Alison Gopnik: What do babies think?

397,448 views ใƒป 2011-10-10

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Sorin Solomon ืžื‘ืงืจ: Sigal Tifferet
00:15
What is going on
0
15260
2000
ืžื” ืžืชืจื—ืฉ
00:17
in this baby's mind?
1
17260
2000
ื‘ืžื•ื—ื• ืฉืœ ื”ืชื™ื ื•ืง ื”ื–ื”?
00:19
If you'd asked people this 30 years ago,
2
19260
2000
ืื ื”ื™ื™ื ื• ืฉื•ืืœื™ื ืืช ื”ืฉืืœื” ื”ื–ื• ืœืคื ื™ 30 ืฉื ื”
00:21
most people, including psychologists,
3
21260
2000
ืจื•ื‘ ื”ืื ืฉื™ื, ื›ื•ืœืœ ืคืกื™ื›ื•ืœื•ื’ื™ื,
00:23
would have said that this baby was irrational,
4
23260
3000
ื”ื™ื• ืื•ืžืจื™ื ื›ื™ ื”ืชื™ื ื•ืง ื”ื–ื” ืœื ืจืฆื™ื•ื ืœื™,
00:26
illogical, egocentric --
5
26260
2000
ื—ืกืจ ื›ืœ ื”ื’ื™ื•ืŸ, ืื’ื•ืฆื ื˜ืจื™ -
00:28
that he couldn't take the perspective of another person
6
28260
2000
ืฉื”ื•ื ืื™ื ื• ื™ื›ื•ืœ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ื ืงื•ื“ืช ืžื‘ื˜ ืฉืœ ืื“ื ืื—ืจ
00:30
or understand cause and effect.
7
30260
2000
ืื• ืœื”ื‘ื™ืŸ ืกื™ื‘ื” ื•ืชื•ืฆืื”.
00:32
In the last 20 years,
8
32260
2000
ื‘ืขืฉืจื™ื ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
00:34
developmental science has completely overturned that picture.
9
34260
3000
ื”ืžื“ืข ื”ื”ืชืคืชื—ื•ืชื™ ื”ืคืš ืœื—ืœื•ื˜ื™ืŸ ืืช ื”ืชืžื•ื ื” ื”ื–ืืช.
00:37
So in some ways,
10
37260
2000
ื›ืš ืฉื‘ื“ืจื›ื™ื ืžืกื•ื™ื™ืžื•ืช,
00:39
we think that this baby's thinking
11
39260
2000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉืฆื•ืจืช ื”ืžื—ืฉื‘ื” ืฉืœ ื”ืชื™ื ื•ืง ื”ื–ื”
00:41
is like the thinking of the most brilliant scientists.
12
41260
4000
ื“ื•ืžื” ืœืฆื•ืจืช ื”ืžื—ืฉื‘ื” ืฉืœ ื”ืžื“ืขื ื™ื ื”ืžื‘ืจื™ืงื™ื ื‘ื™ื•ืชืจ.
00:45
Let me give you just one example of this.
13
45260
2000
ืืชืŸ ืœื›ื ื“ื•ื’ืžื ืœื›ืš.
00:47
One thing that this baby could be thinking about,
14
47260
3000
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืชื™ื ื•ืง ื–ื” ื™ื›ื•ืœ ืœื—ืฉื•ื‘ ืขืœื™ื•
00:50
that could be going on in his mind,
15
50260
2000
ื”ื“ื‘ืจ ืฉื™ื›ื•ืœ ืœื”ืขืกื™ืง ืืช ืžื•ื—ื•,
00:52
is trying to figure out
16
52260
2000
ื–ื” ื”ื ื™ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ
00:54
what's going on in the mind of that other baby.
17
54260
3000
ืžื” ืžืชืจื—ืฉ ื‘ืžื•ื—ื• ืฉืœ ื”ืชื™ื ื•ืง ื”ืื—ืจ.
00:57
After all, one of the things that's hardest for all of us to do
18
57260
3000
ืื—ืจื™ ื”ื›ืœ, ืื—ื“ ื”ื“ื‘ืจื™ื ื”ืงืฉื™ื ื‘ื™ื•ืชืจ ื‘ืฉื‘ื™ืœ ื›ื•ืœื ื•
01:00
is to figure out what other people are thinking and feeling.
19
60260
3000
ื–ื” ืœื”ื‘ื™ืŸ ืžื” ืื ืฉื™ื ืื—ืจื™ื ื—ื•ืฉื‘ื™ื ื•ืžืจื’ื™ืฉื™ื.
