The magic of Fibonacci numbers | Arthur Benjamin | TED

5,765,945 views ・ 2013-11-08

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Mladen Barešić Recezent: Senzos Osijek
00:12
So why do we learn mathematics?
0
12613
3039
Zašto mi, zapravo, učimo matematiku?
00:15
Essentially, for three reasons:
1
15652
2548
Tri su bitna razloga:
00:18
calculation,
2
18200
1628
računanje,
00:19
application,
3
19828
1900
primjena,
00:21
and last, and unfortunately least
4
21728
2687
i posljednje, a nažalost i najmanje važno
00:24
in terms of the time we give it,
5
24415
2105
u smislu vremena koje joj posvećujemo,
00:26
inspiration.
6
26520
1922
nadahnuće.
00:28
Mathematics is the science of patterns,
7
28442
2272
Matematika je znanost o obrascima,
00:30
and we study it to learn how to think logically,
8
30714
3358
i proučavamo je kako bismo naučili misliti logički,
00:34
critically and creatively,
9
34072
2527
kritički i stvaralački,
00:36
but too much of the mathematics that we learn in school
10
36599
2926
ali suviše matematike koju u školi učimo
00:39
is not effectively motivated,
11
39525
2319
nije pravilno motivirana,
00:41
and when our students ask,
12
41844
1425
i kad nas naši učenici pitaju,
00:43
"Why are we learning this?"
13
43269
1675
"Zašto ovo učimo?"
00:44
then they often hear that they'll need it
14
44944
1961
često čuju da će im to trebati
00:46
in an upcoming math class or on a future test.
15
46905
3265
na sljedećem satu matematike, ili u nekom testu sljedećeg mjeseca.
00:50
But wouldn't it be great
16
50170
1802
Ali, ne bi li bilo sjajno
00:51
if every once in a while we did mathematics
17
51972
2518
kad bismo se s vremena na vrijeme matematikom bavili
00:54
simply because it was fun or beautiful
18
54490
2949
jednostavno zato što je ona zabavna, prelijepa
00:57
or because it excited the mind?
19
57439
2090
ili intelektualno uzbudljiva?
00:59
Now, I know many people have not
20
59529
1722
Znam da mnogi ljudi nisu nikad imali
01:01
had the opportunity to see how this can happen,
21
61251
2319
prigodu vidjeti kako bi to izgledalo,
01:03
so let me give you a quick example
22
63570
1829
pa mi dopustite da vam dam jednostavan primjer,
01:05
with my favorite collection of numbers,
23
65399
2341
primjer mojeg omiljenog skupa brojeva,
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
Fibonaccijevih brojeva. (Pljesak)
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
Odlično! I ovdje ima ljubitelja Fibonaccijeviih brojeva.
01:12
That's great.
26
72520
1316
To je odlično.
01:13
Now these numbers can be appreciated
27
73836
2116
Vrijednost tih brojeva moguće je cijeniti
01:15
in many different ways.
28
75952
1878
na mnogo različitih načina.
01:17
From the standpoint of calculation,
29
77830
2709
Promotrimo li ih iz kuta računanja,
01:20
they're as easy to understand
30
80539
1677
lako ih je razumjeti kao i
01:22
as one plus one, which is two.
31
82216
2554
kao jedan plus jedan, što je dva..
01:24
Then one plus two is three,
32
84770
2003
Potom, jedan plus dva je tri,
01:26
two plus three is five, three plus five is eight,
33
86773
3014
dva plus tri je pet, tri plus pet je osam,
01:29
and so on.
34
89787
1525
i tako dalje.
01:31
Indeed, the person we call Fibonacci
35
91312
2177
Doista, osoba koju nazivamo Fibonacci
01:33
was actually named Leonardo of Pisa,
36
93489
3180
zvao se, zapravo, Leonardo od Pise,
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
a ovi se brojevi pojavljuju u njegovoj knjizi "Liber Abaci",
01:39
which taught the Western world
38
99722
1650
iz koje je Zapadni svijet naučio
01:41
the methods of arithmetic that we use today.
39
101372
2827
aritmetičke metode koje danas koristimo.
01:44
In terms of applications,
40
104199
1721
Što se primjene tiče,
01:45
Fibonacci numbers appear in nature
41
105920
2183
Fibonaccijevi brojevi se u prirodi pojavljuju
01:48
surprisingly often.
42
108103
1857
iznenađujuće često.
01:49
The number of petals on a flower
43
109960
1740
Broj latica na cvijetu
01:51
is typically a Fibonacci number,
44
111700
1862
obično je neki Fibonaccijev broj,
01:53
or the number of spirals on a sunflower
45
113562
2770
ili broj spirala na suncokretovom cvijetu,
01:56
or a pineapple
46
116332
1411
ili na ananasovom plodu
01:57
tends to be a Fibonacci number as well.
47
117743
2394
također teži jednom od Fibonaccijevih brojeva.
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
Ustvari, u mnogo drugih slučajeva nalazimo Fibonaccijeve brojeve,
02:03
but what I find most inspirational about them
49
123640
2560
ali ono što ja u njima smatram najviše nadahnjujućim
02:06
are the beautiful number patterns they display.
