The magic of Fibonacci numbers | Arthur Benjamin | TED

5,765,945 views ・ 2013-11-08

TED


Molimo dvaput kliknite na engleski titl ispod za reprodukciju videa.

Translator: Nejra Hodžić Reviewer: Ema Bilbija Zulic
00:12
So why do we learn mathematics?
0
12613
3039
Dakle, zašto učimo matematiku?
00:15
Essentially, for three reasons:
1
15652
2548
U suštini, iz tri razloga:
00:18
calculation,
2
18200
1628
računanje,
00:19
application,
3
19828
1900
primjena,
00:21
and last, and unfortunately least
4
21728
2687
i posljednji, nažalost najmanje važan
00:24
in terms of the time we give it,
5
24415
2105
u smislu vremena koji mu posvetimo,
00:26
inspiration.
6
26520
1922
je inspiracija.
00:28
Mathematics is the science of patterns,
7
28442
2272
Matematika je nauka o uzorcima
00:30
and we study it to learn how to think logically,
8
30714
3358
i proučavamo je s ciljem da naučimo kako razmišljati logički,
00:34
critically and creatively,
9
34072
2527
kritički i kreativno,
00:36
but too much of the mathematics that we learn in school
10
36599
2926
ali matematika koju učimo u školi
00:39
is not effectively motivated,
11
39525
2319
uglavnom neuspješno motiviše
00:41
and when our students ask,
12
41844
1425
i kada naši učenici pitaju:
00:43
"Why are we learning this?"
13
43269
1675
"Zašto ovo učimo?"
00:44
then they often hear that they'll need it
14
44944
1961
obično čuju da će im to zatrebati
00:46
in an upcoming math class or on a future test.
15
46905
3265
na narednom času matematike ili na budućem ispitu.
00:50
But wouldn't it be great
16
50170
1802
Međutim, zar ne bi bilo divno
00:51
if every once in a while we did mathematics
17
51972
2518
kad bismo se s vremena na vrijeme bavili matematikom
00:54
simply because it was fun or beautiful
18
54490
2949
jednostavno zato što je zabavna i lijepa
00:57
or because it excited the mind?
19
57439
2090
ili možda zato što je uspjela uzbuditi um?
00:59
Now, I know many people have not
20
59529
1722
Znam da mnogi nisu
01:01
had the opportunity to see how this can happen,
21
61251
2319
uspjeli doživjeti to o čemu pričam,
01:03
so let me give you a quick example
22
63570
1829
pa zato dopustite da vam dam jednostavan primjer
01:05
with my favorite collection of numbers,
23
65399
2341
koristeći moju omiljenu kolekciju brojeva,
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
Fibonačijeve brojeve. (Aplauz)
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
Tako je! Vidim da ovdje imamo Fibonačijeve obožavatelje.
01:12
That's great.
26
72520
1316
To je divno.
01:13
Now these numbers can be appreciated
27
73836
2116
Značaj ovih brojeva se ogleda
01:15
in many different ways.
28
75952
1878
na više načina.
01:17
From the standpoint of calculation,
29
77830
2709
Sa stanovišta računanja,
01:20
they're as easy to understand
30
80539
1677
jednostavno ih je razumjeti
01:22
as one plus one, which is two.
31
82216
2554
kao što je i to da je jedan i jedan jednako dva.
01:24
Then one plus two is three,
32
84770
2003
Zatim, jedan i dva je tri,
01:26
two plus three is five, three plus five is eight,
33
86773
3014
dva i tri je pet, tri i pet je osam,
01:29
and so on.
34
89787
1525
i tako dalje.
01:31
Indeed, the person we call Fibonacci
35
91312
2177
Zaista, osoba koju zovemo Fibonači
01:33
was actually named Leonardo of Pisa,
36
93489
3180
se ustvari zvala Leonardo od Pise,
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
a ovi brojevi se spominju u njegovoj knjizi "Liber Abaci" ("Knjiga računanja"),
01:39
which taught the Western world
38
99722
1650
koja je naučila zapadni svijet
01:41
the methods of arithmetic that we use today.
