The magic of Fibonacci numbers | Arthur Benjamin | TED

5,765,945 views ใƒป 2013-11-08

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Ido Dekkers
00:12
So why do we learn mathematics?
0
12613
3039
ืžื“ื•ืข ืื ื• ืœื•ืžื“ื™ื ืžืชืžื˜ื™ืงื”?
00:15
Essentially, for three reasons:
1
15652
2548
ืขืงืจื•ื ื™ืช, ืžืฉืœื•ืฉ ืกื™ื‘ื•ืช:
00:18
calculation,
2
18200
1628
ืœื—ื™ืฉื•ื‘ื™ื,
00:19
application,
3
19828
1900
ืœื™ื™ืฉื•ืžื™ื,
00:21
and last, and unfortunately least
4
21728
2687
ื•ืื—ืจื•ืŸ, ื•ืœืžืจื‘ื” ื”ืฆืขืจ, ืœื ื—ื‘ื™ื‘,
00:24
in terms of the time we give it,
5
24415
2105
ืžื‘ื—ื™ื ืช ื”ื–ืžืŸ ืฉืื ื• ืžืงื“ื™ืฉื™ื ืœื•,
00:26
inspiration.
6
26520
1922
ืœืฉื ื”ืฉืจืื”.
00:28
Mathematics is the science of patterns,
7
28442
2272
ื”ืžืชืžื˜ื™ืงื” ื”ื™ื ืžื“ืข ื”ืชื‘ื ื™ื•ืช,
00:30
and we study it to learn how to think logically,
8
30714
3358
ื•ืื ื• ื—ื•ืงืจื™ื ืื•ืชื” ื›ื“ื™ ืœืœืžื•ื“ ืœื—ืฉื•ื‘ ื‘ืื•ืคืŸ ืœื•ื’ื™,
00:34
critically and creatively,
9
34072
2527
ื‘ื™ืงื•ืจืชื™ ื•ื™ืฆื™ืจืชื™,
00:36
but too much of the mathematics that we learn in school
10
36599
2926
ืื‘ืœ ื™ื•ืชืจ ืžื“ื™ ืžื”ืžืชืžื˜ื™ืงื” ืฉืื ื• ืœื•ืžื“ื™ื ื‘ื‘ื™ื”"ืก
00:39
is not effectively motivated,
11
39525
2319
ืื™ื ื” ื ืœืžื“ืช ืžืชื•ืš ืชืžืจื™ืฅ ื™ืขื™ืœ,
00:41
and when our students ask,
12
41844
1425
ื•ื›ืฉืชืœืžื™ื“ื™ื ื• ืฉื•ืืœื™ื,
00:43
"Why are we learning this?"
13
43269
1675
"ืžื“ื•ืข ืื ื• ืœื•ืžื“ื™ื ืืช ื–ื”?"
00:44
then they often hear that they'll need it
14
44944
1961
ื”ื ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืฉื•ืžืขื™ื, ืฉื”ื ื™ื–ื“ืงืงื• ืœื–ื”
00:46
in an upcoming math class or on a future test.
15
46905
3265
ื‘ืฉื™ืขื•ืจื™ ื”ืžืชืžื˜ื™ืงื” ื”ื‘ืื™ื ืื• ื‘ืื™ื–ื• ื‘ื—ื™ื ื” ื‘ืขืชื™ื“.
00:50
But wouldn't it be great
16
50170
1802
ื”ืื ืœื ื”ื™ื” ื ืคืœื
00:51
if every once in a while we did mathematics
17
51972
2518
ืื™ืœื• ืžื™ื“ื™ ืคืขื ื‘ืคืขื ื”ื™ื™ื• ืขื•ืกืงื™ื ื‘ืžืชืžื˜ื™ืงื”
00:54
simply because it was fun or beautiful
18
54490
2949
ืคืฉื•ื˜ ืžืฉื•ื ืฉื”ื™ื ื›ื™ื™ืคื™ืช ืื• ื™ืคื”,
00:57
or because it excited the mind?
19
57439
2090
ืื• ืžืฉื•ื ืฉื”ื™ื ืžืœื”ื™ื‘ื” ืืช ื”ืžื•ื—?