50
126200
2734
jesu prelijepi brojevni obrasci koje prikazuju.
02:08
Let me show you one of my favorites.
51
128934
2194
Pokazat ću vam jedan od svojih omiljenih.
02:11
Suppose you like to square numbers,
52
131128
2221
Pretpostavimo da volite kvadrirati brojeve,
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
i, iskreno, tko ne voli? (Smijeh)
02:16
Let's look at the squares
54
136040
2240
Pogledajmo kvadrate
02:18
of the first few Fibonacci numbers.
55
138280
1851
prvih nekoliko Fibonaccijevih brojeva.
02:20
So one squared is one,
56
140131
2030
Dakle, jedan na kvadrat je jedan,
02:22
two squared is four, three squared is nine,
57
142161
2317
dva na kvadrat je četiri, tri na kvadrat je devet,
02:24
five squared is 25, and so on.
58
144478
3173
pet na kvadrat je dvadeset i pet, i tako dalje.
02:27
Now, it's no surprise
59
147651
1901
Naravno, nije iznenađujuće
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
kad pribrajanjem uzastopnih Fibonaccijevih brojeva
02:32
you get the next Fibonacci number. Right?
61
152380
2032
dobijemo sljedeći Fibonaccijev broj. Zar ne?
02:34
That's how they're created.
62
154412
1395
Tako su i stvoreni.
02:35
But you wouldn't expect anything special
63
155807
1773
Međutim, ne biste očekivali ništa osobito
02:37
to happen when you add the squares together.
64
157580
3076
krenete li zbrajati kvadrate.
02:40
But check this out.
65
160656
1346
Ali, pogledajte ovo.
02:42
One plus one gives us two,
66
162002
2001
Jedan plus jedan daje dva,
02:44
and one plus four gives us five.
67
164003
2762
a jedan plus četiri daje pet.
02:46
And four plus nine is 13,
68
166765
2195
A četiri plus devet daju trinaest,
02:48
nine plus 25 is 34,
69
168960
3213
a devet plus 25 je 34,
02:52
and yes, the pattern continues.
70
172173
2659
i da, obrazac se nastavlja.
02:54
In fact, here's another one.
71
174832
1621
Zapravo, evo vam još jednog.
02:56
Suppose you wanted to look at
72
176453
1844
Pretpostavimo da ste poželjeli sagledati
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
zbrajanje kvadrata prvih nekoliko Fibonaccijevih brojeva.
03:00
Let's see what we get there.
74
180795
1608
Pogledajmo što ćemo dobiti.
03:02
So one plus one plus four is six.
75
182403
2139
Dakle jedan plus jedan plus četiri je šest.
03:04
Add nine to that, we get 15.
76
184542
3005
Dodamo li tome devet, dobit ćemo 15.
03:07
Add 25, we get 40.
77
187547
2213
Dodajmo 25 i dobivamo 40.
03:09
Add 64, we get 104.
78
189760
2791
Dodajmo 64 i dobivamo 104.
03:12
Now look at those numbers.
79
192551
1652
Razmotrimo te brojeve.
03:14
Those are not Fibonacci numbers,
80
194203
2384
To nisu Fiboonaccijevi brojevi,
03:16
but if you look at them closely,
81
196587
1879
ali promotrite li ih pažljivije,
03:18
you'll see the Fibonacci numbers
82
198466
1883
uočit ćete Fibonaccijeve brojeve
03:20
buried inside of them.
83
200349
2178
skrivene u njima.
03:22
Do you see it? I'll show it to you.
84
202527
2070
Vidite li ih? Pokazat ću vam.
03:24
Six is two times three, 15 is three times five,
85
204597
3733
Šest je dva puta tri, a 15 je tri puta pet,
03:28
40 is five times eight,
86
208330
2059
40 je pet puta osam,
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
dva, tri, pet, osam, volite me takvog tko sam?
03:33
(Laughter)
88
213317
1187
(Smijeh)
03:34
Fibonacci! Of course.
89
214504
2155
Fibonacci! Naravno.
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
Koliko god bilo zabavno otkrivati ovakve obrasce,
03:40
it's even more satisfying to understand
91
220442
2482
još je više ispunjavajuće uvidjeti
03:42
why they are true.
92
222924
1958
zašto je tome tako.
03:44
Let's look at that last equation.
93
224882
1889
Pogledajmo posljednju jednadžbu.
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
Zašto bi kvadrati brojeva jedan, jedan, dva, tri, pet i osam
03:50
add up to eight times 13?
95
230639
2545
u zbroju bili jednaki umnošku osam i 13?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
Objasnit ću vam ovim jednostavnim prikazom.
03:56
We'll start with a one-by-one square
97
236145
2687
Započnimo s kvadratom dimenzija jedan puta jedan
03:58
and next to that put another one-by-one square.
98
238832
4165
i do njega stavimo još jedan kvadrat dimenzija jedan puta jedan.
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
Zajedno, oni čine pravokutnik dimenzija jedan puta dva.
