The magic of Fibonacci numbers | Arthur Benjamin | TED

5,765,945 views ใƒป 2013-11-08

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Kwangmin Lee ๊ฒ€ํ† : Tae Young Choi
00:12
So why do we learn mathematics?
0
12613
3039
์šฐ๋ฆฌ๊ฐ€ ์ˆ˜ํ•™์„ ๋ฐฐ์šฐ๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ผ๊นŒ์š”?
00:15
Essentially, for three reasons:
1
15652
2548
๊ธฐ๋ณธ์ ์œผ๋กœ ์„ธ๊ฐ€์ง€ ์ด์œ ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค:
00:18
calculation,
2
18200
1628
๊ณ„์‚ฐ,
00:19
application,
3
19828
1900
์‘์šฉ,
00:21
and last, and unfortunately least
4
21728
2687
๋งˆ์ง€๋ง‰์œผ๋กœ, ํ˜„์žฌ๋กœ์„œ๋Š” ์œ ๊ฐ์Šค๋Ÿฝ๊ฒŒ๋„
00:24
in terms of the time we give it,
5
24415
2105
๊ฐ€์žฅ ๋น„์ค‘์ด ๋‚ฎ์€
00:26
inspiration.
6
26520
1922
์˜๊ฐ์ž…๋‹ˆ๋‹ค.
00:28
Mathematics is the science of patterns,
7
28442
2272
์ˆ˜ํ•™์€ ๊ทœ์น™์˜ ํ•™๋ฌธ์ž…๋‹ˆ๋‹ค.
00:30
and we study it to learn how to think logically,
8
30714
3358
์ด๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ์ด์œ ๋Š” ๋…ผ๋ฆฌ์ ์ด๊ณ  ์ •ํ™•ํ•˜๋ฉฐ ์ฐฝ์˜์ ์œผ๋กœ
00:34
critically and creatively,
9
34072
2527
์ƒ๊ฐํ•˜๋Š” ํž˜์„ ๊ธฐ๋ฅด๊ธฐ ์œ„ํ•ด์„œ์ธ๋ฐ
00:36
but too much of the mathematics that we learn in school
10
36599
2926
ํ•™๊ต์—์„œ ๋ฐฐ์šฐ๋Š” ์ˆ˜ํ•™์€
00:39
is not effectively motivated,
11
39525
2319
๋™๊ธฐ ๋ถ€์—ฌ์— ์•ฝํ•˜๊ธฐ ๋•Œ๋ฌธ์—
00:41
and when our students ask,
12
41844
1425
ํ•™์ƒ๋“ค์ด "์šฐ๋ฆฌ๊ฐ€ ์™œ ์ด๊ฑธ ๋ฐฐ์›Œ์•ผ ํ•ด?"
00:43
"Why are we learning this?"
13
43269
1675
๋ผ๊ณ  ๋ฌผ์œผ๋ฉด,
00:44
then they often hear that they'll need it
14
44944
1961
๊ทธ๋“ค์ด ๋“ฃ๋Š” ๋‹ต์€ ๋‹ค์Œ ์ˆ˜ํ•™ ์‹œ๊ฐ„์ด๋‚˜
00:46
in an upcoming math class or on a future test.
15
46905
3265
์‹œํ—˜์— ๋‚˜์˜ค๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๋Š” ๊ฒŒ ์ „๋ถ€์ž…๋‹ˆ๋‹ค.
00:50
But wouldn't it be great
16
50170
1802
๊ทธ๋Ÿฌ๋‚˜ ๋•Œ๋•Œ๋กœ ์ˆ˜ํ•™์„ ๊ทธ์ €
00:51
if every once in a while we did mathematics
17
51972
2518
์žฌ๋ฏธ์žˆ๊ฑฐ๋‚˜ ๊ฒฝ์ด๋กœ์›Œ์„œ
00:54
simply because it was fun or beautiful
18
54490
2949
์•„๋‹ˆ๋ฉด ํฅ๋ฏธ๋ฅผ ์œ ๋ฐœํ•ด์„œ ๋ฐฐ์šฐ๊ฒŒ ๋œ๋‹ค๋ฉด
00:57
or because it excited the mind?