00:59
Now, I know many people have not
20
59529
1722
ืื ื™ ื™ื•ื“ืข ืฉืื ืฉื™ื ืจื‘ื™ื
01:01
had the opportunity to see how this can happen,
21
61251
2319
ืœื ื–ื›ื• ืœื”ื–ื“ืžื ื•ืช ืœืจืื•ืช ืื™ืš ื–ื” ื™ื™ืชื›ืŸ,
01:03
so let me give you a quick example
22
63570
1829
ืื– ื”ื‘ื” ื•ืืชืŸ ืœื›ื ื“ื•ื’ืžื” ื–ืจื™ื–ื”
01:05
with my favorite collection of numbers,
23
65399
2341
ื‘ืขื–ืจืช ืื•ืกืฃ ื”ืžืกืคืจื™ื ื”ืื”ื•ื‘ ืขืœื™,
01:07
the Fibonacci numbers. (Applause)
24
67740
2728
ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™. [ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
01:10
Yeah! I already have Fibonacci fans here.
25
70468
2052
ื›ืŸ! ื›ื‘ืจ ื™ืฉ ืœื™ ื›ืืŸ ืื•ื”ื“ื™ื ืฉืœ ืคื™ื‘ื•ื ืืฆ'ื™.
01:12
That's great.
26
72520
1316
ืžืขื•ืœื”!
01:13
Now these numbers can be appreciated
27
73836
2116
ืืช ื”ืžืกืคืจื™ื ื”ืืœื” ืืคืฉืจ ืœื”ืขืจื™ืš
01:15
in many different ways.
28
75952
1878
ื‘ื“ืจื›ื™ื ืจื‘ื•ืช.
01:17
From the standpoint of calculation,
29
77830
2709
ืžื”ื”ื™ื‘ื˜ ื”ื—ื™ืฉื•ื‘ื™,
01:20
they're as easy to understand
30
80539
1677
ื”ื ืงืœื™ื ืœื”ื‘ื ื”
01:22
as one plus one, which is two.
31
82216
2554
ื›ืžื• 1 ื•ืขื•ื“ 1 ืฉื–ื” 2,
01:24
Then one plus two is three,
32
84770
2003
,1+2=3
01:26
two plus three is five, three plus five is eight,
33
86773
3014
,2+3=5 ,3+5=8
01:29
and so on.
34
89787
1525
ื•ื›ืŸ ื”ืœืื”.
01:31
Indeed, the person we call Fibonacci
35
91312
2177
ืœืžืขืŸ ื”ืืžืช, ื”ืื“ื ืฉืื ื• ืžื›ื ื™ื ืคื™ื‘ื•ื ืืฆ'ื™
01:33
was actually named Leonardo of Pisa,
36
93489
3180
ืฉืžื• ื”ื™ื” ืœืžืขืฉื” ืœืื•ื ืจื“ื• ืžืคื™ื–ื”,
01:36
and these numbers appear in his book "Liber Abaci,"
37
96669
3053
ื•ื”ืžืกืคืจื™ื ื”ืืœื” ืžื•ืคื™ืขื™ื ื‘ืกืคืจื• "ืœื™ื‘ืจ ืื‘ืืฆ'ื™",
01:39
which taught the Western world
38
99722
1650
ืฉืœื™ืžื“ ืืช ื”ืขื•ืœื ื”ืžืขืจื‘ื™
01:41
the methods of arithmetic that we use today.
39
101372
2827
ืืช ื”ืฉื™ื˜ื•ืช ื”ื—ืฉื‘ื•ื ื™ื•ืช ื‘ื”ืŸ ืื ื• ืžืฉืชืžืฉื™ื ื›ื™ื•ื.
01:44
In terms of applications,
40
104199
1721
ืžื‘ื—ื™ื ื” ื™ื™ืฉื•ืžื™ืช,
01:45
Fibonacci numbers appear in nature
41
105920
2183
ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™ ืžื•ืคื™ืขื™ื ื‘ื˜ื‘ืข
01:48
surprisingly often.
