How economic inequality harms societies | Richard Wilkinson

1,167,757 views ・ 2011-10-24

TED


Fai dobre clic nos subtítulos en inglés a continuación para reproducir o vídeo.

Translator: Francisco Caamano Reviewer: Xusto Rodriguez
00:15
You all know the truth of what I'm going to say.
0
15260
3000
Xa saben o que lles vou dicir.
00:18
I think the intuition that inequality is divisive and socially corrosive
1
18260
4000
Creo que a idea de que a desigualdade destrúe a sociedade
00:22
has been around since before the French Revolution.
2
22260
4000
é mesmo previa á Revolución Francesa
00:26
What's changed
3
26260
2000
O que cambiou foi que
00:28
is we now can look at the evidence,
4
28260
2000
hoxe temos evidencias,
00:30
we can compare societies, more and less equal societies,
5
30260
3000
podemos comparar sociedades distintas
00:33
and see what inequality does.
6
33260
3000
e observar o que fai a desigualdade.
00:36
I'm going to take you through that data
7
36260
3000
Voulles mostrar esa información
00:39
and then explain why
8
39260
2000
e logo explicareilles por que
00:41
the links I'm going to be showing you exist.
9
41260
4000
existen esas asociacións.
00:45
But first, see what a miserable lot we are.
10
45260
3000
Pero primeiro, vexamos como somos.
00:48
(Laughter)
11
48260
2000
(Risas)
00:50
I want to start though
12
50260
2000
Quero comezar
00:52
with a paradox.
13
52260
3000
cun paradoxo:
00:55
This shows you life expectancy
14
55260
2000
esta figura mostra a esperanza de vida
00:57
against gross national income --
15
57260
2000
fronte ao Produto Interior Bruto,
00:59
how rich countries are on average.
16
59260
2000
a riqueza dos países.
01:01
And you see the countries on the right,
17
61260
2000
Os países situados á dereita
01:03
like Norway and the USA,
18
63260
2000
como Noruega e EEUU
01:05
are twice as rich as Israel, Greece, Portugal on the left.
19
65260
5000
son o dobre de ricos ca Israel, Grecia, Portugal
01:10
And it makes no difference to their life expectancy at all.
20
70260
4000
E isto non afecta á súa esperanza de vida
01:14
There's no suggestion of a relationship there.
21
74260
2000
Non hai nada que suxira correlación.
01:16
But if we look within our societies,
22
76260
3000
Pero se ollamos dentro da sociedade,
01:19
there are extraordinary social gradients in health
23
79260
3000
existen múltiples gradientes de saúde
01:22
running right across society.
24
82260
2000
atravesando a sociedade.
01:24
This, again, is life expectancy.
25
84260
2000
De novo aparece a esperanza de vida.
01:26
These are small areas of England and Wales --
26
86260
2000
Estas son pequenas rexións do Reino Unido
01:28
the poorest on the right, the richest on the left.
27
88260
4000
--as pobres á dereita, ricas á esquerda--
01:32
A lot of difference between the poor and the rest of us.
28
92260
3000
Hai gran diferenza entre elas.
01:35
Even the people just below the top
29
95260
2000
Mesmo as persoas que viven na segunda
01:37
have less good health
30
97260
2000
teñen peor saúde
01:39
than the people at the top.
31
99260
2000
que as que viven na rexión máis rica.
01:41
So income means something very important
32
101260
2000
Por tanto os ingresos son importantes
01:43
within our societies,
33
103260
2000
dentro dunha sociedade
01:45
and nothing between them.
34
105260
3000
e nada entre sociedades.
01:48
The explanation of that paradox
35
108260
3000
A explicación deste paradoxo
01:51
is that, within our societies,
36
111260
2000
é que dentro dunha sociedade
01:53
we're looking at relative income
37
113260
2000
somos conscientes da nosa posición,
01:55
or social position, social status --
38
115260
3000
do noso estatus social,
01:58
where we are in relation to each other
39
118260
3000
ao relacionarnos uns con outros,
02:01
and the size of the gaps between us.
40
121260
3000
e somos conscientes do tamaño da fenda.
02:04
And as soon as you've got that idea,
41
124260
2000
E unha vez entendida esta idea
02:06
you should immediately wonder:
42
126260
2000
inmediatamente deberiamos preguntarnos:
02:08
what happens if we widen the differences,
43
128260
3000
Que sucede se ampliamos esas diferenzas,
02:11
or compress them,
44
131260
2000
ou se as eliminamos,
02:13
make the income differences bigger or smaller?
45
133260
2000
reducindo ou incrementando as diferenzas?
02:15
And that's what I'm going to show you.