19
57439
2090
๊ต‰์žฅํ•˜์ง€ ์•Š์„๊นŒ์š”?
00:59
Now, I know many people have not
20
59529
1722
์ž, ์ €๋Š” ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ
01:01
had the opportunity to see how this can happen,
21
61251
2319
์ด๋Ÿฐ ์ผ์ด ์ผ์–ด๋‚œ ์ ์ด ์—†์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ์ž˜ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
01:03
so let me give you a quick example
22
63570
1829
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ๊ฐ€์žฅ ์ข‹์•„ํ•˜๋Š” ์ˆ˜ ๋ฐฐ์—ด์ธ
01:05
with my favorite collection of numbers,
23
65399
2341
ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด๋กœ
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
์˜ˆ๋ฅผ ๋“ค์–ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. (๋ฐ•์ˆ˜)
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
์ด๋ฏธ ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์— ๋Œ€ํ•ด ์•„์‹œ๋Š” ๋ถ„๋“ค์ด ๋งŽ๊ตฐ์š”!
01:12
That's great.
26
72520
1316
์ข‹์Šต๋‹ˆ๋‹ค.
01:13
Now these numbers can be appreciated
27
73836
2116
์ž, ์ด ์ˆ˜์˜ ๋ฐฐ์—ด์€ ๋‹ค์–‘ํ•œ ์ด์œ ๋กœ
01:15
in many different ways.
28
75952
1878
์ธ๊ธฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค.
01:17
From the standpoint of calculation,
29
77830
2709
๊ณ„์‚ฐ์˜ ๊ด€์ ์—์„œ ๋ณด๋ฉด ์ด๊ฒƒ์€
01:20
they're as easy to understand
30
80539
1677
๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด๋ฐ
01:22
as one plus one, which is two.
31
82216
2554
1 ๋”ํ•˜๊ธฐ 1์€ 2,
01:24
Then one plus two is three,
32
84770
2003
1 ๋”ํ•˜๊ธฐ 2๋Š” 3,
01:26
two plus three is five, three plus five is eight,
33
86773
3014
2 ๋”ํ•˜๊ธฐ 3์€ 5, 3 ๋”ํ•˜๊ธฐ 5๋Š” 8,
01:29
and so on.
34
89787
1525
๊ณผ ๊ฐ™์ด ๊ณ„์†๋ฉ๋‹ˆ๋‹ค.
01:31
Indeed, the person we call Fibonacci
35
91312
2177
์‚ฌ์‹ค ์šฐ๋ฆฌ๊ฐ€ ํ”ผ๋ณด๋‚˜์น˜๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ์‚ฌ๋žŒ์€
01:33
was actually named Leonardo of Pisa,
36
93489
3180
๋ ˆ์˜ค๋‚˜๋ฅด๋„ ๋ฐ ํ”ผ์‚ฌ์˜€๋Š”๋ฐ
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
์ด ์ˆซ์ž๋“ค์€ ๊ทธ์˜ ์ฑ…, "๋ฆฌ๋ฒ ๋กœ ์•„๋ฐ”์น˜" ์— ๋“ฑ์žฅํ•ฉ๋‹ˆ๋‹ค.
01:39
which taught the Western world
38
99722
1650
์ด ์ฑ…์€ ํ˜„๋Œ€์— ์ด๋ฅด๋„๋ก ์“ฐ์ด๋Š” ์ˆซ์ž์˜ ๋ฒ•์น™์„
01:41
the methods of arithmetic that we use today.
39
101372
2827
์„œ์–‘์— ์†Œ๊ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
01:44
In terms of applications,
40
104199
1721
์‹ค์ƒํ™œ์˜ ์ธก๋ฉด์—์„œ ๋ณด๋ฉด,
01:45
Fibonacci numbers appear in nature
41
105920
2183
ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์€ ์ž์—ฐ์—์„œ
01:48
surprisingly often.
42
108103
1857
๋†€๋ผ์šธ ์ •๋„๋กœ ๋งŽ์ด ๋ฐœ๊ฒฌ๋˜๋Š”๋ฐ
01:49
The number of petals on a flower
43
109960
1740
์˜ˆ๋ฅผ ๋“ค์–ด ๊ฝƒ์˜ ์žŽ๋“ค์˜ ์ˆ˜๋Š”
01:51
is typically a Fibonacci number,
44
111700
1862
์ „ํ˜•์ ์ธ ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์ž…๋‹ˆ๋‹ค.
