Jean-Baptiste Michel: The mathematics of history

93,526 views ใƒป 2012-05-15

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Timothy Covell Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Shahar Kaiser
00:15
So it turns out that mathematics is a very powerful language.
1
15260
3671
ืื– ืžืกืชื‘ืจ ืฉืžืชืžื˜ื™ืงื” ื”ื™ื ืฉืคื” ื—ื–ืงื” ืžืื“.
00:18
It has generated considerable insight in physics,
2
18931
2312
ื”ื™ื ื™ืฆืจื” ื”ื‘ื ื” ืžืฉืžืขื•ืชื™ืช ื‘ืคื™ืกื™ืงื”,
00:21
in biology and economics,
3
21243
2100
ื‘ื‘ื™ื•ืœื•ื’ื™ื” ื•ื‘ื›ืœื›ืœื”,
00:23
but not that much in the humanities and in history.
4
23343
2817
ืื‘ืœ ืœื ื›ืœ ื›ืš ื”ืจื‘ื” ื‘ืžืงืฆื•ืขื•ืช ื”ื”ื•ืžื ื™ื™ื ื•ื‘ื”ืกื˜ื•ืจื™ื”.
00:26
I think there's a belief that it's just impossible,
5
26160
2283
ืื ื™ ื—ื•ืฉื‘ ืฉืงื™ื™ืžืช ืืžื•ื ื” ืฉื–ื” ืคืฉื•ื˜ ื‘ืœืชื™ ืืคืฉืจื™,
00:28
that you cannot quantify the doings of mankind,
6
28443
2646
ืฉืื™ ืืคืฉืจ ืœื›ืžืช ืืช ืžืขืฉื™ ื”ืื ื•ืฉื•ืช,
00:31
that you cannot measure history.
7
31089
2519
ืฉืื™ ืืคืฉืจ ืœืžื“ื•ื“ ืืช ื”ื”ืกื˜ื•ืจื™ื”.
00:33
But I don't think that's right.
8
33608
1527
ืื‘ืœ ืื ื™ ืœื ื—ื•ืฉื‘ ืฉื–ื” ื ื›ื•ืŸ.
00:35
I want to show you a couple of examples why.
9
35135
2042
ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื ื›ืžื” ื“ื•ื’ืžืื•ืช ืœืžื”.
00:37
So my collaborator Erez and I were considering the following fact:
10
37177
2958
ืื– ื”ืฉื•ืชืฃ ืฉืœื™ ืืจื– ื•ืื ื™ ืฉืงืœื ื• ืืช ื”ืขื•ื‘ื“ื” ื”ื‘ืื”:
00:40
that two kings separated by centuries
11
40135
2729
ืฉืฉื ื™ ืžืœื›ื™ื ืžื•ืคืจื“ื™ื ื‘ืžืื•ืช ืฉื ื™ื
00:42
will speak a very different language.
12
42864
1767
ื™ื“ื‘ืจื• ื‘ืฉืคื” ืžืžืฉ ืฉื•ื ื”.
00:44
That's a powerful historical force.
13
44631
2304
ื–ื” ื›ื•ื— ื”ืกื˜ื•ืจื™ ืžืžืฉ ื—ื–ืง.
00:46
So the king of England, Alfred the Great,
14
46935
1773
ืื– ืžืœืš ืื ื’ืœื™ื”, ืืœืคืจื“ ื”ื’ื“ื•ืœ,
00:48
will use a vocabulary and grammar
15
48708
1640
ื™ืฉืชืžืฉ ื‘ืื•ืฆืจ ืžื™ืœื™ื ื•ืชื—ื‘ื™ืจ
00:50
that is quite different from the king of hip hop, Jay-Z.
16
50348
3700
ืฉืžืื•ื“ ืฉื•ื ื™ื ืžืžืœืš ื”ื”ื™ืค ื”ื•ืค, ื’'ื™ื™-ื–ื™.
00:54
(Laughter)
17
54048
1666
(ืฆื—ื•ืง)
00:55
Now it's just the way it is.
18
55714
2171
ืขื›ืฉื™ื• ื–ื” ืคืฉื•ื˜ ื›ืš.
00:57
Language changes over time, and it's a powerful force.