46
135260
3000
Iso é o que quero mostrarlles.
02:18
I'm not using any hypothetical data.
47
138260
2000
Non utilizamos información inventada.
02:20
I'm taking data from the U.N. --
48
140260
2000
Utilizamos os datos da ONU,
02:22
it's the same as the World Bank has --
49
142260
2000
os mesmos que ten o Banco Mundial,
02:24
on the scale of income differences
50
144260
2000
da escala de diferenzas en ingresos
02:26
in these rich developed market democracies.
51
146260
3000
nos mercados democráticos ricos.
02:29
The measure we've used,
52
149260
2000
A medida que utilizamos,
02:31
because it's easy to understand and you can download it,
53
151260
2000
por ser sinxela e accesible,
02:33
is how much richer the top 20 percent
54
153260
2000
é canto máis rico é o 20% máis rico
02:35
than the bottom 20 percent in each country.
55
155260
3000
fronte ao 20% máis pobre de cada país.
02:38
And you see in the more equal countries on the left --
56
158260
3000
Os países máis equitativos á esquerda:
02:41
Japan, Finland, Norway, Sweden --
57
161260
2000
o 20% máis rico son 3-4 veces máis ricos
02:43
the top 20 percent are about three and a half, four times as rich
58
163260
2000
--Xapón, Finlandia, Noruega, Suecia--
02:45
as the bottom 20 percent.
59
165260
3000
que o 20% menos rico
02:48
But on the more unequal end --
60
168260
2000
Pero no extremo máis desigual
02:50
U.K., Portugal, USA, Singapore --
61
170260
2000
--Reino Unido, EEUU e Singapur--
02:52
the differences are twice as big.
62
172260
3000
as diferenzas son o dobre de grandes.
02:55
On that measure, we are twice as unequal
63
175260
3000
Nesta medida, somos o dobre de desiguais
02:58
as some of the other successful market democracies.
64
178260
4000
que outros mercados democráticos exitosos.
03:02
Now I'm going to show you what that does to our societies.
65
182260
4000
Agora, voulles mostrar o efecto.
03:06
We collected data on problems with social gradients,
66
186260
3000
Recompilamos información sobre
problemas con gradiente social;
03:09
the kind of problems that are more common
67
189260
2000
o tipo de problemas máis comúns
03:11
at the bottom of the social ladder.
68
191260
2000
nas clases sociais máis baixas.
03:13
Internationally comparable data on life expectancy,
69
193260
3000
Información sobre esperanza de vida,
03:16
on kids' maths and literacy scores,
70
196260
3000
notas dos nenos en mates, alfabetización,
03:19
on infant mortality rates, homicide rates,
71
199260
3000
mortalidade infantil, homicidios,
03:22
proportion of the population in prison, teenage birthrates,
72
202260
3000
poboación en prisión,
embarazos adolescentes,
03:25
levels of trust,
73
205260
2000
os niveis de confianza entre os cidadáns,
03:27
obesity, mental illness --
74
207260
2000
a obesidade, a enfermidade mental;
03:29
which in standard diagnostic classification
75
209260
3000
que na clasificación estándar
03:32
includes drug and alcohol addiction --
76
212260
2000
inclúe dependencia de drogas e alcohol
03:34
and social mobility.
77
214260
2000
e datos de ascenso social.
03:36
We put them all in one index.
78
216260
3000
Creamos un índice único
03:39
They're all weighted equally.
79
219260
2000
Todo os datos tiña igual peso no índice
03:41
Where a country is is a sort of average score on these things.
80
221260
3000
03:44
And there, you see it
81
224260
2000
E podemos observar
03:46
in relation to the measure of inequality I've just shown you,
82
226260
3000
en relación á medida de desigualdade
03:49
which I shall use over and over again in the data.
83
229260
3000
03:52
The more unequal countries
84
232260
2000
que aos países máis desiguais
03:54
are doing worse
85
234260
2000
vailles peor
03:56
on all these kinds of social problems.
86
236260
2000
neste tipo de problemas sociais.
03:58
It's an extraordinarily close correlation.
87
238260
3000
Existe una correlación elevadísima.
04:01
But if you look at that same index
88
241260
2000
Pero se miramos o mesmo índice
04:03
of health and social problems
89
243260
2000
de problemas sociais e de saúde
04:05
in relation to GNP per capita,
90
245260
2000
o produto nacional bruto,
04:07
gross national income,
91
247260
2000
non hai nada,
04:09
there's nothing there,
92
249260
2000
non hai correlación.
04:11
no correlation anymore.
93
251260
3000
en relación ao PIB per cápita.