01:53
or the number of spirals on a sunflower
45
113562
2770
ํ•ด๋ฐ”๋ผ๊ธฐ์”จ์˜ ๋‚˜์„ ์˜ ์ˆ˜๋‚˜
01:56
or a pineapple
46
116332
1411
ํŒŒ์ธ์• ํ”Œ์˜ ๊ทธ๊ฒƒ๋„
01:57
tends to be a Fibonacci number as well.
47
117743
2394
๋ณดํ†ต ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์„ ๋”ฐ๋ฆ…๋‹ˆ๋‹ค.
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์„ ๋”ฐ๋ฅด๋Š” ๊ฒฝ์šฐ๋Š” ํ›จ์”ฌ ๋” ๋งŽ์Šต๋‹ˆ๋‹ค.
02:03
but what I find most inspirational about them
49
123640
2560
ํ•˜์ง€๋งŒ ์ €์˜ ํฅ๋ฏธ๋ฅผ ๊ฐ€์žฅ ๋งŽ์ด ๋‹๊ตฌ๋Š” ๊ฒƒ์€
02:06
are the beautiful number patterns they display.
50
126200
2734
์•„๋ฆ„๋‹ค์šด ์ˆ˜๋“ค์˜ ๋ฐฐ์—ด์— ์žˆ์Šต๋‹ˆ๋‹ค.
02:08
Let me show you one of my favorites.
51
128934
2194
์ œ๊ฐ€ ๊ฐ€์žฅ ์ข‹์•„ํ•˜๋Š” ์˜ˆ๋ฅผ ์‚ดํŽด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
02:11
Suppose you like to square numbers,
52
131128
2221
์—ฌ๋Ÿฌ๋ถ„์ด ์ˆ˜์˜ ์ œ๊ณฑ์„ ์ข‹์•„ํ•˜์‹ ๋‹ค๊ณ  ํ•ด๋ณด์ฃ .
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
์†”์งํžˆ ์ œ๊ณฑ์ˆ˜๋ฅผ ์‹ซ์–ดํ•˜๋Š” ์‚ฌ๋žŒ์ด ์žˆ๋‚˜์š”? (์›ƒ์Œ)
02:16
Let's look at the squares
54
136040
2240
ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์—์„œ ๊ฐ€์žฅ ์•ž์— ์žˆ๋Š”
02:18
of the first few Fibonacci numbers.
55
138280
1851
๋ช‡๊ฐœ์˜ ์ˆ˜๋“ค์„ ์‚ดํŽด๋ด…์‹œ๋‹ค.
02:20
So one squared is one,
56
140131
2030
1์˜ ์ œ๊ณฑ์€ 1,
02:22
two squared is four, three squared is nine,
57
142161
2317
2์˜ ์ œ๊ณฑ์€ 4, 3์˜ ์ œ๊ณฑ์€ 9,
02:24
five squared is 25, and so on.
58
144478
3173
5์˜ ์ œ๊ณฑ์€ 25 ์™€ ๊ฐ™์ด ๊ณ„์†๋ฉ๋‹ˆ๋‹ค.
02:27
Now, it's no surprise
59
147651
1901
์ž, ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์—์„œ ์—ฐ์†๋˜๋Š” ๋‘ ์ˆ˜๋ฅผ ๋”ํ•˜๋ฉด
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
๋‹ค์Œ ํ”ผ๋ณด๋‚˜์น˜ ์ˆ˜๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€
02:32
you get the next Fibonacci number. Right?
61
152380
2032
๋‹น์—ฐํ•˜๊ฒŒ ๋Š๊ปด์ง€์‹œ์ฃ ?
02:34
That's how they're created.
62
154412
1395
ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์€ ๊ทธ๋ ‡๊ฒŒ ๋งŒ๋“ค์–ด์ง€๋‹ˆ๊นŒ์š”.