42
108103
1857
ืœืขืชื™ื ืชื›ื•ืคื•ืช ืขื“ ืœื”ืคืชื™ืข.
01:49
The number of petals on a flower
43
109960
1740
ืžืกืคืจ ืขืœื™ ื”ื›ื•ืชืจืช ื‘ืคืจื—
01:51
is typically a Fibonacci number,
44
111700
1862
ื”ื ืžืกืคืจ ืคื™ื‘ื•ื ืืฆ'ื™ ืื•ืคื™ื™ื ื™,
01:53
or the number of spirals on a sunflower
45
113562
2770
ืื• ืžืกืคืจ ื”ืกืคื™ืจืœื•ืช ื‘ื—ืžื ื™ื”
01:56
or a pineapple
46
116332
1411
ืื• ื‘ืื ื ืก
01:57
tends to be a Fibonacci number as well.
47
117743
2394
ื ื•ื˜ื™ื ื’ื ื”ื ืœื”ื™ื•ืช ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™.
02:00
In fact, there are many more applications of Fibonacci numbers,
48
120137
3503
ืœืžืขืฉื”, ื™ืฉ ืขื•ื“ ื™ื™ืฉื•ืžื™ื ืจื‘ื™ื ืœืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™,
02:03
but what I find most inspirational about them
49
123640
2560
ืื‘ืœ ืžื” ืฉื‘ืขื™ื ื™ ื”ื›ื™ ืžืขื•ืจืจ ื”ืฉืจืื” ื‘ื”ื
02:06
are the beautiful number patterns they display.
50
126200
2734
ื”ื•ื ื”ืชื‘ื ื™ื•ืช ื”ืžืกืคืจื™ื•ืช ื”ื™ืคื”ืคื™ื•ืช ืฉื”ื ืžืคื’ื™ื ื™ื.
02:08
Let me show you one of my favorites.
51
128934
2194
ื”ื‘ื” ื•ืืจืื” ืœื›ื ืื—ืช ืžื”ืื”ื•ื‘ื•ืช ืขืœื™.
02:11
Suppose you like to square numbers,
52
131128
2221
ื ื ื™ื— ืฉืืชื ืื•ื”ื‘ื™ื ืœื”ื›ืคื™ืœ ืžืกืคืจื™ื ื‘ืจื™ื‘ื•ืข,
02:13
and frankly, who doesn't? (Laughter)
53
133349
2675
ื•ืœืžืขืŸ ื”ืืžืช, ืžื™ ืœื? [ืฆื—ื•ืง]
02:16
Let's look at the squares
54
136040
2240
ื”ื‘ื” ื ืจืื” ืืช ื”ื—ื–ืงื•ืช ื”ืฉื ื™ื•ืช
02:18
of the first few Fibonacci numbers.
55
138280
1851
ืฉืœ ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™ ื”ืจืืฉื•ื ื™ื.
02:20
So one squared is one,
56
140131
2030
ืื—ื“ ื‘ืจื™ื‘ื•ืข ื”ื•ื ืื—ื“,
02:22
two squared is four, three squared is nine,
57
142161
2317
ืฉืชื™ื™ื ื‘ืจื™ื‘ื•ืข ืฉื•ื•ื” ืืจื‘ืข, ืฉืœื•ืฉ ื‘ืจื™ื‘ื•ืข ืฉื•ื•ื” ืชืฉืข,
02:24
five squared is 25, and so on.
58
144478
3173
ื—ืžืฉ ื‘ืจื™ื‘ื•ืข ืฉื•ื•ื” 25, ื•ื›ืŸ ื”ืœืื”.
02:27
Now, it's no surprise
59
147651
1901
ืื– ืœื ืžืคืชื™ืข
02:29
that when you add consecutive Fibonacci numbers,
60
149552
2828
ืฉื›ืืฉืจ ืžื—ื‘ืจื™ื ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™ ืจืฆื™ืคื™ื,
02:32
you get the next Fibonacci number. Right?
61
152380
2032
ืžืงื‘ืœื™ื ืืช ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™ ื”ื‘ืื™ื ื‘ืกื“ืจื”, ื ื›ื•ืŸ?
