The magic of Fibonacci numbers | Arthur Benjamin | TED

5,765,945 views ・ 2013-11-08

TED


請雙擊下方英文字幕播放視頻。

譯者: Yukun Chen 審譯者: 宇凡 布
00:12
So why do we learn mathematics?
0
12613
3039
我們為什麼要學數學?
00:15
Essentially, for three reasons:
1
15652
2548
主要有三個原因:
00:18
calculation,
2
18200
1628
計算
00:19
application,
3
19828
1900
應用
00:21
and last, and unfortunately least
4
21728
2687
最後,不幸地,也是最不重要的,
00:24
in terms of the time we give it,
5
24415
2105
就我們所給予它的時間來看,
00:26
inspiration.
6
26520
1922
靈感。
00:28
Mathematics is the science of patterns,
7
28442
2272
數學是规律的科學,
00:30
and we study it to learn how to think logically,
8
30714
3358
而我們學習數學是為了學習怎樣邏輯地,
00:34
critically and creatively,
9
34072
2527
批評地和有創造性地思考,
00:36
but too much of the mathematics that we learn in school
10
36599
2926
但是,太多我們在學校學的數學
00:39
is not effectively motivated,
11
39525
2319
並沒有效地激勵學生思考
00:41
and when our students ask,
12
41844
1425
所以當學生問我們,
00:43
"Why are we learning this?"
13
43269
1675
“我們為什麼要學這個?”
00:44
then they often hear that they'll need it
14
44944
1961
他們會聽到(我們說)因為下一節是數學課
00:46
in an upcoming math class or on a future test.
15
46905
3265
或者將來會有考試,他們需要這個。
00:50
But wouldn't it be great
16
50170
1802
可是,如果
00:51
if every once in a while we did mathematics
17
51972
2518
偶爾我們學數學
00:54
simply because it was fun or beautiful
18
54490
2949
僅僅是因為數學很有趣或迷人,
00:57
or because it excited the mind?
19
57439
2090
或者因為它激發思想,不是很好嗎?
00:59
Now, I know many people have not
20
59529
1722
我知道很多人都還沒有
01:01
had the opportunity to see how this can happen,
21
61251
2319
機會去看到數學如何可以有趣,
01:03
so let me give you a quick example
22
63570
1829
所以讓我用我最喜歡的一組數字,
01:05
with my favorite collection of numbers,
23
65399
2341
來給你舉個小小的例子,
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
費波那西數。(鼓掌)
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
哇,這裡已經有費波那西數的愛好者了。
01:12
That's great.
26
72520
1316
不錯。
01:13
Now these numbers can be appreciated
27
73836
2116
(我們可以)從很多個方面來
01:15
in many different ways.
28
75952
1878
欣賞這組數字。
01:17
From the standpoint of calculation,
29
77830
2709
從計算上來看,
01:20
they're as easy to understand
30
80539
1677
它們非常易懂
01:22
as one plus one, which is two.
31
82216
2554
比如,1加1,是2.
01:24
Then one plus two is three,
32
84770
2003
1加2是3,
01:26
two plus three is five, three plus five is eight,
33
86773
3014
2加3是5,3加5是8,
01:29
and so on.
34
89787
1525
等等。
01:31
Indeed, the person we call Fibonacci
35
91312
2177
事實上,我們稱做“費波那西”的這個人
01:33
was actually named Leonardo of Pisa,
36
93489
3180
是比薩的莱昂纳多,
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
而這些數字是在他的“計算之書”中描述的,
01:39
which taught the Western world
38
99722
1650
這本書教授了西方世界
01:41
the methods of arithmetic that we use today.
39
101372
2827
我們今天所使用的算術方法。
01:44
In terms of applications,
40
104199
1721
從應用上來看,
01:45
Fibonacci numbers appear in nature
41
105920
2183
費波那西數讓人驚訝地
01:48
surprisingly often.
42
108103
1857
頻繁出現在自然界裡。
01:49
The number of petals on a flower
43
109960
1740
花瓣的數目
01:51
is typically a Fibonacci number,
44
111700
1862
通常是一個費波那西數字,
01:53
or the number of spirals on a sunflower
45
113562
2770
或向日葵上、鳳梨上的螺旋數
01:56
or a pineapple
46
116332
1411
01:57
tends to be a Fibonacci number as well.
