The magic of Fibonacci numbers | Arthur Benjamin | TED

5,673,991 views ・ 2013-11-08

TED


请双击下面的英文字幕来播放视频。

翻译人员: Wei Wu 校对人员: Tingting Zhao
00:12
So why do we learn mathematics?
0
12613
3039
我们为什么要学习数学?
00:15
Essentially, for three reasons:
1
15652
2548
根本原因有三个:
00:18
calculation,
2
18200
1628
计算,
00:19
application,
3
19828
1900
应用,
00:21
and last, and unfortunately least
4
21728
2687
最后一个,很不幸的,
00:24
in terms of the time we give it,
5
24415
2105
从时间分配来看也是最少的,
00:26
inspiration.
6
26520
1922
激发灵感.
00:28
Mathematics is the science of patterns,
7
28442
2272
数学是研究规律的科学,
00:30
and we study it to learn how to think logically,
8
30714
3358
我们通过学习数学来训练逻辑思维能力,
00:34
critically and creatively,
9
34072
2527
思辩能力以及创造力,
00:36
but too much of the mathematics that we learn in school
10
36599
2926
但是我们在学校里面学习到的数学,
00:39
is not effectively motivated,
11
39525
2319
根本没有激起我们的兴趣
00:41
and when our students ask,
12
41844
1425
每当我们的学生问起
00:43
"Why are we learning this?"
13
43269
1675
"我们为什么要学这个?"
00:44
then they often hear that they'll need it
14
44944
1961
他们得到的答案往往是
00:46
in an upcoming math class or on a future test.
15
46905
3265
考试要考, 或者后续的数学课程中要用到.
00:50
But wouldn't it be great
16
50170
1802
有没有可能
00:51
if every once in a while we did mathematics
17
51972
2518
哪怕只有那么一小会儿, 我们研究数学
00:54
simply because it was fun or beautiful
18
54490
2949
仅仅是因为自己的兴趣, 或是数学的优美
00:57
or because it excited the mind?
19
57439
2090
那岂不是很棒?
00:59
Now, I know many people have not
20
59529
1722
现在, 我知道很多人
01:01
had the opportunity to see how this can happen,
21
61251
2319
一直没有机会来体验这一点,
01:03
so let me give you a quick example
22
63570
1829
所以现在我们就来体验一下
01:05
with my favorite collection of numbers,
23
65399
2341
以我最喜欢的数列
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
斐波纳契数列为例.(掌声)
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
太好了! 看来在座的也有喜欢斐波纳契的.
01:12
That's great.
26
72520
1316
非常好.
01:13
Now these numbers can be appreciated
27
73836
2116
我们可以从多种不同的角度
01:15
in many different ways.
28
75952
1878
来欣赏斐波纳契序列.
01:17
From the standpoint of calculation,
29
77830
2709
从计算的角度
01:20
they're as easy to understand
30
80539
1677
斐波纳契数列很容易被理解
01:22
as one plus one, which is two.
31
82216
2554
1 加 1, 等于 2
01:24
Then one plus two is three,
32
84770
2003
1 加 2 等于 3
01:26
two plus three is five, three plus five is eight,
33
86773
3014
2 加 3 等于 5, 3 加 5 等于 8
01:29
and so on.
34
89787
1525
以此类推.
01:31
Indeed, the person we call Fibonacci
35
91312
2177
事实上, 那个我们称呼"斐波纳契"的人
01:33
was actually named Leonardo of Pisa,
36
93489
3180
真实的名字叫列昂纳多, 来自比萨
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
这个数列出自他的书《算盘宝典》("Liber Abaci")
01:39
which taught the Western world
38
99722
1650
这本书奠定了西方世界的数学基础
01:41
the methods of arithmetic that we use today.
39
101372
2827
其中的算术方法一直沿用至今.
01:44
In terms of applications,
40
104199
1721
从应用的角度来看,
01:45
Fibonacci numbers appear in nature
41
105920
2183
斐波纳契数列在自然界中经常
01:48
surprisingly often.
42
108103
1857
神奇的出现.
01:49
The number of petals on a flower
43
109960
1740
一朵花的花瓣数量
01:51
is typically a Fibonacci number,
44
111700
1862
一般是一个斐波纳契数,
01:53
or the number of spirals on a sunflower
45
113562
2770
向日葵的螺旋,
01:56
or a pineapple
46
116332
1411
菠萝表面的凸起,
01:57
tends to be a Fibonacci number as well.
47
117743
2394
也都对应着某个斐波纳契数.