02:34
That's how they're created.
62
154412
1395
ื›ืš ื”ื ื ื•ืฆืจื™ื.
02:35
But you wouldn't expect anything special
63
155807
1773
ืื‘ืœ ืœื ื”ื™ื™ืชื ืžืฆืคื™ื ืฉื™ืงืจื” ืžืฉื”ื• ืžื™ื•ื—ื“
02:37
to happen when you add the squares together.
64
157580
3076
ื›ืฉืชื—ื‘ืจื• ืืช ื”ืจื™ื‘ื•ืขื™ื.
02:40
But check this out.
65
160656
1346
ืื‘ืœ ืชืจืื• ืžื” ื–ื”:
02:42
One plus one gives us two,
66
162002
2001
1+1=2
02:44
and one plus four gives us five.
67
164003
2762
1+4=5
02:46
And four plus nine is 13,
68
166765
2195
4+9=13
02:48
nine plus 25 is 34,
69
168960
3213
9+25=34
02:52
and yes, the pattern continues.
70
172173
2659
ื›ืŸ, ื”ื“ืคื•ืก ื”ื–ื” ื ืžืฉืš.
02:54
In fact, here's another one.
71
174832
1621
ื‘ืขืฆื, ื”ื ื” ืขื•ื“ ืื—ื“.
02:56
Suppose you wanted to look at
72
176453
1844
ื ื ื™ื— ืฉืจื•ืฆื™ื ืœื‘ื“ื•ืง
02:58
adding the squares of the first few Fibonacci numbers.
73
178297
2498
ืืช ื—ื™ื‘ื•ืจ ื”ืจื™ื‘ื•ืขื™ื ืฉืœ ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™ ื”ืจืืฉื•ื ื™ื.
03:00
Let's see what we get there.
74
180795
1608
ื”ื‘ื” ื•ื ืจืื” ืžื” ื ืงื‘ืœ.
03:02
So one plus one plus four is six.
75
182403
2139
1 + 1 + 4 = 6.
03:04
Add nine to that, we get 15.
76
184542
3005
ืชื•ืกื™ืคื• ืœื–ื” 9, ื•ื ืงื‘ืœ 15.
03:07
Add 25, we get 40.
77
187547
2213
ืชื•ืกื™ืคื• 25, ื•ื ืงื‘ืœ 40.
03:09
Add 64, we get 104.
78
189760
2791
ืชื•ืกื™ืคื• 64, ื•ื ืงื‘ืœ 104.
03:12
Now look at those numbers.
79
192551
1652
ื›ืขืช ื”ื‘ื™ื˜ื• ื‘ืžืกืคืจื™ื ื”ืืœื”.
03:14
Those are not Fibonacci numbers,
80
194203
2384
ืืœื” ืื™ื ื ืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™,
03:16
but if you look at them closely,
81
196587
1879
ืืš ืื ืชื‘ื—ื ื• ืื•ืชื ื”ื™ื˜ื‘,
03:18
you'll see the Fibonacci numbers
82
198466
1883
ืชื’ืœื• ืฉืžืกืคืจื™ ืคื™ื‘ื•ื ืืฆ'ื™
03:20
buried inside of them.
83
200349
2178
ื˜ืžื•ื ื™ื ื‘ืชื•ื›ื.
03:22
Do you see it? I'll show it to you.
84
202527
2070
ืจื•ืื™ื ืื•ืชื? ื”ื‘ื” ื•ืืจืื” ืœื›ื ืื•ืชื.
03:24
Six is two times three, 15 is three times five,
85
204597
3733
6 ืฉื•ื•ื” 2X3, 15 ืฉื•ื•ื” 3X5,
03:28
40 is five times eight,
86
208330
2059
40 ืฉื•ื•ื” 5X8,
03:30
two, three, five, eight, who do we appreciate?
87
210389
2928
"ืฉืชื™ื™ื, ืฉืœื•ืฉ, ื—ืžืฉ, ืฉืžื•ื ื” ืžื™ ืื•ื”ื‘ ืืช ื–ื” ื›ืžื•ื ื™?"