04:14
We were a little bit worried
94
254260
2000
Estabamos un poco preocupados
04:16
that people might think
95
256260
2000
de que se pensara que
04:18
we'd been choosing problems to suit our argument
96
258260
2000
elixiramos os problemas para que casara,
04:20
and just manufactured this evidence,
97
260260
3000
que amañaramos a evidencia,
04:23
so we also did a paper in the British Medical Journal
98
263260
3000
así que tamén publicamos no BMJ
04:26
on the UNICEF index of child well-being.
99
266260
4000
utilizando o criterio da UNICEF.
04:30
It has 40 different components
100
270260
2000
Este criterio ten 40 compoñentes distintos
04:32
put together by other people.
101
272260
2000
definidos por outras persoas.
04:34
It contains whether kids can talk to their parents,
102
274260
3000
Mide se os nenos conversan con seus pais,
04:37
whether they have books at home,
103
277260
2000
se teñen libros na casa,
04:39
what immunization rates are like, whether there's bullying at school.
104
279260
3000
a taxa de inmunización, o acoso escolar.
04:42
Everything goes into it.
105
282260
2000
Todo está incluído.
04:44
Here it is in relation to that same measure of inequality.
106
284260
4000
Aquí está a relación
04:48
Kids do worse in the more unequal societies.
107
288260
3000
Os nenos están peor en sociedades máis desiguais
04:51
Highly significant relationship.
108
291260
3000
E a relación é significativa.
04:54
But once again,
109
294260
2000
Pero unha vez máis,
04:56
if you look at that measure of child well-being,
110
296260
3000
se observamos o benestar infantil
04:59
in relation to national income per person,
111
299260
2000
en relación ao ingreso por persoa ano,
05:01
there's no relationship,
112
301260
2000
non hai relación.
05:03
no suggestion of a relationship.
113
303260
3000
Nada de nada.
05:06
What all the data I've shown you so far says
114
306260
3000
O que mostra a información
05:09
is the same thing.
115
309260
2000
é o mesmo.
05:11
The average well-being of our societies
116
311260
2000
O benestar das nosas sociedades
05:13
is not dependent any longer
117
313260
3000
xa non depende
05:16
on national income and economic growth.
118
316260
3000
do PIB ou do crecemento económico.
05:19
That's very important in poorer countries,
119
319260
2000
Iso é moi importante nos países pobres,
05:21
but not in the rich developed world.
120
321260
3000
pero non no mundo desenvolvido.
05:24
But the differences between us
121
324260
2000
Sen embargo, as diferenzas entre nós,
05:26
and where we are in relation to each other
122
326260
2000
a nosa posición relativa
05:28
now matter very much.
123
328260
3000
importan moitísimo.
05:31
I'm going to show you some of the separate bits of our index.
124
331260
3000
Voulles mostrar as partes do noso índice.
05:34
Here, for instance, is trust.
125
334260
2000
Aquí, por exemplo, está a confianza.
05:36
It's simply the proportion of the population
126
336260
2000
É simplemente a porcentaxe da poboación
05:38
who agree most people can be trusted.
127
338260
2000
que concorda que se pode confiar na xente
05:40
It comes from the World Values Survey.
128
340260
2000
Este dato procede das enquisas de WVS.
05:42
You see, at the more unequal end,
129
342260
2000
Nos países con maior desigualdade,
05:44
it's about 15 percent of the population
130
344260
3000
ao redor do 15% da poboación
05:47
who feel they can trust others.
131
347260
2000
sente que pode confiar nos demais.
05:49
But in the more equal societies,
132
349260
2000
Pero en sociedades máis igualitarias,
05:51
it rises to 60 or 65 percent.
133
351260
4000
esta porcentaxe sobe ata o 60% ou 65%.
05:55
And if you look at measures of involvement in community life
134
355260
3000
E se miramos a participación social
05:58
or social capital,
135
358260
2000
ou capital social,
06:00
very similar relationships
136
360260
2000
hai relacións moi semellantes,
06:02
closely related to inequality.
137
362260
3000
gran correlación coa desigualdade.
06:05
I may say, we did all this work twice.
138
365260
3000
Fixemos estas análises 2 veces,
06:08
We did it first on these rich, developed countries,
139
368260
3000
primeiro nos países ricos e desenvolvidos,
06:11
and then as a separate test bed,
140
371260
2000
e logo como un banco de probas,
06:13
we repeated it all on the 50 American states --
141
373260
3000
repetímola nos 50 estados dos EEUU;
06:16
asking just the same question:
142
376260
2000
facéndonos a mesma pregunta:
06:18
do the more unequal states
143
378260
2000
Vailles peor aos estados máis desiguais
06:20
do worse on all these kinds of measures?