39
101372
2827
metodama aritmetike koje koristimo danas.
01:44
In terms of applications,
40
104199
1721
U smislu primjene,
01:45
Fibonacci numbers appear in nature
41
105920
2183
Fibonačijevi brojevi se pojavljuju u prirodi
01:48
surprisingly often.
42
108103
1857
iznenađujuće često.
01:49
The number of petals on a flower
43
109960
1740
Broj latica na cvijetu
01:51
is typically a Fibonacci number,
44
111700
1862
je obično Fibonačijev broj,
01:53
or the number of spirals on a sunflower
45
113562
2770
ili broj spirala na suncokretu
01:56
or a pineapple
46
116332
1411
ili ananasu
01:57
tends to be a Fibonacci number as well.
47
117743
2394
također teži da bude Fibonačijev broj.
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
Ustvari, postoje mnoge druge primjene Fibonačijevih brojeva,
02:03
but what I find most inspirational about them
49
123640
2560
ali ono sto smatram najinspirativnijim
02:06
are the beautiful number patterns they display.
50
126200
2734
su divni šabloni brojeva koje predstavljaju.
02:08
Let me show you one of my favorites.
51
128934
2194
Sad ću vam pokazati jedan od mojih omiljenih.
02:11
Suppose you like to square numbers,
52
131128
2221
Pretpostavimo da volite kvadrirati brojeve,
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
a realno, ko ne voli? (Smijeh)
02:16
Let's look at the squares
54
136040
2240
Pogledajmo kvadrate
02:18
of the first few Fibonacci numbers.
55
138280
1851
prvih nekoliko Fibonačijevih brojeva.
02:20
So one squared is one,
56
140131
2030
Dakle, kvadrat broja jedan je jedan,
02:22
two squared is four, three squared is nine,
57
142161
2317
kvadrat broja dva je četiri, tri na kvadrat je devet,
02:24
five squared is 25, and so on.
58
144478
3173
pet na kvadrat je 25, itd.
02:27
Now, it's no surprise
59
147651
1901
Nije nikakvo iznenađenje
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
da sabiranjem dva uzastopna Fibonačijeva broja,
02:32
you get the next Fibonacci number. Right?
61
152380
2032
dobijemo sljedeći Fibonačijev broj, je li tako?
02:34
That's how they're created.
62
154412
1395
Tako se oni i kreiraju.
02:35
But you wouldn't expect anything special
63
155807
1773
Međutim, ne biste očekivali nista posebno
02:37
to happen when you add the squares together.
64
157580
3076
da se dogodi u slučaju sabiranja njihovih kvadrata.
02:40
But check this out.
65
160656
1346
Ali, pogledajte ovo.
02:42
One plus one gives us two,
66
162002
2001
Jedan i jedan je dva,
02:44
and one plus four gives us five.
67
164003
2762
a jedan i četiri je pet.
02:46
And four plus nine is 13,
68
166765
2195
Četiri i devet je 13,
02:48
nine plus 25 is 34,
69
168960
3213
devet i 25 je 34,
02:52
and yes, the pattern continues.
70
172173
2659
i da, šablon se nastavlja.
02:54
In fact, here's another one.
71
174832
1621
Ustvari, evo jos jednog.
02:56
Suppose you wanted to look at
72
176453
1844
Pretpostavimo da ste htjeli pokušati
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
sabrati kvadrate prvih nekoliko Fibonačijevih brojeva.
03:00
Let's see what we get there.
74
180795
1608
Pogledajmo šta smo dobili ovdje.
03:02
So one plus one plus four is six.
75
182403
2139
Dakle, jedan plus jedan plus četiri je šest.
03:04
Add nine to that, we get 15.
76
184542
3005
Ako dodamo devet na to, dobit ćemo 15.
03:07
Add 25, we get 40.
77
187547
2213
Dodavanjem 25, dobijamo 40.