03:33
(Laughter)
88
213317
1187
[ืฆื—ื•ืง]
03:34
Fibonacci! Of course.
89
214504
2155
ืคื™ื‘ื•ื ืืฆ'ื™! ื›ืžื•ื‘ืŸ.
03:36
Now, as much fun as it is to discover these patterns,
90
216659
3783
ื›ื›ืœ ืฉื–ื” ื›ื™ืฃ ืœื’ืœื•ืช ืืช ื”ืชื‘ื ื™ื•ืช ื”ืืœื”,
03:40
it's even more satisfying to understand
91
220442
2482
ื”ืจื™ ืฉืขื•ื“ ื™ื•ืชืจ ืžืกืคืง ืœื”ื‘ื™ืŸ
03:42
why they are true.
92
222924
1958
ืžื“ื•ืข ื”ืŸ ืืžื™ืชื™ื•ืช.
03:44
Let's look at that last equation.
93
224882
1889
ื ื‘ื™ื˜ ื‘ืžืฉื•ื•ืื” ื”ืื—ืจื•ื ื” ื”ื–ื•.
03:46
Why should the squares of one, one, two, three, five and eight
94
226771
3868
ืžื“ื•ืข ื”ืจื™ื‘ื•ืขื™ื ืฉืœ 1, 1, 2, 3, 5 ื•-8
03:50
add up to eight times 13?
95
230639
2545
ืžืกืชื›ืžื™ื ื‘8X13?
03:53
I'll show you by drawing a simple picture.
96
233184
2961
ืื“ื’ื™ื ืœื›ื ื‘ืขื–ืจืช ืฆื™ื•ืจ ืคืฉื•ื˜.
03:56
We'll start with a one-by-one square
97
236145
2687
ื ืชื—ื™ืœ ืขื ืจื™ื‘ื•ืข ืฉืœ 1 ืขืœ 1
03:58
and next to that put another one-by-one square.
98
238832
4165
ื•ืœื™ื“ื• ื ืฆื™ื‘ ืจื™ื‘ื•ืข ื ื•ืกืฃ ืฉืœ 1 ืขืœ 1.
04:02
Together, they form a one-by-two rectangle.
99
242997
3408
ื‘ื™ื—ื“ ื”ื ืžื”ื•ื•ื™ื ืžืœื‘ืŸ ืฉืœ 1 ืขืœ 2.
04:06
Beneath that, I'll put a two-by-two square,
100
246405
2549
ืžืชื—ืชื™ื• ืืฆื™ื‘ ืจื™ื‘ื•ืข ืฉืœ 2 ืขืœ 2,
04:08
and next to that, a three-by-three square,
101
248954
2795
ื•ืœื™ื“ื• - ืจื™ื‘ื•ืข ืฉืœ 3 ืขืœ 3,
04:11
beneath that, a five-by-five square,
102
251749
2001
ืžืœืžื˜ื”, ืจื™ื‘ื•ืข ืฉืœ 5 ืขืœ 5,
04:13
and then an eight-by-eight square,
103
253750
1912
ื•ืขื•ื“ ืจื™ื‘ื•ืข ืฉืœ 8 ืขืœ 8,
04:15
creating one giant rectangle, right?
104
255662
2572
ื•ืงื™ื‘ืœื ื• ืžืœื‘ืŸ ืขื ืงื™ ืื—ื“, ื ื›ื•ืŸ?
04:18
Now let me ask you a simple question:
105
258234
1916
ื›ืขืช ืืฉืืœ ืืชื›ื ืฉืืœื” ืคืฉื•ื˜ื”:
04:20
what is the area of the rectangle?
106
260150
3656
ืžื”ื• ืฉื˜ื— ื”ืžืœื‘ืŸ?
04:23
Well, on the one hand,
107
263806
1971
ืžืฆื“ ืื—ื“,
04:25
it's the sum of the areas
108
265777
2530
ื–ื”ื• ืกื›ื•ื ื”ืฉื˜ื—ื™ื
04:28
of the squares inside it, right?
109
268307
1866
ืฉืœ ื”ืจื™ื‘ื•ืขื™ื ืฉื‘ืชื•ื›ื•, ื ื›ื•ืŸ?