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
事实上还有很多斐波纳契数的应用实例,
02:03
but what I find most inspirational about them
49
123640
2560
而我发现这其中最能给人启发的
02:06
are the beautiful number patterns they display.
50
126200
2734
是这些数字呈现出来的漂亮模式.
02:08
Let me show you one of my favorites.
51
128934
2194
让我们看下我最喜欢的一个.
02:11
Suppose you like to square numbers,
52
131128
2221
假设你喜欢计算数的平方.
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
坦白说, 谁不喜欢?(笑声)
02:16
Let's look at the squares
54
136040
2240
让我们计算一下
02:18
of the first few Fibonacci numbers.
55
138280
1851
头几个斐波纳契数的平方.
02:20
So one squared is one,
56
140131
2030
1的平方是1,
02:22
two squared is four, three squared is nine,
57
142161
2317
2的平方是4, 3的平方是9,
02:24
five squared is 25, and so on.
58
144478
3173
5的平方是25, 以此类推.
02:27
Now, it's no surprise
59
147651
1901
毫不意外的,
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
当你加上两个连续的斐波纳契数字时,
02:32
you get the next Fibonacci number. Right?
61
152380
2032
你得到了下一个斐波纳契数, 没错吧?
02:34
That's how they're created.
62
154412
1395
它们就是这么定义的.
02:35
But you wouldn't expect anything special
63
155807
1773
但是你不知道把斐波纳契数的平方
02:37
to happen when you add the squares together.
64
157580
3076
加起来会得到什么有意思的结果.
02:40
But check this out.
65
160656
1346
来尝试一下.
02:42
One plus one gives us two,
66
162002
2001
1 加 1 是 2,
02:44
and one plus four gives us five.
67
164003
2762
1 加 4 是 5,
02:46
And four plus nine is 13,
68
166765
2195
4 加 9 是 13,
02:48
nine plus 25 is 34,
69
168960
3213
9 加 25 是 34,
02:52
and yes, the pattern continues.
70
172173
2659
没错, 还是这个规律.
02:54
In fact, here's another one.
71
174832
1621
事实上, 还有一个规律.
02:56
Suppose you wanted to look at
72
176453
1844
假如你想计算一下
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
头几个斐波纳契数的平方和,
03:00
Let's see what we get there.
74
180795
1608
看看结果是什么.
03:02
So one plus one plus four is six.
75
182403
2139
1 加 1 加 4 是 6,
03:04
Add nine to that, we get 15.
76
184542
3005
再加上 9, 得到 15,
03:07
Add 25, we get 40.
77
187547
2213
再加上 25, 得到 40,
03:09
Add 64, we get 104.
78
189760
2791
再加上 64, 得到 104.
03:12
Now look at those numbers.
79
192551
1652
回头来看看这些数字.
03:14
Those are not Fibonacci numbers,
80
194203
2384
他们不是斐波纳契数,
03:16
but if you look at them closely,
81
196587
1879
但是如果你看得够仔细,
03:18
you'll see the Fibonacci numbers
82
198466
1883
你能看到他们的背后
03:20
buried inside of them.
83
200349
2178
隐藏着的斐波纳契数.
03:22
Do you see it? I'll show it to you.
84
202527
2070
看到了么? 让我写给你看.
03:24
Six is two times three, 15 is three times five,
85
204597
3733
6 等于 2 乘 3, 15 等于 3 乘 5,
03:28
40 is five times eight,
86
208330
2059
40 等于 5 乘 8,
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
2, 3, 5, 8 我们看到了什么?
03:33
(Laughter)
88
213317
1187
(笑声)
03:34
Fibonacci! Of course.
89
214504
2155
斐波纳契! 当然, 当然.
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
现在我们已经发现了这些好玩的模式,
03:40
it's even more satisfying to understand
91
220442
2482
更能满足你们好奇心的事情是
03:42
why they are true.
92
222924
1958
弄清楚背后的原因.
03:44
Let's look at that last equation.
93
224882
1889
让我们看看最后这个等式.
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
为什么 1, 1, 2, 3, 5 和 8 的平方
03:50
add up to eight times 13?
95
230639
2545
加起来等于 8 乘以 13?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
我通过一个简单的图形来解释.
03:56
We'll start with a one-by-one square
97
236145
2687
首先我们画一个 1 乘 1 的方块,
03:58
and next to that put another one-by-one square.
98
238832
4165
然后再在旁边放一个相同尺寸的方块.
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
拼起来之后得到了一个 1 乘 2 的矩形.
