The magic of Fibonacci numbers | Arthur Benjamin | TED

5,684,908 views ・ 2013-11-08

TED


Sila klik dua kali pada sari kata Inggeris di bawah untuk memainkan video.

Translator: Ros Rosli Reviewer: Pei Fang Ng
00:12
So why do we learn mathematics?
0
12613
3039
Kenapa kita belajar matematik?
00:15
Essentially, for three reasons:
1
15652
2548
Asasnya, kerana tiga sebab:
00:18
calculation,
2
18200
1628
pengiraan, aplikasi,
00:19
application,
3
19828
1900
pengiraan, aplikasi,
00:21
and last, and unfortunately least
4
21728
2687
dan yang terakhir, yang malangnya kurang diberikan perhatian,
00:24
in terms of the time we give it,
5
24415
2105
dan yang terakhir, yang malangnya kurang diberikan perhatian,
00:26
inspiration.
6
26520
1922
inspirasi.
00:28
Mathematics is the science of patterns,
7
28442
2272
Matematik merupakan sains corak.
00:30
and we study it to learn how to think logically,
8
30714
3358
Kita belajar berfikir secara logik, kritikal dan kreatif,
00:34
critically and creatively,
9
34072
2527
Kita belajar berfikir secara logik, kritikal dan kreatif,
00:36
but too much of the mathematics that we learn in school
10
36599
2926
tetapi yang diajar di sekolah,
00:39
is not effectively motivated,
11
39525
2319
tidak memberikan rangsangan yang baik.
00:41
and when our students ask,
12
41844
1425
Apabila pelajar kita bertanya,
00:43
"Why are we learning this?"
13
43269
1675
"Kenapa kita belajar ni?"
00:44
then they often hear that they'll need it
14
44944
1961
Ini penting untuk kelas yang berikutnya
00:46
in an upcoming math class or on a future test.
15
46905
3265
atau ujian yang akan datang.
00:50
But wouldn't it be great
16
50170
1802
Bukankah lebih bagus
00:51
if every once in a while we did mathematics
17
51972
2518
kalau kadangkala kita membuat matematik
00:54
simply because it was fun or beautiful
18
54490
2949
kerana ia menyeronokkan, mengasyikkan
00:57
or because it excited the mind?
19
57439
2090
atau kerana ia merangsang minda?
00:59
Now, I know many people have not
20
59529
1722
Ramai yang tak berpeluang untuk
01:01
had the opportunity to see how this can happen,
21
61251
2319
memahami bagaimana ini boleh berlaku,
01:03
so let me give you a quick example
22
63570
1829
jadi biar saya berikan contoh
01:05
with my favorite collection of numbers,
23
65399
2341
dengan koleksi nombor kegemaran saya,
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
nombor Fibonacci. (Tepukan)
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
Ya, ada peminat Fibonacci di sini. Bagus.
01:12
That's great.
26
72520
1316
Ya, ada peminat Fibonacci di sini. Bagus.
01:13
Now these numbers can be appreciated
27
73836
2116
Nombor-nombor ini boleh dihargai
01:15
in many different ways.
28
75952
1878
dalam berbagai-bagai cara.
01:17
From the standpoint of calculation,
29
77830
2709
Dari sudut pengiraan,
01:20
they're as easy to understand
30
80539
1677
ia sangat senang difahami
01:22
as one plus one, which is two.
31
82216
2554
seperti 1 + 1 = 2,
01:24
Then one plus two is three,
32
84770
2003
1 + 2 = 3,
01:26
two plus three is five, three plus five is eight,
33
86773
3014
2 + 3 = 5, 3 + 5 = 8,
01:29
and so on.
34
89787
1525
dan begitulah seterusnya.