03:09
Add 64, we get 104.
78
189760
2791
Dodavanjem 64, dobijamo 104.
03:12
Now look at those numbers.
79
192551
1652
Sada pogledajte ove brojeve.
03:14
Those are not Fibonacci numbers,
80
194203
2384
Ovo nisu Fibonačijevi brojevi,
03:16
but if you look at them closely,
81
196587
1879
ali ako ih bolje pogledate,
03:18
you'll see the Fibonacci numbers
82
198466
1883
vidjet ćete Fibonačijeve brojeve
03:20
buried inside of them.
83
200349
2178
unutar ovih brojeva.
03:22
Do you see it? I'll show it to you.
84
202527
2070
Vidite li? Pokazat ću vam.
03:24
Six is two times three, 15 is three times five,
85
204597
3733
Šest je dva pomnoženo sa tri, 15 je tri pomnoženo sa pet,
03:28
40 is five times eight,
86
208330
2059
40 je pet pomnoženo sa osam,
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
dva, tri, pet, osam, pogodi ko sam?
03:33
(Laughter)
88
213317
1187
(Smijeh)
03:34
Fibonacci! Of course.
89
214504
2155
Fibonači, naravno!
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
Koliko god da je zabavno otkriti ove šablone,
03:40
it's even more satisfying to understand
91
220442
2482
još je bolje shvatiti
03:42
why they are true.
92
222924
1958
zašto oni postoje.
03:44
Let's look at that last equation.
93
224882
1889
Pogledajmo posljednju jednačinu.
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
Zašto bi zbir kvadrata od jedan, jedan, dva, tri, pet i osam
03:50
add up to eight times 13?
95
230639
2545
bio jednak rezultatu proizvoda brojeva osam i 13?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
Pokazat ću vam pomoću jednostavne slike.
03:56
We'll start with a one-by-one square
97
236145
2687
Počet ćemo sa kvadratom "jedan sa jedan"
03:58
and next to that put another one-by-one square.
98
238832
4165
i pored njega ćemo staviti isti takav kvadrat.
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
Zajedno, oni formiraju "jedan sa dva" pravougaonik.
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
Ispod njega, stavit ću "dva sa dva",
04:08
and next to that, a three-by-three square,
101
248954
2795
pored njega "tri sa tri" kvadrat,
04:11
beneath that, a five-by-five square,
102
251749
2001
ispod kvadrat "pet sa pet" ,
04:13
and then an eight-by-eight square,
103
253750
1912
a zatim "osam sa osam",
04:15
creating one giant rectangle, right?
104
255662
2572
kreirajući jedan veliki pravougaonik, zar ne?
04:18
Now let me ask you a simple question:
105
258234
1916
Sada dopustite da vam postavim jednostavno pitanje:
04:20
what is the area of the rectangle?
106
260150
3656
šta predstavlja površinu ovog pravougaonika?
04:23
Well, on the one hand,
107
263806
1971
Pa, s jedne strane,
04:25
it's the sum of the areas
108
265777
2530
to je zbir površina
04:28
of the squares inside it, right?
109
268307
1866
sadržanih kvadrata, je li tako?
04:30
Just as we created it.
110
270173
1359
Baš kao što smo ih i kreirali.
04:31
It's one squared plus one squared
111
271532
2172
To je jedan na kvadrat plus jedan na kvadrat,
04:33
plus two squared plus three squared
112
273704
2233
sabrano sa kvadratom od dva i tri
04:35
plus five squared plus eight squared. Right?
113
275937
2599
te kvadratom od pet i osam. Jesam li u pravu?
04:38
That's the area.
114
278536
1857
To je tražena površina.
04:40
On the other hand, because it's a rectangle,
115
280393
2326
S druge strane, s obzirom na to da se radi o pravougaoniku,
04:42
the area is equal to its height times its base,
116
282719
3648
površina je jednaka proizvodu dužine i širine,
04:46
and the height is clearly eight,
117
286367
2047
širina je očito jednaka osam,
04:48
and the base is five plus eight,
118
288414
2903
dok je dužina jednaka zbiru pet i osam,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
koji predstavlja sljedeći Fibonačijev broj, 13. Je li tako?