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
在这个下面再放一个 2 乘 2 的方块,
04:08
and next to that, a three-by-three square,
101
248954
2795
之后贴着再放一个 3 乘 3 的方块,
04:11
beneath that, a five-by-five square,
102
251749
2001
然后再在下面放一个 5 乘 5 的矩形,
04:13
and then an eight-by-eight square,
103
253750
1912
之后是一个 8 乘 8 的方块.
04:15
creating one giant rectangle, right?
104
255662
2572
得到了一个大的矩形, 对吧?
04:18
Now let me ask you a simple question:
105
258234
1916
现在问大家一个简单的问题:
04:20
what is the area of the rectangle?
106
260150
3656
这个矩形的面积是多少?
04:23
Well, on the one hand,
107
263806
1971
一方面,
04:25
it's the sum of the areas
108
265777
2530
它的面积就是
04:28
of the squares inside it, right?
109
268307
1866
组成它的小矩形的面积之和, 对吧?
04:30
Just as we created it.
110
270173
1359
就是我们用到的矩形之和
04:31
It's one squared plus one squared
111
271532
2172
它的面积是 1 的平方加上 1 的平方
04:33
plus two squared plus three squared
112
273704
2233
加上 2 的平方加上 3 的平方
04:35
plus five squared plus eight squared. Right?
113
275937
2599
加上 5 的平方加上 8 的平方. 对吧?
04:38
That's the area.
114
278536
1857
这就是面积.
04:40
On the other hand, because it's a rectangle,
115
280393
2326
另一方面, 因为这是矩形,
04:42
the area is equal to its height times its base,
116
282719
3648
面积就等于长乘高,
04:46
and the height is clearly eight,
117
286367
2047
高等于 8,
04:48
and the base is five plus eight,
118
288414
2903
长是 5 加 8,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
也是一个斐波纳契数, 13, 是不是?
04:55
So the area is also eight times 13.
120
295255
3363
所以面积就是 8 乘 13.
04:58
Since we've correctly calculated the area
121
298618
2262
因为我们用两种不同的方式计算面积,
05:00
two different ways,
122
300880
1687
同样一个矩形的面积
05:02
they have to be the same number,
123
302567
2172
一定是一样的,
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
这样就是为什么 1, 1, 2, 3, 5, 8 的平方和,
05:08
add up to eight times 13.
125
308130
2291
等于 8 乘 13.
05:10
Now, if we continue this process,
126
310421
2374
如果我们继续探索下去,
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
我们会得到 13 乘 21 的矩形,
05:16
21 by 34, and so on.
128
316773
2394
21 乘 34 的矩形, 以此类推.
05:19
Now check this out.
129
319167
1409
再来看看这个.
05:20
If you divide 13 by eight,
130
320576
2193
如果你用 8 去除 13,
05:22
you get 1.625.
131
322769
2043
结果是 1.625.
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
如果用大的斐波纳契数除以前一个小的斐波纳契数
05:28
then these ratios get closer and closer
133
328239
2873
他们的比例会越来越接近
05:31
to about 1.618,
134
331112
2653
1.618,
05:33
known to many people as the Golden Ratio,
135
333765
3301
这就是很多人知道的黄金分割率,
05:37
a number which has fascinated mathematicians,
136
337066
2596
一个几个世纪以来, 让无数数学家, 科学家和艺术家
05:39
scientists and artists for centuries.
137
339662
3246
都非常着迷的数字.
05:42
Now, I show all this to you because,
138
342908
2231
我之所以向你们展示这些是因为,
05:45
like so much of mathematics,
139
345139
2025
很多这样的数学(知识),
05:47
there's a beautiful side to it
140
347164
1967
都有其秒不可言的一面
05:49
that I fear does not get enough attention
141
349131
2015
而我担心这一面并没有在学校里
05:51
in our schools.
142
351146
1567
得到展现.
05:52
We spend lots of time learning about calculation,
143
352713
2833
我们花了很多时间去学习算术,
05:55
but let's not forget about application,
144
355546
2756
但是请不要忘记数学在实际中的应用,
05:58
including, perhaps, the most important application of all,
145
358302
3454
包括可能是最重要的一种应用形式,
06:01
learning how to think.
146
361756
2076
学会如何思考.
06:03
If I could summarize this in one sentence,
147
363832
1957
把我今天所说的浓缩成一句,
06:05
it would be this:
148
365789
1461
那就是:
06:07
Mathematics is not just solving for x,
149
367250
3360
数学, 不仅仅是求出X等于多少,
06:10
it's also figuring out why.
150
370610
2925
还要能指出为什么.
06:13
Thank you very much.
151
373535
1815
感谢大家.
06:15
(Applause)
152
375350
4407
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7