02:35
But you wouldn't expect anything special
63
155807
1773
ํ•˜์ง€๋งŒ ๊ทธ๋“ค์˜ ์ œ๊ณฑ์ˆ˜๋ฅผ ๋”ํ•˜๋ฉด
02:37
to happen when you add the squares together.
64
157580
3076
๊ธฐ๋Œ€ํ•  ๊ฒŒ ์—†๋‹ค๊ณ  ์ƒ๊ฐํ•˜์‹ค ๊ฒ๋‹ˆ๋‹ค.
02:40
But check this out.
65
160656
1346
๊ทธ๋Ÿฐ๋ฐ ์ด๊ฑธ ๋ณด์„ธ์š”.
02:42
One plus one gives us two,
66
162002
2001
1 + 1= 2,
02:44
and one plus four gives us five.
67
164003
2762
1 + 4 = 5,
02:46
And four plus nine is 13,
68
166765
2195
4 + 9 = 13,
02:48
nine plus 25 is 34,
69
168960
3213
9 + 25 = 34,
02:52
and yes, the pattern continues.
70
172173
2659
๊ทธ๋ฆฌ๊ณ  ์ด ๊ทœ์น™์€ ์ด์–ด์ง‘๋‹ˆ๋‹ค.
02:54
In fact, here's another one.
71
174832
1621
๋˜ ๋‹ค๋ฅธ ์˜ˆ๋ฅผ ์‚ดํŽด๋ด…์‹œ๋‹ค.
02:56
Suppose you wanted to look at
72
176453
1844
ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์˜ ์•ž์— ์žˆ๋Š” ๋ช‡ ๊ฐœ์˜ ์ˆ˜๋“ค์„ ๋”ํ•˜๋ฉด
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
03:00
Let's see what we get there.
74
180795
1608
์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
03:02
So one plus one plus four is six.
75
182403
2139
1 + 1 + 4 = 6,
03:04
Add nine to that, we get 15.
76
184542
3005
์ด๊ฒƒ์— 9๋ฅผ ๋”ํ•˜๋ฉด 15,
03:07
Add 25, we get 40.
77
187547
2213
๋˜ 25๋ฅผ ๋”ํ•˜๋ฉด 40,
03:09
Add 64, we get 104.
78
189760
2791
๋˜ 64๋ฅผ ๋”ํ•˜๋ฉด 104๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
03:12
Now look at those numbers.
79
192551
1652
์ž, ์ด ์ˆซ์ž๋“ค์„ ์ž˜ ๋ณด์„ธ์š”.
03:14
Those are not Fibonacci numbers,
80
194203
2384
์ด๋“ค์€ ํ”ผ๋ณด๋‚˜์น˜ ์ˆ˜๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค๋งŒ
03:16
but if you look at them closely,
81
196587
1879
์ž์„ธํžˆ ๋ณด๋ฉด ํ”ผ๋ณด๋‚˜์น˜ ์ˆ˜๋“ค์ด ์ˆจ์–ด์žˆ๋Š” ๊ฒƒ์ด ๋ณด์ด์‹ค ๊ฒ๋‹ˆ๋‹ค.
03:18
you'll see the Fibonacci numbers
82
198466
1883
03:20
buried inside of them.
83
200349
2178
03:22
Do you see it? I'll show it to you.
84
202527
2070
์ฐพ์œผ์…จ๋‚˜์š”? ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
03:24
Six is two times three, 15 is three times five,
85
204597
3733
6์€ 2 X 3, 15๋Š” 3 X 5,
03:28
40 is five times eight,
86
208330
2059
๊ทธ๋ฆฌ๊ณ  40์€ 5 X 8์ž…๋‹ˆ๋‹ค.
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
2, 3, 5, 8 - ๋ญ”๊ฐ€ ์ต์ˆ™ํ•ด ๋ณด์ด์ง€ ์•Š๋‚˜์š”?
03:33
(Laughter)
88
213317
1187
(์›ƒ์Œ)
03:34
Fibonacci! Of course.
89
214504
2155
๋‹น์—ฐํžˆ ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์ด์ฃ !