144
380260
2000
en todos estes tipos de medidas?
06:22
So here is trust from a general social survey of the federal government
145
382260
4000
Aquí vese a confianza
06:26
related to inequality.
146
386260
2000
relacionada coa desigualdade.
06:28
Very similar scatter
147
388260
2000
Un diagrama moi parecido
06:30
over a similar range of levels of trust.
148
390260
2000
por riba de niveis similares de confianza.
06:32
Same thing is going on.
149
392260
2000
Sucede o mesmo.
06:34
Basically we found
150
394260
2000
Básicamente encontramos
06:36
that almost anything that's related to trust internationally
151
396260
3000
que casi calquera todo
06:39
is related to trust amongst the 50 states
152
399260
2000
se relaciona coa confianza nos 50 estados
06:41
in that separate test bed.
153
401260
2000
nese banco de probas.
06:43
We're not just talking about a fluke.
154
403260
2000
Non estamos falando de mera casualidade.
06:45
This is mental illness.
155
405260
2000
Isto son enfermidades mentais.
06:47
WHO put together figures
156
407260
2000
A OMS confecciona índices
06:49
using the same diagnostic interviews
157
409260
2000
utilizando as mesmas entrevistas
06:51
on random samples of the population
158
411260
2000
con mostras aleatorias da poboación
06:53
to allow us to compare rates of mental illness
159
413260
3000
que permiten comparar a enfermidade mental
06:56
in each society.
160
416260
2000
en cada sociedade.
06:58
This is the percent of the population
161
418260
2000
Esta é a porcentaxe da poboación
07:00
with any mental illness in the preceding year.
162
420260
3000
con enfermidade mental no último ano.
07:03
And it goes from about eight percent
163
423260
3000
E varía desde un 8%
07:06
up to three times that --
164
426260
2000
ata 3 veces esa porcentaxe;
07:08
whole societies
165
428260
2000
con 5 veces máis enfermidade mental,
07:10
with three times the level of mental illness of others.
166
430260
3000
sociedades enteiras.
07:13
And again, closely related to inequality.
167
433260
4000
E de novo, relacionado coa desigualdade.
07:17
This is violence.
168
437260
2000
Isto é a violencia.
07:19
These red dots are American states,
169
439260
2000
Eses puntos vermellos son estados de EEUU,
07:21
and the blue triangles are Canadian provinces.
170
441260
4000
os triángulos azuis, provincias de Canadá.
07:25
But look at the scale of the differences.
171
445260
3000
Pero miren a escala de diferenzas.
07:28
It goes from 15 homicides per million
172
448260
3000
Varía desde 15 homicidios por millón
07:31
up to 150.
173
451260
3000
ata 150.
07:34
This is the proportion of the population in prison.
174
454260
3000
Esta é a porcentaxe de presos.
07:37
There's a about a tenfold difference there,
175
457260
3000
Aquí hai una diferenza dez veces maior,
07:40
log scale up the side.
176
460260
2000
rexistrada na escala deste lado.
07:42
But it goes from about 40 to 400
177
462260
2000
Pero aumenta de 40 a 400
07:44
people in prison.
178
464260
3000
persoas en prisión.
07:47
That relationship
179
467260
2000
A relación
07:49
is not mainly driven by more crime.
180
469260
2000
non é impulsada por máis crimes.
07:51
In some places, that's part of it.
181
471260
3000
Nalgúns casos, pode ser debido a isto
07:54
But most of it is about more punitive sentencing,
182
474260
2000
pero na maioría dos casos,
07:56
harsher sentencing.
183
476260
2000
son penas máis duras.
07:58
And the more unequal societies
184
478260
2000
E as sociedades máis desiguais
08:00
are more likely also to retain the death penalty.
185
480260
4000
son tamén as que manteñen a pena de morte.
08:04
Here we have children dropping out of high school.
186
484260
5000
Os nenos que abandoan a secundaria.
Novamente, grandes diferenzas.
08:09
Again, quite big differences.
187
489260
2000
08:11
Extraordinarily damaging,
188
491260
2000
Extraordinariamente daniñas,
08:13
if you're talking about using the talents of the population.
189
493260
3000
se atendemos a maximizar o talento.
08:16
This is social mobility.
190
496260
3000
A mobilidade social.
08:19
It's actually a measure of mobility
191
499260
2000
Trátase dunha medida de mobilidade social
08:21
based on income.
192
501260
2000
baseada nos ingresos.