04:55
So the area is also eight times 13.
120
295255
3363
Dakle, površina je jednaka i proizvodu 8 i 13.
04:58
Since we've correctly calculated the area
121
298618
2262
Pošto smo tačno izračunali površinu
05:00
two different ways,
122
300880
1687
na dva različita načina,
05:02
they have to be the same number,
123
302567
2172
ona mora biti jednaka,
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
i zato je zbir kvadrata od jedan, jedan, dva, tri, pet i osam
05:08
add up to eight times 13.
125
308130
2291
jednak proizvodu 8 i 13.
05:10
Now, if we continue this process,
126
310421
2374
Ukoliko nastavimo sa ovim postupkom,
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
kreira ćemo pravougaonike dimenzija 13 sa 21,
05:16
21 by 34, and so on.
128
316773
2394
21 sa 34, itd.
05:19
Now check this out.
129
319167
1409
Pogledajte sada ovo.
05:20
If you divide 13 by eight,
130
320576
2193
Ako podijelimo 13 sa osam,
05:22
you get 1.625.
131
322769
2043
dobijemo 1,625.
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
Međutim, što veći broj dijelimo sa manjim brojem
05:28
then these ratios get closer and closer
133
328239
2873
ovaj se odnos sve više približava
05:31
to about 1.618,
134
331112
2653
do otprilike 1,618,
05:33
known to many people as the Golden Ratio,
135
333765
3301
poznatog mnogima kao "zlatni rez",
05:37
a number which has fascinated mathematicians,
136
337066
2596
broja koji fascinira matematičare,
05:39
scientists and artists for centuries.
137
339662
3246
naučnike i umjetnike već stoljećima.
05:42
Now, I show all this to you because,
138
342908
2231
Pokazao sam vam sve ovo,
05:45
like so much of mathematics,
139
345139
2025
jer pored sve te matematike
05:47
there's a beautiful side to it
140
347164
1967
postoji i lijepa strana
05:49
that I fear does not get enough attention
141
349131
2015
kojoj se ne pridaje mnogo pažnje
05:51
in our schools.
142
351146
1567
u našim školama.
05:52
We spend lots of time learning about calculation,
143
352713
2833
Provodimo mnogo vremena baveći se računanjima,
05:55
but let's not forget about application,
144
355546
2756
ali ne treba zaboraviti njihovu primjenu,
05:58
including, perhaps, the most important application of all,
145
358302
3454
uključujući najvažniju od svih,
06:01
learning how to think.
146
361756
2076
a to je da nas uče kako da razmišljamo.
06:03
If I could summarize this in one sentence,
147
363832
1957
Ako bih trebao sumirati sve navedeno u jednoj rečenici,
06:05
it would be this:
148
365789
1461
to bi bila ova:
06:07
Mathematics is not just solving for x,
149
367250
3360
Matematika nije samo rješavanje nepoznate x,
06:10
it's also figuring out why.
150
370610
2925
nego i shvatanje njene svrhe.
06:13
Thank you very much.
151
373535
1815
Hvala vam.
06:15
(Applause)
152
375350
4407
(Aplauz)
O ovoj web stranici

Ova stranica će vas upoznati sa YouTube video zapisima koji su korisni za učenje engleskog jezika. Vidjet ćete časove engleskog jezika koje drže vrhunski nastavnici iz cijelog svijeta. Dvaput kliknite na titlove na engleskom koji su prikazani na svakoj stranici s videozapisom da odatle reprodukujete videozapis. Titlovi se pomeraju sinhronizovano sa video reprodukcijom. Ako imate bilo kakvih komentara ili zahtjeva, kontaktirajte nas putem ove kontakt forme.

https://forms.gle/WvT1wiN1qDtmnspy7