19
57885
2292
ื”ืฉืคื” ืžืฉืชื ื” ืœืื•ืจืš ื”ืฉื ื™ื, ื•ื–ื” ื›ื•ื— ื—ื–ืง.
01:00
So Erez and I wanted to know more about that.
20
60177
2287
ืื– ืืจื– ื•ืื ื™ ืจืฆื™ื ื• ืœื“ืขืช ื™ื•ืชืจ ืขืœ ื–ื”.
01:02
So we paid attention to a particular grammatical rule, past-tense conjugation.
21
62464
3657
ืื– ืฉืžื ื• ืœื‘ ืœื—ื•ืง ื“ืงื“ื•ืงื™ ืžืกื•ื™ื™ื, ื”ื˜ื™ื” ื‘ืœืฉื•ืŸ ืขื‘ืจ.
01:06
So you just add "ed" to a verb at the end to signify the past.
22
66121
3264
ืื– ืืชื ืคืฉื•ื˜ ืžื•ืกื™ืคื™ื "ed" ื‘ืกื•ืฃ ืœืคื•ืขืœ ื›ื“ื™ ืœืกืžืœ ืขื‘ืจ.
01:09
"Today I walk. Yesterday I walked."
23
69385
1927
"ื”ื™ื•ื ืื ื™ ื”ื•ืœืš. ืืชืžื•ืœ ื”ืœื›ืชื™."
01:11
But some verbs are irregular.
24
71312
1344
ืื‘ืœ ื›ืžื” ืคืขืœื™ื ื™ื•ืฆืื™ ื“ื•ืคืŸ.
01:12
"Yesterday I thought."
25
72656
1396
"ืืชืžื•ืœ ื—ืฉื‘ืชื™."
01:14
Now what's interesting about that
26
74052
1666
ืขื›ืฉื™ื• ืžื” ืฉืžืขื ื™ื™ืŸ ื‘ื–ื”
01:15
is irregular verbs between Alfred and Jay-Z have become more regular.
27
75718
3830
ื–ื” ืฉืคืขืœื™ื ื—ืจื™ื’ื™ื ื‘ื™ืŸ ืืœืคืจื“ ื•ื’'ื™ื™-ื–ื™ ื”ืคื›ื• ืœื™ื•ืชืจ ืจื’ื™ืœื™ื.
01:19
Like the verb "to wed" that you see here has become regular.
28
79548
2735
ื›ืžื• ื”ืคื•ืขืœ "ืœื”ืชื—ืชืŸ" ืฉืืชื ืจื•ืื™ื ืคื” ื”ืคืš ืœืจื’ื™ืœ.
01:22
So Erez and I followed the fate of over 100 irregular verbs
29
82283
4022
ืื– ืืจื– ื•ืื ื™ ืขืงื‘ื ื• ืื—ืจื™ ื”ื’ื•ืจืœ ืฉืœ ื™ื•ืชืจ ืžืžืื” ืคืขืœื™ื ื—ืจื™ื’ื™ื
01:26
through 12 centuries of English language,
30
86305
1919
ื‘-12 ืžืื•ืช ืฉืœ ื”ืฉืคื” ื”ืื ื’ืœื™ืช,
01:28
and we saw that there's actually a very simple mathematical pattern
31
88224
2911
ื•ืจืื™ื ื• ืฉืœืžืขืฉื” ื™ืฉ ืชื‘ื ื™ืช ืžืชืžื˜ื™ืช ืžืื•ื“ ืคืฉื•ื˜ื”
01:31
that captures this complex historical change,
32
91135
2542
ืฉืžืจืื” ืืช ื”ืฉื™ื ื•ื™ ื”ื”ืกื˜ื•ืจื™ ื”ืžื•ืจื›ื‘ ื”ื–ื”,
01:33
namely, if a verb is 100 times more frequent than another,
33
93677
3660
ื‘ืขื™ืงืจ, ืื ื™ืฉ ืคื•ืขืœ ืฉื ืคื•ืฅ ืคื™ 100 ืžืื—ืจ,
01:37
it regularizes 10 times slower.
34
97337
2665
ื”ื•ื ื”ื•ืคืš ืœืจื’ื™ืœ ืคื™ 10 ื™ื•ืชืจ ืœืื˜.
01:40
That's a piece of history, but it comes in a mathematical wrapping.