08:23
Basically, it's asking:
193
503260
2000
Fundamentalmente é como preguntar:
08:25
do rich fathers have rich sons
194
505260
2000
Os pais ricos teñen fillos ricos
08:27
and poor fathers have poor sons,
195
507260
2000
e os pais pobres teñen fillos pobres
08:29
or is there no relationship between the two?
196
509260
3000
ou quizais non hai ningunha relación?
08:32
And at the more unequal end,
197
512260
2000
No extremo máis desigual,
08:34
fathers' income is much more important --
198
514260
3000
o ingreso do pai é moito máis importante,
08:37
in the U.K., USA.
199
517260
3000
no Reino Unido, en Estados Unidos...
08:40
And in Scandinavian countries,
200
520260
2000
E nos países escandinavos
08:42
fathers' income is much less important.
201
522260
2000
o ingreso do pai é moito menos importante.
08:44
There's more social mobility.
202
524260
3000
Hai máis mobilidade social.
08:47
And as we like to say --
203
527260
2000
Temos moitos americanos no público,
08:49
and I know there are a lot of Americans in the audience here --
204
529260
3000
08:52
if Americans want to live the American dream,
205
532260
3000
se queren vivir "o soño americano"
08:55
they should go to Denmark.
206
535260
2000
deberían mudarse a Dinamarca
08:57
(Laughter)
207
537260
2000
(Risas)
08:59
(Applause)
208
539260
4000
(Aplausos)
09:03
I've shown you just a few things in italics here.
209
543260
3000
Mostreilles algunhas cousas.
09:06
I could have shown a number of other problems.
210
546260
2000
Podería ensinarlles outras.
09:08
They're all problems that tend to be more common
211
548260
2000
Todos problemas moito máis frecuentes
09:10
at the bottom of the social gradient.
212
550260
2000
na parte inferior da pendente social.
09:12
But there are endless problems with social gradients
213
552260
5000
Hai moitos
09:17
that are worse in more unequal countries --
214
557260
2000
que son peores nos países máis desiguais,
09:19
not just a little bit worse,
215
559260
2000
non só un pouco peores
09:21
but anything from twice as common to 10 times as common.
216
561260
3000
senón moito máis frecuentes.
09:24
Think of the expense,
217
564260
2000
Pensen no gasto,
09:26
the human cost of that.
218
566260
3000
no custo humano diso.
09:29
I want to go back though to this graph that I showed you earlier
219
569260
2000
Quero volver sobre o gráfico anterior
09:31
where we put it all together
220
571260
2000
onde mostramos a información
09:33
to make two points.
221
573260
2000
para demostrar 2 cousas.
09:35
One is that, in graph after graph,
222
575260
3000
Unha é que, gráfico tras gráfico,
09:38
we find the countries that do worse,
223
578260
2000
descubrimos que os países aos que lles vai peor,
09:40
whatever the outcome,
224
580260
2000
independentemente dos seus ingresos,
09:42
seem to be the more unequal ones,
225
582260
2000
parecen ser os máis desiguais,
09:44
and the ones that do well
226
584260
2000
e aos que lles vai ben
09:46
seem to be the Nordic countries and Japan.
227
586260
3000
soen ser países nórdicos e Xapón.
09:49
So what we're looking at
228
589260
2000
Entón o que observamos
09:51
is general social disfunction related to inequality.
229
591260
3000
é a disfunción social xeral relacionada coa desigualdade.
09:54
It's not just one or two things that go wrong,
230
594260
2000
E non só van mal unha ou dúas cousas,
09:56
it's most things.
231
596260
2000
son a maioría.
09:58
The other really important point I want to make on this graph
232
598260
3000
A outra cousa importante que quero mostrarlles neste gráfico
10:01
is that, if you look at the bottom,
233
601260
2000
é que, se se mira a parte inferior,
10:03
Sweden and Japan,
234
603260
3000
Suecia e Xapón,
10:06
they're very different countries in all sorts of ways.
235
606260
3000
son países moi distintos.
10:09
The position of women,
236
609260
2000
O papel da muller,
10:11
how closely they keep to the nuclear family,
237
611260
2000
a súa proximidade ao núcleo familiar,
10:13
are on opposite ends of the poles
238
613260
2000
están nos polos opostos,
10:15
in terms of the rich developed world.
239
615260
2000
considerando o mundo rico e desenvolvido.
10:17
But another really important difference
240
617260
2000
Pero a outra diferenza moi importante
10:19
is how they get their greater equality.
241
619260
3000
é como logran a igualdade.
10:22
Sweden has huge differences in earnings,
242
622260
3000
Suecia ten gran diferenza nos ingresos,
10:25
and it narrows the gap through taxation,
243
625260
2000
e reduce esa fenda a través de impostos,
10:27
general welfare state,
244
627260
2000
asistencia social xeral,
10:29
generous benefits and so on.