01:31
Indeed, the person we call Fibonacci
35
91312
2177
Orang yang dikenali sebagai Fibonacci
01:33
was actually named Leonardo of Pisa,
36
93489
3180
sebenarnya bernama Leonardo of Pisa,
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
nombor-nombor ini diterangkan dalam buku "Liber Abaci",
01:39
which taught the Western world
38
99722
1650
di mana dunia Barat telah diajar
01:41
the methods of arithmetic that we use today.
39
101372
2827
kaedah aritmetik yang digunakan sekarang.
01:44
In terms of applications,
40
104199
1721
Dari segi aplikasi, nombor Fibonacci
01:45
Fibonacci numbers appear in nature
41
105920
2183
selalu muncul dalam alam semula jadi.
01:48
surprisingly often.
42
108103
1857
selalu muncul dalam alam semula jadi.
01:49
The number of petals on a flower
43
109960
1740
Bilangan kelopak bunga
01:51
is typically a Fibonacci number,
44
111700
1862
selalunya ialah nombor Fibonacci,
01:53
or the number of spirals on a sunflower
45
113562
2770
lingkaran bunga matahari atau nenas,
01:56
or a pineapple
46
116332
1411
lingkaran bunga matahari atau nenas,
01:57
tends to be a Fibonacci number as well.
47
117743
2394
biasanya merupakan nombor Fibonacci.
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
Banyak lagi aplikasi nombor Fibonacci,
02:03
but what I find most inspirational about them
49
123640
2560
yang paling memberikan inspirasi
02:06
are the beautiful number patterns they display.
50
126200
2734
ialah corak nombor yang dipaparkan.
02:08
Let me show you one of my favorites.
51
128934
2194
Ini salah satu kegemaran saya.
02:11
Suppose you like to square numbers,
52
131128
2221
Katakan anda suka nombor kuasa dua,
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
siapa yang tak suka, kan? (Gelak ketawa)
02:16
Let's look at the squares
54
136040
2240
Mari kita lihat nombor kuasa dua
02:18
of the first few Fibonacci numbers.
55
138280
1851
bagi nombor-nombor Fibonacci.
02:20
So one squared is one,
56
140131
2030
1 kuasa dua = 1,
02:22
two squared is four, three squared is nine,
57
142161
2317
2 kuasa dua = 4, 3 kuasa dua = 9,
02:24
five squared is 25, and so on.
58
144478
3173
5 kuasa dua = 25, dan seterusnya.
02:27
Now, it's no surprise
59
147651
1901
Jadi, tak hairanlah apabila
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
jumlah dua nombor Fibonacci yang berturut
02:32
you get the next Fibonacci number. Right?
61
152380
2032
menghasilkan nombor Fibonacci yang berikutnya.
02:34
That's how they're created.
62
154412
1395
Itu merupakan cara ia dicipta.
02:35
But you wouldn't expect anything special
63
155807
1773
Anda tak akan menjangkakan apa-apa jika
02:37
to happen when you add the squares together.
64
157580
3076
nombor-nombor kuasa dua tersebut ditambah.
02:40
But check this out.
65
160656
1346
Cuba tengok ni.
02:42
One plus one gives us two,
66
162002
2001
1 + 1 = 2,
02:44
and one plus four gives us five.
67
164003
2762
1 + 4 = 5,
02:46
And four plus nine is 13,
68
166765
2195
4 + 9 = 13,
02:48
nine plus 25 is 34,
69
168960
3213
9 + 25 = 34,
02:52
and yes, the pattern continues.
70
172173
2659
dan corak itu berterusan.
02:54
In fact, here's another one.
71
174832
1621
Ini satu lagi contoh.
02:56
Suppose you wanted to look at
72
176453
1844
Katakan anda tambah beberapa
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
nombor kuasa dua Fibonacci yang awal.
03:00
Let's see what we get there.
74
180795
1608
Mari kita lihat apa hasilnya.
03:02
So one plus one plus four is six.
75
182403
2139
1 + 1 + 4 = 6.
03:04
Add nine to that, we get 15.
76
184542
3005
6 + 9 = 15.
03:07
Add 25, we get 40.
