it's a rectangle,
115
280393
2326
Sa druge strane, zbog toga što je to pravougonik,
04:42
the area is equal to its height times its base,
116
282719
3648
površinu dobijemo kada pomnožimo visinu i osnovu,
04:46
and the height is clearly eight,
117
286367
2047
a visina je očigledno 8
04:48
and the base is five plus eight,
118
288414
2903
dok je osnova 5 + 8,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
što je sledeći Fibonačijev broj, 13. Zar ne?
04:55
So the area is also eight times 13.
120
295255
3363
Površina je takođe 8 puta 13.
04:58
Since we've correctly calculated the area
121
298618
2262
Pošto smo tačno izračunali površinu
05:00
two different ways,
122
300880
1687
na dva različita načina,
05:02
they have to be the same number,
123
302567
2172
to mora da bude isti broj
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
i zbog toga kvadradne vrednosti brojeva 1, 1, 2, 3, 5 i 8
05:08
add up to eight times 13.
125
308130
2291
sabrane daju 8 puta 13.
05:10
Now, if we continue this process,
126
310421
2374
Ako nastavimo ovaj proces
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
dobićemo pravouganike formata 13x21,
05:16
21 by 34, and so on.
128
316773
2394
21x34 i tako dalje.
05:19
Now check this out.
129
319167
1409
Pogledajte sada ovo.
05:20
If you divide 13 by eight,
130
320576
2193
Ako podelite 13 sa 8
05:22
you get 1.625.
131
322769
2043
dobijate 1,625.
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
A ako veći broj podelite manjim brojem,
05:28
then these ratios get closer and closer
133
328239
2873
ove srazmere se sve više približavaju
05:31
to about 1.618,
134
331112
2653
vrednosti oko 1,618,
05:33
known to many people as the Golden Ratio,
135
333765
3301
što je mnogima poznato kao Zlatni presek,
05:37
a number which has fascinated mathematicians,
136
337066
2596
broj koji vekovima fascinira
05:39
scientists and artists for centuries.
137
339662
3246
matematičare, naučnike i umetnike.
05:42
Now, I show all this to you because,
138
342908
2231
Ovo sve vam pokazujem zato što,
05:45
like so much of mathematics,
139
345139
2025
baš kao u dobrom delu matematike,
05:47
there's a beautiful side to it
140
347164
1967
postoji prelepa strana toga
05:49
that I fear does not get enough attention
141
349131
2015
za koju se bojim da ne dobija dovoljno pažnje
05:51
in our schools.
142
351146
1567
u našim školama.
05:52
We spend lots of time learning about calculation,
143
352713
2833
Puno vremena provodimo učeći o računanju,
05:55
but let's not forget about application,
144
355546
2756
ali ne zaboravimo na primenu,
05:58
including, perhaps, the most important application of all,
145
358302
3454
uključujući možda i najbitniju primenu od svih,
06:01
learning how to think.
146
361756
2076
učenje kako se misli.
06:03
If I could summarize this in one sentence,
147
363832
1957
Kada bih ovo mogao da sažmem u jednu rečenicu,
06:05
it would be this:
148
365789
1461
to bi bilo sledeće:
06:07
Mathematics is not just solving for x,
149
367250
3360
matematika ne znači samo pronaći vrednost x,
06:10
it's also figuring out why.
150
370610
2925
već takođe i otkriti zašto.
06:13
Thank you very much.
151
373535
1815
Hvala vam mnogo.
06:15
(Applause)
152
375350
4407
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7