245
629260
3000
grandes beneficios sociais e demais.
10:32
Japan is rather different though.
246
632260
2000
Sen embargo Xapón é un pouco diferente.
10:34
It starts off with much smaller differences in earnings before tax.
247
634260
3000
Ten diferenzas de ingresos moito menores antes de impostos.
10:37
It has lower taxes.
248
637260
2000
Pero ten impostos máis baixos.
10:39
It has a smaller welfare state.
249
639260
2000
Ten unha menor asistencia social.
10:41
And in our analysis of the American states,
250
641260
2000
E na nosa análise en EEUU,
10:43
we find rather the same contrast.
251
643260
2000
descubrimos o mesmo contraste.
10:45
There are some states that do well through redistribution,
252
645260
3000
Algúns estados redistribuén máis,
10:48
some states that do well
253
648260
2000
e outros estados teñen éxito
10:50
because they have smaller income differences before tax.
254
650260
3000
porque teñen menor diferenza de ingresos
antes de impostos.
10:53
So we conclude
255
653260
2000
Entón concluímos
10:55
that it doesn't much matter how you get your greater equality,
256
655260
3000
que non importa cómo se chega á igualdade,
10:58
as long as you get there somehow.
257
658260
2000
sempre e cando se chegue dalgún xeito.
11:00
I am not talking about perfect equality,
258
660260
2000
Non estou falando da igualdade perfecta.
11:02
I'm talking about what exists in rich developed market democracies.
259
662260
4000
Falo da que existe en mercados ricos.
11:08
Another really surprising part of this picture
260
668260
5000
Outro aspecto sorprendente desta imaxe
11:13
is that it's not just the poor
261
673260
2000
é que non son só os pobres
11:15
who are affected by inequality.
262
675260
3000
os afectados pola desigualdade.
11:18
There seems to be some truth in John Donne's
263
678260
2000
Hai algo de certo na frase de John Donne
11:20
"No man is an island."
264
680260
3000
"Ningún home é unha illa".
11:23
And in a number of studies, it's possible to compare
265
683260
3000
E nun número de estudos é posible comparar
11:26
how people do in more and less equal countries
266
686260
3000
como lle vai á xente en países máis ou menos desiguais
11:29
at each level in the social hierarchy.
267
689260
3000
en cada nivel da xerarquía social.
11:32
This is just one example.
268
692260
3000
Este é só un exemplo:
A taxa de mortalidade infantil.
11:35
It's infant mortality.
269
695260
2000
11:37
Some Swedes very kindly classified a lot of their infant deaths
270
697260
3000
Os suecos clasificaban a mortalidade infantil
11:40
according to the British register of general socioeconomic classification.
271
700260
5000
segundo o rexistro británico da clasificación socioeconómica xeral.
11:45
And so it's anachronistically
272
705260
3000
Entón anacronicamente
11:48
a classification by fathers' occupations,
273
708260
2000
clasifica segundo a ocupación dos pais,
11:50
so single parents go on their own.
274
710260
2000
11:52
But then where it says "low social class,"
275
712260
3000
A "clase social baixa"
11:55
that's unskilled manual occupations.
276
715260
3000
refierese ao traballo manual,
11:58
It goes through towards the skilled manual occupations in the middle,
277
718260
4000
Logo está o traballo manual especializado
12:02
then the junior non-manual,
278
722260
2000
logo o traballo xerárquico non manual,
12:04
going up high to the professional occupations --
279
724260
3000
ata o traballo profesional:
12:07
doctors, lawyers,
280
727260
2000
doutores, avogados,
12:09
directors of larger companies.
281
729260
2000
directores en grandes empresas.
12:11
You see there that Sweden does better than Britain
282
731260
3000
A Suecia vaille mellor ca ao Reino Unido
12:14
all the way across the social hierarchy.
283
734260
3000
en tódalas escalas sociais.
As diferenzas maiores están no máis baixo da sociedade.
12:19
The biggest differences are at the bottom of society.
284
739260
2000
12:21
But even at the top,
285
741260
2000
Pero mesmo no máis alto,
12:23
there seems to be a small benefit
286
743260
2000
parece haber un pequeno beneficio
12:25
to being in a more equal society.
287
745260
2000
por pertencer a unha sociedade
con maior igualdade.
12:27
We show that on about five different sets of data
288
747260
3000
Demostrámolo con 5 conxuntos de datos
12:30
covering educational outcomes
289
750260
2000
que cobren resultados educativos
12:32
and health in the United States and internationally.
290
752260
3000
e de saúde nos EEUU e mundialmente.