35
100002
3935
ื–ื• ืคื™ืกื” ืฉืœ ื”ื™ืกื˜ืจื™ื”, ืื‘ืœ ื”ื™ื ืžื’ื™ืขื” ื‘ืขื˜ื™ืคื” ืžืชืžื˜ื™ืช.
01:43
Now in some cases math can even help explain,
36
103937
3654
ืื ื›ืŸ, ื‘ื—ืœืง ืžื”ืžืงืจื™ื ืžืชืžื˜ื™ืงื” ื™ื›ื•ืœื” ืœืขื–ื•ืจ ืœื”ืกื‘ื™ืจ,
01:47
or propose explanations for, historical forces.
37
107591
2879
ืื• ืœื”ืฆื™ืข ื”ืกื‘ืจ, ืœื›ื•ื—ื•ืช ื”ืกื˜ื•ืจื™ื™ื.
01:50
So here Steve Pinker and I
38
110470
1832
ืื– ื›ืืŸ ืกื˜ื™ื‘ ืคื™ื ืงืจ ื•ืื ื™
01:52
were considering the magnitude of wars during the last two centuries.
39
112302
3852
ื—ืงืจื ื• ืืช ืขื•ืฆืžืช ื”ืžืœื—ืžื•ืช ื‘ืฉืชื™ ื”ืžืื•ืช ื”ืื—ืจื•ื ื•ืช.
01:56
There's actually a well-known regularity to them
40
116154
2495
ื™ืฉ ืœื”ืŸ ืœืžืขืฉื” ืื—ื™ื“ื•ืช ื™ื“ื•ืขื” ืžืื•ื“
01:58
where the number of wars that are 100 times deadlier
41
118649
3422
ืฉืžืกืคืจ ื”ืžืœื—ืžื•ืช ืฉืงื˜ืœื ื™ื•ืช ืคื™ 100
02:02
is 10 times smaller.
42
122071
1952
ืงื˜ืŸ ืคื™ 10.
02:04
So there are 30 wars that are about as deadly as the Six Days War,
43
124023
3344
ืื– ื™ืฉ ื‘ืขืจืš 30 ืžืœื—ืžื•ืช ืฉืงื˜ืœื ื™ื•ืช ื‘ืขืจืš ื›ืžื• ืžืœื—ืžืช ืฉืฉืช ื”ื™ืžื™ื,
02:07
but there's only four wars that are 100 times deadlier --
44
127367
2820
ืื‘ืœ ื™ืฉ ืจืง ืืจื‘ืข ืฉืงื˜ืœื ื™ื•ืช ืคื™ 100 --
02:10
like World War I.
45
130187
1977
ื›ืžื• ืžืœื—ืžืช ื”ืขื•ืœื ื”ืจืืฉื•ื ื”.
02:12
So what kind of historical mechanism can produce that?
46
132164
2923
ืื– ืื™ื–ื” ืžื ื’ื ื•ืŸ ื”ื™ืกื˜ื•ืจื™ ื™ื›ื•ืœ ืœื™ื™ืฆืจ ืืช ื–ื”?
02:15
What's the origin of this?
47
135087
2000
ืžื” ื”ืžืงื•ืจ ืฉืœ ื–ื”?
02:17
So Steve and I, through mathematical analysis,
48
137087
2265
ืื– ืกื˜ื™ื‘ ื•ืื ื™, ื“ืจืš ืื ืœื™ื–ื” ืžืชืžื˜ื™ืช,
02:19
propose that there's actually a very simple phenomenon at the root of this,
49
139352
4241
ื”ืฆืขื ื• ืฉื™ืฉ ืœืžืขืฉื” ืชื•ืคืขื” ืคืฉื•ื˜ื” ืœืžื“ื™ ื‘ืฉื•ืจืฉ ื”ืขื ื™ื™ืŸ,
02:23
which lies in our brains.
50
143593
1690
ืฉื ืžืฆืืช ื‘ืžื•ื—ื ื•.
02:25
This is a very well-known feature
51
145283
2019
ื–ื• ืชื›ื•ื ื” ืžืื•ื“ ื™ื“ื•ืขื”
02:27
in which we perceive quantities in relative ways --
52
147302
2975
ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื—ื™ืŸ ื‘ื›ืžื•ื™ื•ืช ื‘ื“ืจื›ื™ื ื™ื—ืกื™ื•ืช --
02:30
quantities like the intensity of light or the loudness of a sound.