04:30
Just as we created it.
110
270173
1359
ื‘ื“ื™ื•ืง ื›ืคื™ ืฉืฉืจื˜ื˜ื ื• ืื•ืชื.
04:31
It's one squared plus one squared
111
271532
2172
1 ื‘ืจื™ื‘ื•ืข ื•ืขื•ื“ 1 ื‘ืจื™ื‘ื•ืข
04:33
plus two squared plus three squared
112
273704
2233
ื•ืขื•ื“ 2 ื‘ืจื™ื‘ื•ืข ื•ืขื•ื“ 3 ื‘ืจื™ื‘ื•ืข
04:35
plus five squared plus eight squared. Right?
113
275937
2599
ื•ืขื•ื“ 5 ื‘ืจื™ื‘ื•ืข ื•ืขื•ื“ 8 ื‘ืจื™ื‘ื•ืข, ื ื›ื•ืŸ?
04:38
That's the area.
114
278536
1857
ื–ื”ื• ื”ืฉื˜ื—.
04:40
On the other hand, because it's a rectangle,
115
280393
2326
ืžืฆื“ ืฉื ื™, ื”ื™ื•ืช ืฉื–ื” ืžืœื‘ืŸ,
04:42
the area is equal to its height times its base,
116
282719
3648
ื”ืฉื˜ื— ืฉื•ื•ื” ืœื‘ืกื™ืก ื›ืคื•ืœ ื”ื’ื•ื‘ื”,
04:46
and the height is clearly eight,
117
286367
2047
ื•ื”ื’ื•ื‘ื” ื”ื•ื ื‘ื‘ื™ืจื•ืจ 8,
04:48
and the base is five plus eight,
118
288414
2903
ื•ื”ื‘ืกื™ืก ื”ื•ื 5 + 8,
04:51
which is the next Fibonacci number, 13. Right?
119
291317
3938
ื•ื–ื”ื• ืžืกืคืจ ืคื™ื‘ื•ื ืืฆ'ื™ ื”ื‘ื: 13, ื ื›ื•ืŸ?
04:55
So the area is also eight times 13.
120
295255
3363
ืื– ื”ืฉื˜ื— ื”ื•ื ื’ื 13X8.
04:58
Since we've correctly calculated the area
121
298618
2262
ื”ื™ื•ืช ืฉื—ื™ืฉื‘ื ื• ื ื›ื•ืŸ ืืช ื”ืฉื˜ื—
05:00
two different ways,
122
300880
1687
ื‘ืฉืชื™ ื“ืจื›ื™ื ืฉื•ื ื•ืช,
05:02
they have to be the same number,
123
302567
2172
ืžืŸ ื”ืกืชื ื–ื” ืฆืจื™ืš ืœื”ื™ื•ืช ืื•ืชื• ื”ืžืกืคืจ,
05:04
and that's why the squares of one, one, two, three, five and eight
124
304739
3391
ื•ื–ื• ื”ืกื™ื‘ื” ืฉื”ืจื™ื‘ื•ืขื™ื ืฉืœ 1, 1, 2, 3, 5 ื•-8,
05:08
add up to eight times 13.
125
308130
2291
ืžืกืชื›ืžื™ื ื‘-13X8.
05:10
Now, if we continue this process,
126
310421
2374
ื›ืขืช, ืื ื ืžืฉื™ืš ื‘ืชื”ืœื™ืš ื–ื”,
05:12
we'll generate rectangles of the form 13 by 21,
127
312795
3978
ื ื™ื™ืฆืจ ืžืœื‘ื ื™ื ื‘ืฆื•ืจืช 13 ืขืœ 21,
05:16
21 by 34, and so on.
128
316773
2394
21 ืขืœ 34, ื•ื›ื•'.
05:19
Now check this out.
129
319167
1409
ื›ืขืช ื”ื‘ื™ื˜ื• ื‘ื–ื”.
05:20
If you divide 13 by eight,
130
320576
2193
ืื ืžื—ืœืงื™ื 13 ื‘-8,
05:22
you get 1.625.