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
์ž, ์ด ๊ทœ์น™๋“ค์„ ๋ฐœ๊ฒฌํ•˜๋Š” ๊ฒƒ ๋ณด๋‹ค
03:40
it's even more satisfying to understand
91
220442
2482
์™œ ์ด ๊ทœ์น™์ด ์„ฑ๋ฆฝํ•˜๋Š”์ง€ ์•„๋Š” ๊ฒƒ์ด ๋” ์žฌ๋ฏธ์žˆ์Šต๋‹ˆ๋‹ค.
03:42
why they are true.
92
222924
1958
03:44
Let's look at that last equation.
93
224882
1889
๋ฐฉ๊ธˆ ๋ณธ ์‹์„ ๋ด…์‹œ๋‹ค.
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
์™œ ์ œ๊ณฑ์ˆ˜๋“ค์˜ ํ•ฉ, ๊ทธ๋Ÿฌ๋‹ˆ๊นŒ 1, 1, 2, 3, 5์™€ 8์˜ ์ œ๊ณฑ์„ ๋”ํ•˜๋ฉด
03:50
add up to eight times 13?
95
230639
2545
์™œ 8๊ณผ 13์˜ ๊ณฑ์ด ๋ ๊นŒ์š”?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
๊ฐ„๋‹จํ•œ ๋„ํ‘œ๋กœ ์„ค๋ช…ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
03:56
We'll start with a one-by-one square
97
236145
2687
ํ•œ ๋ณ€์˜ ๊ธธ์ด๊ฐ€ 1์ธ ์ •์‚ฌ๊ฐํ˜• ์˜†์—
03:58
and next to that put another one-by-one square.
98
238832
4165
๋˜‘๊ฐ™์€ ์ •์‚ฌ๊ฐํ˜•์„ ๋†“๊ณ  ๋ถ™์ด๋ฉด,
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
1X2์˜ ์ง์‚ฌ๊ฐํ˜•์ด ๋ฉ๋‹ˆ๋‹ค.
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
๊ทธ ๋ฐ‘์— ํ•œ ๋ณ€์˜ ๊ธธ์ด๊ฐ€ 2์ธ ์ •์‚ฌ๊ฐํ˜•์„ ๋„ฃ๊ณ 
04:08
and next to that, a three-by-three square,
101
248954
2795
๊ทธ ์˜†์— ํ•œ ๋ณ€์˜ ๊ธธ์ด๊ฐ€ 3์ธ ์ •์‚ฌ๊ฐํ˜•,
04:11
beneath that, a five-by-five square,
102
251749
2001
์•„๋ž˜์— ํ•œ ๋ณ€์˜ ๊ธธ์ด๊ฐ€ 5์ธ ์ •์‚ฌ๊ฐํ˜•,
04:13
and then an eight-by-eight square,
103
253750
1912
๋˜ ํ•œ ๋ณ€์˜ ๊ธธ์ด๊ฐ€ 8์ธ ์ •์‚ฌ๊ฐํ˜•์„ ๋†“์œผ๋ฉด
04:15
creating one giant rectangle, right?
104
255662
2572
ํ•˜๋‚˜์˜ ํฐ ์ง์‚ฌ๊ฐํ˜•์ด ๋งŒ๋“ค์–ด์ง€์ฃ ?
04:18
Now let me ask you a simple question:
105
258234
1916
์ž, ์งˆ๋ฌธ ํ•˜๋‚˜๋ฅผ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
04:20
what is the area of the rectangle?
106
260150
3656
์ง์‚ฌ๊ฐํ˜•์˜ ๋„“์ด๋Š” ์–ผ๋งˆ์ผ๊นŒ์š”?
04:23
Well, on the one hand,
107
263806
1971
ํ•œํŽธ์œผ๋กœ ์ƒ๊ฐํ•˜๋ฉด ๊ทธ ์•ˆ์— ์žˆ๋Š” ์ •์‚ฌ๊ฐํ˜•์˜ ๋„“์ด์˜ ํ•ฉ์ด๊ฒ ์ฃ ?
04:25
it's the sum of the areas
108
265777
2530
04:28
of the squares inside it, right?
109
268307
1866
04:30
Just as we created it.
110
270173
1359
๋ฐฉ๊ธˆ ๋งŒ๋“  ๊ฒƒ ์ฒ˜๋Ÿผ์š”.