77
187547
2213
15 + 25 = 40.
03:09
Add 64, we get 104.
78
189760
2791
40 + 64 = 104.
03:12
Now look at those numbers.
79
192551
1652
Tengok nombor-nombor ini.
03:14
Those are not Fibonacci numbers,
80
194203
2384
Ia bukan nombor-nombor Fibonacci.
03:16
but if you look at them closely,
81
196587
1879
Tetapi jika anda lihat dengan teliti,
03:18
you'll see the Fibonacci numbers
82
198466
1883
ada nombor Fibonacci
03:20
buried inside of them.
83
200349
2178
yang tersembunyi di dalamnya.
03:22
Do you see it? I'll show it to you.
84
202527
2070
Nampak tak? Saya akan tunjukkan.
03:24
Six is two times three, 15 is three times five,
85
204597
3733
6 = 2 x 3, 15 = 3 x 5,
03:28
40 is five times eight,
86
208330
2059
40 = 5 x 8,
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
2, 3, 5, 8, terima kasih kepada siapa?
03:33
(Laughter)
88
213317
1187
(Gelak ketawa)
03:34
Fibonacci! Of course.
89
214504
2155
Semestinya, Fibonacci!
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
Corak ini memang menyeronokkan,
03:40
it's even more satisfying to understand
91
220442
2482
tapi lebih memuaskan jika kita faham
03:42
why they are true.
92
222924
1958
kenapa ia begitu.
03:44
Let's look at that last equation.
93
224882
1889
Cuba lihat persamaan yang terakhir.
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
Kenapa kuasa dua kepada 1, 1, 2, 3, 5 dan 8
03:50
add up to eight times 13?
95
230639
2545
jumlahnya sama dengan 8 x 13?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
Saya akan lukiskan satu gambar.
03:56
We'll start with a one-by-one square
97
236145
2687
Ada satu segi empat 1 x 1,
03:58
and next to that put another one-by-one square.
98
238832
4165
dan satu lagi segi empat 1 x 1.
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
Hasilnya segi empat tepat 1 x 2.
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
Letakkan segi empat 2 x 2 di bawah,
04:08
and next to that, a three-by-three square,
101
248954
2795
dan segi empat 3 x 3 di sebelah,
04:11
beneath that, a five-by-five square,
102
251749
2001
segi empat 5 x 5 di bawah,
04:13
and then an eight-by-eight square,
103
253750
1912
dan satu lagi segi empat 8 x 8,
04:15
creating one giant rectangle, right?
104
255662
2572
membentuk segi empat tepat yang besar, kan?
04:18
Now let me ask you a simple question:
105
258234
1916
Izinkan saya bertanya,
04:20
what is the area of the rectangle?
106
260150
3656
berapakah luas segi empat tepat itu?
04:23
Well, on the one hand,
107
263806
1971
Yang pertama, ia merupakan jumlah luas
04:25
it's the sum of the areas
108
265777
2530
Yang pertama, ia merupakan jumlah luas
04:28
of the squares inside it, right?
109
268307
1866
semua segi empat di dalamnya, kan?
04:30
Just as we created it.
110
270173
1359
Sama seperti yang kita buat tadi.
04:31
It's one squared plus one squared
111
271532
2172
1 kuasa dua + 1 kuasa dua,
04:33
plus two squared plus three squared
112
273704
2233
+ 2 kuasa dua, + 3 kuasa dua,
04:35
plus five squared plus eight squared. Right?
113
275937
2599
+ 5 kuasa dua, + 8 kuasa dua.
04:38
That's the area.
114
278536
1857
Itu merupakan luasnya.
04:40
On the other hand, because it's a rectangle,
115
280393
2326
Yang kedua, luas sebuah segi empat tepat,
04:42
the area is equal to its height times its base,
116
282719
3648
ialah tinggi x tapak,
04:46
and the height is clearly eight,
117
286367
2047
tinggi = 8,
04:48
and the base is five plus eight,
118
288414
2903
tapak = 5 + 8,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
iaitu 13, nombor Fibonacci yang berikutnya, kan?