53
150277
3716
ื›ืžื•ื™ื•ืช ื›ืžื• ืขื•ืฆืžืช ืื•ืจ ืื• ืขื•ืฆืžืช ืฆืœื™ืœ.
02:33
For instance, committing 10,000 soldiers to the next battle sounds like a lot.
54
153993
5309
ืœื“ื•ื’ืžื”, ื”ืงืฆืืช 10,000 ื—ื™ื™ืœื™ื ืœืงืจื‘ ื”ื‘ื ื ืฉืžืขืช ื›ื”ืจื‘ื”.
02:39
It's relatively enormous if you've already committed 1,000 soldiers previously.
55
159302
3444
ื–ื” ื™ื—ืกื™ืช ืขืฆื•ื ืื ื›ื‘ืจ ื”ืงืฆืชื 1,000 ืœืคื ื™ ื›ืŸ.
02:42
But it doesn't sound so much,
56
162746
1827
ืื‘ืœ ื–ื” ืœื ื ืฉืžืข ื”ืจื‘ื”,
02:44
it's not relatively enough, it won't make a difference
57
164573
3020
ื–ื” ืœื ื”ืจื‘ื” ื™ื—ืกื™ืช, ื–ื” ืœื ื™ืฉื ื”
02:47
if you've already committed 100,000 soldiers previously.
58
167593
2952
ืื ื›ื‘ืจ ื”ืงืฆืชื 100,000 ื—ื™ื™ืœื™ื ืงื•ื“ื ืœื›ืŸ.
02:50
So you see that because of the way we perceive quantities,
59
170545
3613
ืื– ืืชื ืจื•ืื™ื ืืช ื–ื” ื‘ื’ืœืœ ื”ื“ืจืš ื‘ื” ืื ื—ื ื• ืงื•ืœื˜ื™ื ื›ืžื•ื™ื•ืช,
02:54
as the war drags on,
60
174158
1767
ื›ืฉื”ืžืœื—ืžื” ื ืžืฉื›ืช,
02:55
the number of soldiers committed to it and the casualties
61
175925
3085
ืžืกืคืจ ื”ื—ื™ื™ืœื™ื ื”ืžื•ืงืฆื™ื ืœื” ื•ืžืกืคืจ ื”ืคืฆื•ืขื™ื
02:59
will increase not linearly --
62
179010
1683
ื™ื’ื“ืœื• ืœื ืœื™ื ืืจื™ืช --
03:00
like 10,000, 11,000, 12,000 --
63
180693
1888
ื›ืžื• 10,000, 11,000, 12,000 --
03:02
but exponentially -- 10,000, later 20,000, later 40,000.
64
182581
4275
ืืœื ืžืขืจื™ื›ื™ืช-- 10,000 ืื—ืจื™ ื–ื” 20,000 ื•ืื– 40,000.
03:06
And so that explains this pattern that we've seen before.
65
186856
3085
ืื– ื–ื” ืžืกื‘ื™ืจ ืืช ื”ืชื‘ื ื™ืช ื”ื–ื• ืฉืจืื™ื ื• ืงื•ื“ื.
03:09
So here mathematics is able to link a well-known feature of the individual mind
66
189941
5498
ืื– ื›ืืŸ ืžืชืžื˜ื™ืงื” ืžืกื•ื’ืœืช ืœืงืฉืจ ื‘ื™ืŸ ืชื›ื•ื ื” ื™ื“ื•ืขื” ืฉืœ ื”ืžื•ื— ื”ื‘ื•ื“ื“
03:15
with a long-term historical pattern
67
195439
2989
ืขื ืชื‘ื ื™ืช ื”ืกื˜ื•ืจื™ืช ืืจื•ื›ืช ื˜ื•ื•ื—
03:18
that unfolds over centuries and across continents.
68
198428
2857
ืฉืžืชื’ืœื” ื‘ืžืฉืš ืฉื ื™ื ื•ื—ื•ืฆื” ื™ื‘ืฉื•ืช.
03:21
So these types of examples, today there are just a few of them,
69
201285
4017
ืื– ื“ื•ื’ืžืื•ืช ื›ืืœื•, ื›ื™ื•ื ื™ืฉ ืจืง ืžืขื˜ ืžื”ืŸ,
03:25
but I think in the next decade they will become commonplace.