12:35
And that seems to be the general picture --
291
755260
3000
E a imaxe xeral mostra
12:38
that greater equality makes most difference at the bottom,
292
758260
3000
que a maior igualdade provoca maior diferenza abaixo
12:41
but has some benefits even at the top.
293
761260
3000
pero tamén, ten beneficios arriba.
12:44
But I should say a few words about what's going on.
294
764260
4000
Quero dicirlles algo.
12:48
I think I'm looking and talking
295
768260
2000
Sinto que estou observando e falando
12:50
about the psychosocial effects of inequality.
296
770260
3000
sobre os efectos psicosociais.
12:53
More to do with feelings of superiority and inferiority,
297
773260
3000
Que teñen máis que ver con sentimentos de superioridade ou inferioridade,
12:56
of being valued and devalued,
298
776260
2000
con sentirse ou non valorado,
12:58
respected and disrespected.
299
778260
3000
respetado ou non respetado.
13:01
And of course, those feelings
300
781260
2000
E por suposto, estas emocións
13:03
of the status competition that comes out of that
301
783260
3000
da competencia de status
13:06
drives the consumerism in our society.
302
786260
3000
conducen ao consumismo na nosa sociedade.
13:09
It also leads to status insecurity.
303
789260
3000
Tamén leva a un estado de inseguridade.
13:12
We worry more about how we're judged and seen by others,
304
792260
4000
Preocupanos máis como nos xulgan,
13:16
whether we're regarded as attractive, clever,
305
796260
3000
se somos atractivos, intelixentes,
13:19
all that kind of thing.
306
799260
3000
e ese tipo de cousas.
13:22
The social-evaluative judgments increase,
307
802260
3000
Aumenta o prexuízo da avaliación social,
13:25
the fear of those social-evaluative judgments.
308
805260
4000
o medo a eses prexuízos.
13:29
Interestingly,
309
809260
2000
Curiosamente,
13:31
some parallel work going on in social psychology:
310
811260
4000
hai estudos en psicoloxía social:
13:35
some people reviewed 208 different studies
311
815260
3000
Alguén revisou 208 estudos diferentes
13:38
in which volunteers had been invited
312
818260
3000
nos que se invitou a voluntarios
13:41
into a psychological laboratory
313
821260
2000
a un laboratorio psicosocial
13:43
and had their stress hormones,
314
823260
2000
onde lles mediron as hormonas do estrés
13:45
their responses to doing stressful tasks, measured.
315
825260
4000
13:49
And in the review,
316
829260
2000
E nesta revisión
13:51
what they were interested in seeing
317
831260
2000
o que lles interesaba observar
13:53
is what kind of stresses
318
833260
2000
era que tipos de estrés
13:55
most reliably raise levels of cortisol,
319
835260
3000
soben os niveis de cortisol.
13:58
the central stress hormone.
320
838260
2000
a hormona do estrés principal.
14:00
And the conclusion was
321
840260
2000
E concluíron
14:02
it was tasks that included social-evaluative threat --
322
842260
3000
que as tarefas que implican avaliación;
14:05
threats to self-esteem or social status
323
845260
3000
ameazas á autoestima ou ao status social
14:08
in which others can negatively judge your performance.
324
848260
3000
nas que outros nos poderían xulgar.
14:11
Those kind of stresses
325
851260
2000
Eses tipos de estrés
14:13
have a very particular effect
326
853260
3000
teñen un efecto moi característico
14:16
on the physiology of stress.
327
856260
3000
na fisioloxía do estrés.
14:20
Now we have been criticized.
328
860260
2000
Ténsenos criticado.
14:22
Of course, there are people who dislike this stuff
329
862260
3000
Hai persoas ás que isto non lles gusta
14:25
and people who find it very surprising.
330
865260
3000
e persoas a quen lles sorprende.
14:28
I should tell you though
331
868260
2000
Pero debo dicirlles
14:30
that when people criticize us for picking and choosing data,
332
870260
3000
14:33
we never pick and choose data.
333
873260
2000
xamais eliximos nin filtramos información.
14:35
We have an absolute rule
334
875260
2000
Temos unha norma clara,
14:37
that if our data source has data for one of the countries we're looking at,
335
877260
3000
todo dato válido, fiable
14:40
it goes into the analysis.
336
880260
2000
é incluído na análise.
14:42
Our data source decides
337
882260
2000
É a nosa fonte de información a que decide
14:44
whether it's reliable data,
338
884260
2000
se esa información é fiable ou non,
14:46
we don't.
339
886260
2000
non nós.
14:48
Otherwise that would introduce bias.
340
888260
2000
No caso contrario seriamos parciais.