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
Ispod njih, nacrtat ću kvadrat dimenzija dva puta dva,
04:08
and next to that, a three-by-three square,
101
248954
2795
a do njih, kvadrat tri puta tri,.
04:11
beneath that, a five-by-five square,
102
251749
2001
Ispod njih, kvadrat pet puta pet,
04:13
and then an eight-by-eight square,
103
253750
1912
a potom kvadrat osam puta osam,
04:15
creating one giant rectangle, right?
104
255662
2572
kreirajući tako jedan ogroman pravokutnik, zar ne?
04:18
Now let me ask you a simple question:
105
258234
1916
Postavit ću vam jednostavno pitanje:
04:20
what is the area of the rectangle?
106
260150
3656
Kolika je površina pravokutnika?
04:23
Well, on the one hand,
107
263806
1971
S jedne strane,
04:25
it's the sum of the areas
108
265777
2530
ona je suma površina
04:28
of the squares inside it, right?
109
268307
1866
ucrtanih kvadrata, zar ne?
04:30
Just as we created it.
110
270173
1359
Tako je pravokutnik i nastao.
04:31
It's one squared plus one squared
111
271532
2172
Dakle, jedan na kvadrat plus jedan na kvadrat,
04:33
plus two squared plus three squared
112
273704
2233
plus dva na kvadrat, plus tri na kvadrat,
04:35
plus five squared plus eight squared. Right?
113
275937
2599
plus pet na kvadrat, plus osam na kvadrat.
04:38
That's the area.
114
278536
1857
To je površina.
04:40
On the other hand, because it's a rectangle,
115
280393
2326
S druge strane, budući da se radi o pravokutniku,
04:42
the area is equal to its height times its base,
116
282719
3648
površina je jednaka umnošku njegove visine i njegove baze,
04:46
and the height is clearly eight,
117
286367
2047
pri čemu je visina očito osam
04:48
and the base is five plus eight,
118
288414
2903
a baza je pet plus osam,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
što je sljedeći Fibonaccijev broj, 13.Zar ne?
04:55
So the area is also eight times 13.
120
295255
3363
Prema tome, površina je osam puta 13.
04:58
Since we've correctly calculated the area
121
298618
2262
Budući da smo ispravno izračunali površinu
05:00
two different ways,
122
300880
1687
na dva različita načina,
05:02
they have to be the same number,
123
302567
2172
to trebaju biti isti brojevi,
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
i etto zašto kvadrati brojeva jedan, jedan, dva, tri, pet i osam
05:08
add up to eight times 13.
125
308130
2291
zbrojeni daju osam puta 13.
05:10
Now, if we continue this process,
126
310421
2374
Nastavimo li ovaj postupak,
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
stvorit ćemo pravokutnike oblika 13 puta 21,
05:16
21 by 34, and so on.
128
316773
2394
21 puta 34, i tako dalje.
05:19
Now check this out.
129
319167
1409
A razmotrimo ovo.
05:20
If you divide 13 by eight,
130
320576
2193
Podijelimo li 13 sa osam,
05:22
you get 1.625.
131
322769
2043
dobit ćemo 1,625.
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
I dijelimo li veći broj s manjim brojem,
05:28
then these ratios get closer and closer
133
328239
2873
primijetit ćemo da se količnici sve više približavaju
05:31
to about 1.618,
134
331112
2653
broju 1,618,
05:33
known to many people as the Golden Ratio,
135
333765
3301
mnogim ljudima znanom kao Zlatni omjer,
05:37
a number which has fascinated mathematicians,
136
337066
2596
broj koji je stoljećima očaravao matematičare,
05:39
scientists and artists for centuries.
137
339662
3246
znanstvenike i umjetnike stoljećima.
05:42
Now, I show all this to you because,
138
342908
2231
Sve vam ovo pokazujem zato što,
05:45
like so much of mathematics,
139
345139
2025
kao toliko toga u matematici,
05:47
there's a beautiful side to it
140
347164
1967
ovo posjeduje osobitu ljepotu kojoj,
05:49
that I fear does not get enough attention
141
349131
2015
bojim se, ne poklanjamo dovoljno pozornosti
05:51
in our schools.
142
351146
1567
u našim školama.
05:52
We spend lots of time learning about calculation,
143
352713
2833
Mnogo vremena provodimo učeći o računanju,
05:55
but let's not forget about application,
144
355546
2756
ali ne zaboravimo na primjenu,
05:58
including, perhaps, the most important application of all,
145
358302
3454
uključujući, možda, i najvažniju od svih mogućih primjena,
06:01
learning how to think.
146
361756
2076
učiti kako misliti.
06:03
If I could summarize this in one sentence,
147
363832
1957
Kad bih ovo mogao sažeti u jednoj rečenici,
06:05
it would be this:
148
365789
1461
bila bi to ova:
06:07
Mathematics is not just solving for x,
149
367250
3360
Matematika ne služi samo za rješavanje x-a,
06:10
it's also figuring out why.
150
370610
2925
već i razotkrivanje onoga zašto.
06:13
Thank you very much.
151
373535
1815
Hvala vam puno.
06:15
(Applause)
152
375350
4407
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7