01:03
And maybe the hardest thing of all
20
63260
2000
ื•ืื•ืœื™ ื”ื“ื‘ืจ ื”ืงืฉื” ื‘ื™ื•ืชืจ
01:05
is to figure out that what other people think and feel
21
65260
3000
ื”ื•ื ื”ื”ื‘ื ื” ืฉืžื” ืฉืื ืฉื™ื ืื—ืจื™ื ืžืจื’ื™ืฉื™ื ื•ื—ื•ืฉื‘ื™ื
01:08
isn't actually exactly like what we think and feel.
22
68260
2000
ืœื ืชื•ืื ืืช ืžื” ืฉืื ื• ืžืจื’ื™ืฉื™ื ื•ื—ื•ืฉื‘ื™ื.
01:10
Anyone who's followed politics can testify
23
70260
2000
ื›ืœ ืžื™ ืฉืขื•ืงื‘ ืื—ืจ ืคื•ืœื™ื˜ื™ืงื” ื™ื•ื›ืœ ืœื”ืขื™ื“
01:12
to how hard that is for some people to get.
24
72260
3000
ืขื“ ื›ืžื” ืงืฉื” ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืขื‘ื•ืจ ืื ืฉื™ื ืžืกื•ื™ื™ืžื™ื.
01:15
We wanted to know
25
75260
2000
ืื ื—ื ื• ืจืฆื™ื ื• ืœื“ืขืช,
01:17
if babies and young children
26
77260
2000
ื”ืื ืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื ืงื˜ื ื™ื ื™ื›ื•ืœื™ื
01:19
could understand this really profound thing about other people.
27
79260
3000
ืœื”ื‘ื™ืŸ ืืช ื”ื“ื‘ืจ ื”ืžื”ื•ืชื™ ื”ื–ื” ื‘ื ื•ื’ืข ืœืื ืฉื™ื ืื—ืจื™ื.
01:22
Now the question is: How could we ask them?
28
82260
2000
ืขื›ืฉื™ื• ื”ืฉืืœื” ื”ื™ื: ืื™ืš ื ื•ื›ืœ ืœืฉืื•ืœ ืื•ืชื?
01:24
Babies, after all, can't talk,
29
84260
2000
ืชื™ื ื•ืงื•ืช, ืื—ืจื™ ื”ื›ืœ, ืœื ื™ื›ื•ืœื™ื ืœื“ื‘ืจ,
01:26
and if you ask a three year-old
30
86260
2000
ื•ืื ื ืฉืืœ ื™ืœื“ ื‘ืŸ ืฉืœื•ืฉ
01:28
to tell you what he thinks,
31
88260
2000
ืขืœ ืžื” ื”ื•ื ื—ื•ืฉื‘,
01:30
what you'll get is a beautiful stream of consciousness monologue
32
90260
3000
ืžื” ืฉื ืงื‘ืœ ื”ื•ื ื–ืจื ื™ืคื” ืฉืœ ืžื•ื ื•ืœื•ื’ ื™ืฉืจ ืžื”ืชื•ื“ืขื”
01:33
about ponies and birthdays and things like that.
33
93260
3000
ืขืœ ืกื•ืกื™ ืคื•ื ื™ ื•ื™ืžื™ ื”ื•ืœื“ืช ื•ื“ื‘ืจื™ื ื“ื•ืžื™ื.
01:36
So how do we actually ask them the question?
34
96260
3000
ืื– ืื™ืš ืœืžืขืฉื” ืื ื—ื ื• ืฉื•ืืœื™ื ืื•ืชื ืืช ื”ืฉืืœื”?
01:39
Well it turns out that the secret was broccoli.
35
99260
3000
ื˜ื•ื‘, ืžืกืชื‘ืจ ืฉื”ืกื•ื“ ื”ื™ื” ื‘ืจื•ืงื•ืœื™.
01:42
What we did -- Betty Rapacholi, who was one of my students, and I --
36
102260
4000
ืžื” ืฉืขืฉื™ื ื•, ื‘ื˜ื™ ืจืืคืงื•ืœื™, ืฉื”ื™ื™ืชื” ืกื˜ื•ื“ื ื˜ื™ืช ืฉืœื™, ื•ืื ื™,
01:46
was actually to give the babies two bowls of food:
37
106260
3000
ื”ื™ื” ื‘ืขืฆื ืœืชืช ืœืชื™ื ื•ืงื•ืช ืฉืชื™ ืงืขืจื•ืช ืขื ืื•ื›ืœ:
01:49
one bowl of raw broccoli
38
109260
2000
ืงืขืจื” ืื—ืช ืฉืœ ื‘ืจื•ืงื•ืœื™ ืœื ืžื‘ื•ืฉืœ
01:51
and one bowl of delicious goldfish crackers.