47
117743
2394
往往也是費波那西數字。
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
事實上,費波那西數有更多的應用,
02:03
but what I find most inspirational about them
49
123640
2560
但我發現最鼓舞人心的
02:06
are the beautiful number patterns they display.
50
126200
2734
是它們所顯示的漂亮的數字规律。
02:08
Let me show you one of my favorites.
51
128934
2194
讓我給你看看我的最愛之一。
02:11
Suppose you like to square numbers,
52
131128
2221
假設你喜歡平方數,
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
坦率地說,誰不喜歡?(笑聲)
02:16
Let's look at the squares
54
136040
2240
讓我們看看頭幾個
02:18
of the first few Fibonacci numbers.
55
138280
1851
費波那西數的平方。
02:20
So one squared is one,
56
140131
2030
1的平方是1,
02:22
two squared is four, three squared is nine,
57
142161
2317
2 的平方是4,3的平方是9,
02:24
five squared is 25, and so on.
58
144478
3173
5 的平方是 25,依此類推。
02:27
Now, it's no surprise
59
147651
1901
可想而知,
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
當你把相鄰的两個費波那西數加起來時,
02:32
you get the next Fibonacci number. Right?
61
152380
2032
會得到下一個費波那西數。對吧?
02:34
That's how they're created.
62
154412
1395
這就是它們如何被定義的。
02:35
But you wouldn't expect anything special
63
155807
1773
但你大概不會料到
02:37
to happen when you add the squares together.
64
157580
3076
當你把這些數的平方加起來, 會有什麼特別的結果。
02:40
But check this out.
65
160656
1346
看這個,
02:42
One plus one gives us two,
66
162002
2001
1加1是2,
02:44
and one plus four gives us five.
67
164003
2762
然後,1加4是5。
02:46
And four plus nine is 13,
68
166765
2195
4加9是13,
02:48
nine plus 25 is 34,
69
168960
3213
9 加 25 是 34,
02:52
and yes, the pattern continues.
70
172173
2659
是的,這個規律一直繼續下去。
02:54
In fact, here's another one.
71
174832
1621
事實上,還有另外一個。
02:56
Suppose you wanted to look at
72
176453
1844
假設你想要看看
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
把頭幾個費波那西數的平方值加起來。
03:00
Let's see what we get there.
74
180795
1608
讓我們看看會有什麼結果。
03:02
So one plus one plus four is six.
75
182403
2139
1加1加4等於6。
03:04
Add nine to that, we get 15.
76
184542
3005
再加9,我們得到15。
03:07
Add 25, we get 40.
77
187547
2213
再加 25,我們得到 40。
03:09
Add 64, we get 104.
78
189760
2791
再加 64,我們得到104。
03:12
Now look at those numbers.
79
192551
1652
現在來看看這些數字。
03:14
Those are not Fibonacci numbers,
80
194203
2384
那些不是費波那西數,
03:16
but if you look at them closely,
81
196587
1879
但如果你仔細再看這些數字,
03:18
you'll see the Fibonacci numbers
82
198466
1883
你會看到費波那西數
03:20
buried inside of them.
83
200349
2178
藏在它們裡面。
03:22
Do you see it? I'll show it to you.
84
202527
2070
你看到了嗎?讓我指出來給你。
03:24
Six is two times three, 15 is three times five,
85
204597
3733
6是2乘3、 15 是3乘5、
03:28
40 is five times eight,
86
208330
2059
40 是5乘8、
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
2、3、 5、 8,我們在欣賞什麼?
03:33
(Laughter)
88
213317
1187
(笑聲)
03:34
Fibonacci! Of course.
89
214504
2155
當然是費波那西數!
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
正如找出這些規律是很好玩的,
03:40
it's even more satisfying to understand
91
220442
2482
更令人滿意的是瞭解
03:42
why they are true.
92
222924
1958
為什麼它們是這樣的。
03:44
Let's look at that last equation.
93
224882
1889
讓我們看看這最後的等式。
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
為什麼1,1,2,3,5和8的平方
03:50
add up to eight times 13?
95
230639
2545
加起來等於8乘以13?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
我畫一張簡單的圖來解釋給你。
03:56
We'll start with a one-by-one square
97
236145
2687
我們先由一個1x1的正方形開始
03:58
and next to that put another one-by-one square.