04:31
It's one squared plus one squared
111
271532
2172
1์˜ ์ œ๊ณฑ ๋”ํ•˜๊ธฐ 1์˜ ์ œ๊ณฑ ๋”ํ•˜๊ธฐ
04:33
plus two squared plus three squared
112
273704
2233
2์˜ ์ œ๊ณฑ ๋”ํ•˜๊ธฐ 3์˜ ์ œ๊ณฑ ๋”ํ•˜๊ธฐ
04:35
plus five squared plus eight squared. Right?
113
275937
2599
5์˜ ์ œ๊ณฑ ๋”ํ•˜๊ธฐ 8์˜ ์ œ๊ณฑ์ด๊ฒ ์ฃ ?
04:38
That's the area.
114
278536
1857
์ด๊ฒƒ์ด ๋„“์ด์ž…๋‹ˆ๋‹ค.
04:40
On the other hand, because it's a rectangle,
115
280393
2326
๋˜ ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฐํ•ด ๋ณด๋ฉด, ์ด๊ฒƒ์ด ์ง์‚ฌ๊ฐํ˜•์ด๊ธฐ ๋•Œ๋ฌธ์—,
04:42
the area is equal to its height times its base,
116
282719
3648
๋„“์ด๋ฅผ ์„ธ๋กœ์™€ ๊ฐ€๋กœ์˜ ๊ณฑ์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ,
04:46
and the height is clearly eight,
117
286367
2047
์„ธ๋กœ๋Š” ๋ถ„๋ช…ํžˆ 8์ด๊ณ ,
04:48
and the base is five plus eight,
118
288414
2903
๊ทธ๋ฆฌ๊ณ  ๊ฐ€๋กœ๋Š” 5 ๋”ํ•˜๊ธฐ 8,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ํ”ผ๋ณด๋‚˜์น˜ ์ˆ˜์—ด์˜ ๋‹ค์Œ ์ˆ˜, 13์ด์ฃ ?
04:55
So the area is also eight times 13.
120
295255
3363
๊ทธ๋Ÿฌ๋‹ˆ ์ง์‚ฌ๊ฐํ˜•์˜ ๋„“์ด๋Š” 8 ๊ณฑํ•˜๊ธฐ 13์ž…๋‹ˆ๋‹ค.
04:58
Since we've correctly calculated the area
121
298618
2262
์šฐ๋ฆฌ๋Š” ๋„“์ด๋ฅผ ๋‘๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ๋ชจ๋‘ ์ •ํ™•ํžˆ ๊ณ„์‚ฐํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—
05:00
two different ways,
122
300880
1687
05:02
they have to be the same number,
123
302567
2172
๋‹ต์ด ๊ฐ™์„ ํ…๋ฐ
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— 1, 1, 2, 3, 5์™€ 8์˜ ์ œ๊ณฑ์ˆ˜๋“ค์„ ๋”ํ–ˆ์„ ๋•Œ ๋‚˜์˜ค๋Š” ๊ฐ’์ด
05:08
add up to eight times 13.
125
308130
2291
8๊ณผ 13์˜ ๊ณฑ๊ณผ ์ผ์น˜ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:10
Now, if we continue this process,
126
310421
2374
์ž, ์ด ๋ฐฉ๋ฒ•์„ ๊ณ„์†ํ•˜๋ฉด
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
๋ณ€์˜ ๊ธธ์ด๊ฐ€ 13๊ณผ 21๋กœ ์ด๋ฃจ์–ด์ง„ ์ง์‚ฌ๊ฐํ˜•,
05:16
21 by 34, and so on.
128
316773
2394
๋ณ€์˜ ๊ธธ์ด๊ฐ€ 21๊ณผ 34๋กœ ์ด๋ฃจ์–ด์ง„ ์ง์‚ฌ๊ฐํ˜• ๋“ฑ์ด ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
05:19
Now check this out.
129
319167
1409
์ด๊ฑธ ๋ณด์„ธ์š”.
05:20
If you divide 13 by eight,
130
320576
2193
13์„ 8๋กœ ๋‚˜๋ˆ„๋ฉด 1.625๋ฅผ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
05:22
you get 1.625.