14:50
What about other countries?
341
890260
2000
Que ocorre cos outros países?
14:52
There are 200 studies
342
892260
3000
Hai 200 estudos
14:55
of health in relation to income and equality
343
895260
3000
de saúde en relación con ingresos e desigualdade
14:58
in the academic peer-reviewed journals.
344
898260
3000
en publicacións revisadas por pares.
15:01
This isn't confined to these countries here,
345
901260
3000
Isto non está confinado só a estes países
15:04
hiding a very simple demonstration.
346
904260
2000
ocultando unha demostración moi simple.
15:06
The same countries,
347
906260
2000
Os mesmos países,
15:08
the same measure of inequality,
348
908260
2000
o mesmo índice de desigualdade,
15:10
one problem after another.
349
910260
3000
problema tras problema.
15:14
Why don't we control for other factors?
350
914260
2000
Por que non controlamos outros factores?
15:16
Well we've shown you that GNP per capita
351
916260
2000
Porque demostramos que o PIB per cápita
15:18
doesn't make any difference.
352
918260
2000
non é unha variable confusora.
15:20
And of course, others using more sophisticated methods in the literature
353
920260
4000
Outros utilizando outros métodos
15:24
have controlled for poverty and education
354
924260
2000
mediron a pobreza e a educación
15:26
and so on.
355
926260
3000
etcétera.
15:30
What about causality?
356
930260
2000
Que pasa coa causalidade?
15:32
Correlation in itself doesn't prove causality.
357
932260
3000
A correlación non é causalidade
15:35
We spend a good bit of time.
358
935260
2000
Pasou un longo tempo.
15:37
And indeed, people know the causal links quite well
359
937260
2000
Sabemos do nexo causal
15:39
in some of these outcomes.
360
939260
2000
nalgúns destes resultados.
15:41
The big change in our understanding
361
941260
2000
O gran cambio na nosa comprensión
15:43
of drivers of chronic health
362
943260
2000
das causas da saúde crónica
15:45
in the rich developed world
363
945260
2000
no mundo densenvolvido e rico
15:47
is how important chronic stress from social sources
364
947260
4000
é a importancia do estrés crónico
15:51
is affecting the immune system,
365
951260
2000
no sistema inmune,
15:53
the cardiovascular system.
366
953260
3000
ou ao sistema cardiovascular.
15:56
Or for instance, the reason why violence
367
956260
2000
Por exemplo, a razón de que a violencia
15:58
becomes more common in more unequal societies
368
958260
3000
exista máis en sociedades desiguais
16:01
is because people are sensitive to being looked down on.
369
961260
5000
é debido á maior probabilidade
de que as persoas sexan despreciadas.
16:06
I should say that to deal with this,
370
966260
3000
Diría que para lidar con isto,
16:09
we've got to deal with the post-tax things
371
969260
2000
debemos lidar cos ingresos tanto antes
16:11
and the pre-tax things.
372
971260
2000
como despois de impostos.
16:13
We've got to constrain income,
373
973260
3000
Debemos restrinxir os ingresos,
16:16
the bonus culture incomes at the top.
374
976260
2000
a cultura das primas, dos bonos
16:18
I think we must make our bosses accountable to their employees
375
978260
3000
Debemos responsabilizar aos nosos xefes
dos seus empregados
16:21
in any way we can.
376
981260
3000
de calquera xeito que se poida.
16:24
I think the take-home message though
377
984260
3000
E creo que a mensaxe
debe ser que podemos
16:27
is that we can improve the real quality of human life
378
987260
4000
mellorar a calidade da vida humana
16:31
by reducing the differences in incomes between us.
379
991260
3000
reducindo as diferenzas entre nós.
16:34
Suddenly we have a handle
380
994260
2000
De pronto poderíase manexar
16:36
on the psychosocial well-being of whole societies,
381
996260
2000
o benestar da sociedade enteira,
16:38
and that's exciting.
382
998260
2000
e iso é excitante!
16:40
Thank you.
383
1000260
2000
Grazas.
16:42
(Applause)
384
1002260
6000
(Aplausos)
About this website

Este sitio presentarache vídeos de YouTube que son útiles para aprender inglés. Verás clases de inglés impartidas por profesores de primeiro nivel de todo o mundo. Fai dobre clic nos subtítulos en inglés que aparecen en cada páxina de vídeo para reproducir o vídeo desde alí. Os subtítulos desprázanse sincronizados coa reprodución do vídeo. Se tes algún comentario ou solicitude, póñase en contacto connosco a través deste formulario de contacto.

https://forms.gle/WvT1wiN1qDtmnspy7