04:55
So the area is also eight times 13.
120
295255
3363
Jadi luasnya ialah 8 x 13 juga.
04:58
Since we've correctly calculated the area
121
298618
2262
Kita telah mengira luas
05:00
two different ways,
122
300880
1687
dengan dua cara yang berbeza,
05:02
they have to be the same number,
123
302567
2172
hasilnya mesti sama,
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
sebab itu kuasa dua kepada 1, 1, 2, 3, 5 dan 8,
05:08
add up to eight times 13.
125
308130
2291
jumlahnya sama dengan 8 x 13.
05:10
Now, if we continue this process,
126
310421
2374
Jika kita teruskan proses ini,
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
hasilnya ialah segi empat tepat 13 x 21,
05:16
21 by 34, and so on.
128
316773
2394
21 x 34, dan seterusnya.
05:19
Now check this out.
129
319167
1409
Sekarang tengok ni.
05:20
If you divide 13 by eight,
130
320576
2193
Jika anda bahagi 13 dengan 8,
05:22
you get 1.625.
131
322769
2043
anda dapat 1.625. Bahagikan nombor
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
yang lebih besar dengan yang sebelumnya
05:28
then these ratios get closer and closer
133
328239
2873
nisbahnya akan semakin hampir
05:31
to about 1.618,
134
331112
2653
dengan kira-kira 1.618,
05:33
known to many people as the Golden Ratio,
135
333765
3301
juga dikenali sebagai Nisbah Keemasan,
05:37
a number which has fascinated mathematicians,
136
337066
2596
nombor yang mempesonakan ahli matematik,
05:39
scientists and artists for centuries.
137
339662
3246
saintis dan seniman sejak dulu.
05:42
Now, I show all this to you because,
138
342908
2231
Saya bentangkan semua ini kerana,
05:45
like so much of mathematics,
139
345139
2025
seperti kebanyakan matematik,
05:47
there's a beautiful side to it
140
347164
1967
ia mempunyai aspek yang menakjubkan
05:49
that I fear does not get enough attention
141
349131
2015
yang sayangnya tak mendapat perhatian
05:51
in our schools.
142
351146
1567
di sekolah-sekolah kita.
05:52
We spend lots of time learning about calculation,
143
352713
2833
Banyak masa dihabiskan untuk belajar mengira,
05:55
but let's not forget about application,
144
355546
2756
tetapi jangan lupa tentang aplikasinya
05:58
including, perhaps, the most important application of all,
145
358302
3454
termasuk aplikasi yang paling penting,
06:01
learning how to think.
146
361756
2076
belajar cara berfikir.
06:03
If I could summarize this in one sentence,
147
363832
1957
Saya simpulkan dalam satu ayat:
06:05
it would be this:
148
365789
1461
Saya simpulkan dalam satu ayat:
06:07
Mathematics is not just solving for x,
149
367250
3360
Matematik bukan hanya untuk mencari x,
06:10
it's also figuring out why.
150
370610
2925
tapi juga untuk mengetahui kenapa (why).
06:13
Thank you very much.
151
373535
1815
Terima kasih.
06:15
(Applause)
152
375350
4407
(Tepukan)
Mengenai laman web ini

Laman web ini akan memperkenalkan anda kepada video YouTube yang berguna untuk belajar bahasa Inggeris. Anda akan melihat pelajaran Bahasa Inggeris yang diajar oleh guru terkemuka dari seluruh dunia. Klik dua kali pada sari kata bahasa Inggeris yang dipaparkan pada setiap halaman video untuk memainkan video dari sana. Sari kata tatal selari dengan main balik video. Jika anda mempunyai sebarang komen atau permintaan, sila hubungi kami menggunakan borang hubungan ini.

https://forms.gle/WvT1wiN1qDtmnspy7