131
322769
2043
ืžืงื‘ืœื™ื 1.625.
05:24
And if you divide the larger number by the smaller number,
132
324812
3427
ื•ืื ืžื—ืœืงื™ื ืืช ื”ืžืกืคืจ ื”ื’ื“ื•ืœ ื‘ืžืกืคืจ ื”ืงื˜ืŸ ื™ื•ืชืจ,
05:28
then these ratios get closer and closer
133
328239
2873
ื”ื™ื—ืกื™ื ื”ืืœื” ื ืขืฉื™ื ืงืจื•ื‘ื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ
05:31
to about 1.618,
134
331112
2653
ืœ-1.618 ื‘ืขืจืš,
05:33
known to many people as the Golden Ratio,
135
333765
3301
ื”ืžื•ื›ืจ ืœืจื‘ื™ื ื›"ื—ื™ืชื•ืš ื”ื–ื”ื‘",
05:37
a number which has fascinated mathematicians,
136
337066
2596
ืžืกืคืจ ืฉืจื™ืชืง ืืช ื“ืžื™ื•ืŸ ื”ืžืชืžื˜ื™ืงืื™ื,
05:39
scientists and artists for centuries.
137
339662
3246
ื”ืžื“ืขื ื™ื ื•ื”ืืžื ื™ื ื‘ืžืฉืš ืžืื•ืช ื‘ืฉื ื™ื.
05:42
Now, I show all this to you because,
138
342908
2231
ื•ื”ืกื™ื‘ื” ืฉืื ื™ ืžืจืื” ืœื›ื ืืช ื›ืœ ื–ื” ื”ื™ื,
05:45
like so much of mathematics,
139
345139
2025
ืฉื›ืžื• ื‘ืชื—ื•ืžื™ ืžืชืžื˜ื™ืงื” ืจื‘ื™ื,
05:47
there's a beautiful side to it
140
347164
1967
ื™ืฉ ืœื›ืš ืฆื“ ื™ืคื”
05:49
that I fear does not get enough attention
141
349131
2015
ืฉื—ื•ืฉืฉื ื™ ืฉืื™ื ื• ื–ื•ื›ื” ืœืชืฉื•ืžืช-ืœื‘ ืžืกืคืงืช
05:51
in our schools.
142
351146
1567
ื‘ื‘ืชื™ ื”ืกืคืจ ืฉืœื ื•.
05:52
We spend lots of time learning about calculation,
143
352713
2833
ืื ื• ืžืงื“ื™ืฉื™ื ื”ืžื•ืŸ ื–ืžืŸ ืœืœื™ืžื•ื“ ื”ื—ื™ืฉื•ื‘,
05:55
but let's not forget about application,
144
355546
2756
ืื‘ืœ ื”ื‘ื” ืœื ื ืฉื›ื— ืืช ื”ื™ื™ืฉื•ื,
05:58
including, perhaps, the most important application of all,
145
358302
3454
ื›ื•ืœืœ, ืื•ืœื™, ื”ื™ื™ืฉื•ื ื”ื—ืฉื•ื‘ ืžื›ืœ,
06:01
learning how to think.
146
361756
2076
ืœืœืžื•ื“ ืœื—ืฉื•ื‘.
06:03
If I could summarize this in one sentence,
147
363832
1957
ืื ืื•ื›ืœ ืœืกื›ื ื–ืืช ื‘ืžืฉืคื˜ ืื—ื“,
06:05
it would be this:
148
365789
1461
ื”ืจื™ ื–ื”:
06:07
Mathematics is not just solving for x,
149
367250
3360
ื”ืžืชืžื˜ื™ืงื” ื”ื™ื ืœื ืจืง ืœืคืชื•ืจ ื›ื“ื™ ืœืžืฆื•ื ืืช "ืื™ืงืก"
06:10
it's also figuring out why.
150
370610
2925
ืืœื ื’ื ืœื”ื‘ื™ืŸ ืืช "ื•ื•ืื™" (ืœืžื”).
06:13
Thank you very much.
151
373535
1815
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
06:15
(Applause)
152
375350
4407
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7