70
205302
2689
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืขืฉื•ืจ ื”ื‘ื ื”ืŸ ื™ื”ืคื›ื• ืœื ืคื•ืฆื•ืช.
03:27
The reason for that is that the historical record
71
207991
2392
ื”ืกื™ื‘ื” ืœื–ื” ื”ื™ื ืฉื”ืชืขื•ื“ ื”ื”ืกื˜ื•ืจื™
03:30
is becoming digitized at a very fast pace.
72
210383
2460
ื ื”ืคืš ืœื“ื™ื’ื™ื˜ืœื™ ื‘ืงืฆื‘ ื’ื‘ื•ื”.
03:32
So there's about 130 million books
73
212843
2610
ืื– ื™ืฉ ื‘ืขืจืš 130 ืžื™ืœื™ื•ืŸ ืกืคืจื™ื
03:35
that have been written since the dawn of time.
74
215453
2311
ืฉื ื›ืชื‘ื• ืžืื– ืชื—ื™ืœืช ื”ืื ื•ืฉื•ืช.
03:37
Companies like Google have digitized many of them --
75
217764
2454
ื—ื‘ืจื•ืช ื›ืžื• ื’ื•ื’ืœ ื”ื•ืคื›ื•ืช ืœื“ื™ื’ื™ื˜ืœื™ื™ื ืจื‘ื™ื ืžื”ื --
03:40
above 20 million actually.
76
220218
1584
ืžืขืœ ืœ-20 ืžื™ืœื™ื•ืŸ ืœืžืขืฉื”.
03:41
And when the stuff of history is available in digital form,
77
221802
3578
ื•ื›ืฉื”ื”ืกื˜ื•ืจื™ื” ื–ืžื™ื ื” ื‘ืคื•ืจืžื˜ ื“ื™ื’ื™ื˜ืœื™,
03:45
it makes it possible for a mathematical analysis
78
225380
2380
ื–ื” ืžืืคืฉืจ ื ื™ืชื•ื— ืžืชืžื˜ื™
03:47
to very quickly and very conveniently
79
227760
2375
ื›ื“ื™ ืœื‘ื—ื•ืŸ ื‘ืžื”ื™ืจื•ืช ื•ื ื•ื—ื™ื•ืช
03:50
review trends in our history and our culture.
80
230135
2725
ืžื’ืžื•ืช ื‘ื”ืกื˜ื•ืจื™ื” ื•ื‘ืชืจื‘ื•ืช.
03:52
So I think in the next decade,
81
232860
2721
ืื– ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืขืฉื•ืจ ื”ื‘ื,
03:55
the sciences and the humanities will come closer together
82
235581
2750
ื”ืžื“ืข ื•ื”ืžืงืฆื•ืขื•ืช ื”ื”ื•ืžื ื™ื™ื ื™ืชืงืจื‘ื•
03:58
to be able to answer deep questions about mankind.
83
238331
3329
ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช ืขืžื•ืงื•ืช ืขืœ ื”ืื ื•ืฉื•ืช.
04:01
And I think that mathematics will be a very powerful language to do that.
84
241660
4121
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืžืชืžื˜ื™ืงื” ืชื”ื™ื” ืฉืคื” ืžืื•ื“ ื—ื–ืงื” ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช.
04:05
It will be able to reveal new trends in our history,
85
245781
3146
ื”ื™ื ืชื”ื™ื” ืžืกื•ื’ืœืช ืœื’ืœื•ืช ืžื’ืžื•ืช ื—ื“ืฉื•ืช ื‘ื”ืกื˜ื•ืจื™ื”,
04:08
sometimes to explain them,
86
248927
1750
ื•ืœืคืขืžื™ื ืœื”ืกื‘ื™ืจ ืื•ืชืŸ,
04:10
and maybe even in the future to predict what's going to happen.
87
250677
3306
ื•ืื•ืœื™ ืืคื™ืœื• ื‘ืขืชื™ื“ ืœื—ื–ื•ืช ืžื” ื™ืงืจื”.
04:13
Thank you very much.
88
253983
1491
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
04:15
(Applause)
89
255474
3678
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7