131
322769
2043
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
๊ทธ๋ฆฌ๊ณ  ํ”ผ๋ณด๋‚˜์น˜ ๋ฐฐ์—ด์˜ ์—ฐ์†๋˜๋Š” ์ˆซ์ž ๋‘ ๊ฐœ์ค‘ ํฐ ์ˆซ์ž๋ฅผ ์ž‘์€ ์ˆซ์ž๋กœ ๋‚˜๋ˆŒ ์ˆ˜๋ก
05:28
then these ratios get closer and closer
133
328239
2873
์ด ๋น„์œจ์€
1.618์— ์กฐ๊ธˆ์”ฉ ๋” ๊ฐ€๊นŒ์›Œ์ง€๋Š”๋ฐ
05:31
to about 1.618,
134
331112
2653
05:33
known to many people as the Golden Ratio,
135
333765
3301
์ด ๋น„์œจ์€ ํ™ฉ๊ธˆ๋น„๋กœ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.
05:37
a number which has fascinated mathematicians,
136
337066
2596
์ด ํ™ฉ๊ธˆ๋น„๋Š” ์ˆ˜๋ฐฑ๋…„๋™์•ˆ
05:39
scientists and artists for centuries.
137
339662
3246
์ˆ˜ํ•™์ž, ๊ณผํ•™์ž, ๊ทธ๋ฆฌ๊ณ  ์˜ˆ์ˆ ๊ฐ€๋“ค์„ ๋งคํ˜นํ•ด ์™”์Šต๋‹ˆ๋‹ค.
05:42
Now, I show all this to you because,
138
342908
2231
์ž, ์ œ๊ฐ€ ์ด๊ฒƒ์„ ๋ณด์—ฌ๋“œ๋ฆฌ๋Š” ์ด์œ ๋Š”
05:45
like so much of mathematics,
139
345139
2025
๋‚˜๋จธ์ง€์˜ ์ˆ˜ํ•™ ๋ฒ•์น™๊ณผ ๊ฐ™์ด ์•„๋ฆ„๋‹ค์€ ์ธก๋ฉด์ด ์žˆ๋Š”๋ฐ
05:47
there's a beautiful side to it
140
347164
1967
05:49
that I fear does not get enough attention
141
349131
2015
์ด ์ธก๋ฉด๋“ค์ด ์šฐ๋ฆฌ์˜ ํ•™๊ต๋“ค์ด ์ถฉ๋ถ„ํžˆ ๊ณ ๋ คํ•˜๊ณ  ์žˆ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:51
in our schools.
142
351146
1567
05:52
We spend lots of time learning about calculation,
143
352713
2833
์šฐ๋ฆฌ๋Š” ๊ณ„์‚ฐ์— ๋Œ€ํ•ด ๋งŽ์ด ๋ฐฐ์šฐ๋Š”๋ฐ
05:55
but let's not forget about application,
144
355546
2756
์‘์šฉ์„ ์žŠ์ง€ ์•Š๋„๋ก ํ•˜์ฃ .
05:58
including, perhaps, the most important application of all,
145
358302
3454
์–ด์ฉŒ๋ฉด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ ์šฉ์˜ ์š”์†Œ์ธ
06:01
learning how to think.
146
361756
2076
์ƒ๊ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์žŠ์ง€ ์•Š๋„๋ก ํ•ฉ์‹œ๋‹ค.
06:03
If I could summarize this in one sentence,
147
363832
1957
์ง€๊ธˆ๊นŒ์ง€ ์ œ๊ฐ€ ๋ง์”€๋“œ๋ฆฐ ๊ฒƒ์„ ํ•œ ๋งˆ๋””๋กœ ์ •๋ฆฌํ•œ๋‹ค๋ฉด
06:05
it would be this:
148
365789
1461
์ด๊ฒƒ์„ ๋ง์”€๋“œ๋ฆฌ๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค:
06:07
Mathematics is not just solving for x,
149
367250
3360
์ˆ˜ํ•™์€ ๊ทธ์ € x๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๊ณ 
06:10
it's also figuring out why.
150
370610
2925
์™œ ๊ทธ๋Ÿด๊นŒ(why)๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋ผ๊ณ ์š”.
06:13
Thank you very much.
151
373535
1815
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
06:15
(Applause)
152
375350
4407
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7