98
238832
4165
在旁邊再放一個1x1的正方形。
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
它們一起,構成一個1x2的矩形。
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
接著,再放一個2x2的正方形,
04:08
and next to that, a three-by-three square,
101
248954
2795
旁邊再來一個3x3的正方形,
04:11
beneath that, a five-by-five square,
102
251749
2001
在下方,放一個5x5的正方形,
04:13
and then an eight-by-eight square,
103
253750
1912
然後旁邊一個8x8的正方形,
04:15
creating one giant rectangle, right?
104
255662
2572
得到一個巨大的矩形,對嗎?
04:18
Now let me ask you a simple question:
105
258234
1916
現在讓我問你一個簡單的問題:
04:20
what is the area of the rectangle?
106
260150
3656
這個矩形的面積是多少?
04:23
Well, on the one hand,
107
263806
1971
好吧,一方面,
04:25
it's the sum of the areas
108
265777
2530
它是所有這些所包含的
04:28
of the squares inside it, right?
109
268307
1866
正方形面積的總和,是吧?
04:30
Just as we created it.
110
270173
1359
正如我們如何創造了它,
04:31
It's one squared plus one squared
111
271532
2172
它是1的平方加1的平方
04:33
plus two squared plus three squared
112
273704
2233
加2的平方再加3的平方
04:35
plus five squared plus eight squared. Right?
113
275937
2599
加 5 的平方再加8的平方。對吧?
04:38
That's the area.
114
278536
1857
這就是總面積。
04:40
On the other hand, because it's a rectangle,
115
280393
2326
另一方面,因為它是個矩形
04:42
the area is equal to its height times its base,
116
282719
3648
面積等於高乘以底,
04:46
and the height is clearly eight,
117
286367
2047
高顯然是8,
04:48
and the base is five plus eight,
118
288414
2903
而底是5加8,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
這就是下一個費波那西數,13。對吧?
04:55
So the area is also eight times 13.
120
295255
3363
所以面積也是8乘以13。
04:58
Since we've correctly calculated the area
121
298618
2262
既然我們已經用兩種不同的方法,
05:00
two different ways,
122
300880
1687
正確地計算出了這個面積
05:02
they have to be the same number,
123
302567
2172
它們必然是相同的數字,
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
這就是為什麼1,1,2,3,5和8的平方
05:08
add up to eight times 13.
125
308130
2291
加起來正好是8乘以13。
05:10
Now, if we continue this process,
126
310421
2374
現在,如果我們繼續這一過程,
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
我們會生成13x21 的矩形,
05:16
21 by 34, and so on.
128
316773
2394
21x34 的矩形等等。
05:19
Now check this out.
129
319167
1409
再來看這個。
05:20
If you divide 13 by eight,
130
320576
2193
如果你用 13除以8,
05:22
you get 1.625.
131
322769
2043
你得到 1.625。
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
如果你用較大的數除以較小的數,
05:28
then these ratios get closer and closer
133
328239
2873
會發現這些比率越來越接近
05:31
to about 1.618,
134
331112
2653
1.618,
05:33
known to many people as the Golden Ratio,
135
333765
3301
眾所周知的黃金比率,
05:37
a number which has fascinated mathematicians,
136
337066
2596
一個讓數學家,科學家和藝術家
05:39
scientists and artists for centuries.
137
339662
3246
著迷幾個世紀的數字。
05:42
Now, I show all this to you because,
138
342908
2231
我給你看這些,是因為
05:45
like so much of mathematics,
139
345139
2025
像很多數學,
05:47
there's a beautiful side to it
140
347164
1967
都有它美麗的一面
05:49
that I fear does not get enough attention
141
349131
2015
而我覺得(這些美麗)沒有在我們的學校
05:51
in our schools.
142
351146
1567
得到足夠的重視。
05:52
We spend lots of time learning about calculation,
143
352713
2833
我們花費大量的時間來學習如何計算,
05:55
but let's not forget about application,
144
355546
2756
但別忘了要應用,
05:58
including, perhaps, the most important application of all,
145
358302
3454
或許,包括,最重要的應用,
06:01
learning how to think.
146
361756
2076
學習如何去思考。
06:03
If I could summarize this in one sentence,
147
363832
1957
如果要用一句話來總結,
06:05
it would be this:
148
365789
1461
那就是:
06:07
Mathematics is not just solving for x,
149
367250
3360
數學不只是解出x,
06:10
it's also figuring out why.
150
370610
2925
也要知道為什麼。
06:13
Thank you very much.
151
373535
1815
謝謝。
06:15
(Applause)
152
375350
4407
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7