39
111260
3000
ื•ืงืขืจื” ื ื•ืกืคืช ืขื ืงืจืงืจื™ื ื˜ืขื™ืžื™ื ื‘ืฆื•ืจืช ื“ื’ื™ ื–ื”ื‘.
01:54
Now all of the babies, even in Berkley,
40
114260
3000
ื›ืœ ื”ืชื™ื ื•ืงื•ืช, ืืคื™ืœื• ื‘ื‘ืจืงืœื™,
01:57
like the crackers and don't like the raw broccoli.
41
117260
3000
ืื•ื”ื‘ื™ื ืืช ื”ืงืจืงืจื™ื ื•ืœื ืืช ื”ื‘ืจื•ืงื•ืœื™.
02:00
(Laughter)
42
120260
2000
(ืฆื—ื•ืง)
02:02
But then what Betty did
43
122260
2000
ืืš ืžื” ืฉื‘ื˜ื™ ืขืฉืชื”
02:04
was to take a little taste of food from each bowl.
44
124260
3000
ื”ื™ื” ืœื˜ืขื•ื ืžืขื˜ ืžื›ืœ ืื—ืช ืžื”ืงืขืจื•ืช.
02:07
And she would act as if she liked it or she didn't.
45
127260
2000
ื•ืื– ื”ื™ื ื”ืชื ื”ื’ื” ื›ืื™ืœื• ืื”ื‘ื” ืืช ืžื” ืฉืœืงื—ื”, ืื• ืฉืœื.
02:09
So half the time, she acted
46
129260
2000
ื—ืฆื™ ืžื”ื–ืžืŸ ื”ื™ื ื”ืชื ื”ื’ื”
02:11
as if she liked the crackers and didn't like the broccoli --
47
131260
2000
ื›ืื™ืœื• ื”ื™ื ืื•ื”ื‘ืช ืืช ื”ืงืจืงืจื™ื ื•ืœื ืืช ื”ื‘ืจื•ืงื•ืœื™ -
02:13
just like a baby and any other sane person.
48
133260
3000
ื›ืžื• ืชื™ื ื•ืง ื•ื›ืœ ืื“ื ืฉืคื•ื™ ืื—ืจ.
02:16
But half the time,
49
136260
2000
ืื‘ืœ ื‘ื—ืฆื™ ื”ืฉื ื™ ืžื”ืžืงืจื™ื,
02:18
what she would do is take a little bit of the broccoli
50
138260
2000
ื”ื™ื ืœืงื—ื” ื—ืชื™ื›ื” ืงื˜ื ื” ืฉืœ ื‘ืจื•ืงื•ืœื™
02:20
and go, "Mmmmm, broccoli.
51
140260
3000
ื•ืืžืจื” "ืžืžืž, ื‘ืจื•ืงื•ืœื™.
02:23
I tasted the broccoli. Mmmmm."
52
143260
3000
ื˜ืขืžืชื™ ืืช ื”ื‘ืจื•ืงื•ืœื™. ืžืžืžืžืžืž"
02:26
And then she would take a little bit of the crackers,
53
146260
2000
ื•ืื– ื”ื™ื™ื™ืชื” ืœื•ืงื—ืช ืžืขื˜ ืžื”ืงืจืงืจื™ื,
02:28
and she'd go, "Eww, yuck, crackers.
54
148260
4000
ื•ื”ื™ื™ืชื” ืื•ืžืจืช "ืื™ื›ืก, ื™ืืง, ืงืจืงืจื™ื!
02:32
I tasted the crackers. Eww, yuck."
55
152260
3000
ื˜ืขืžืชื™ ืืช ื”ืงืจืงืจื™ื. ืื™ื›ืก, ื™ืืง"
02:35
So she'd act as if what she wanted
56
155260
2000
ื”ื™ื ื”ืชื ื”ื’ื” ื›ืื™ืœื• ืžื” ืฉื”ื™ื ืจืฆืชื”
02:37
was just the opposite of what the babies wanted.
57
157260
3000
ื”ื™ื” ื”ื“ื‘ืจ ื”ื”ืคื•ืš ืžืžื” ืฉืจืฆื• ื”ืชื™ื ื•ืงื•ืช.
02:40
We did this with 15 and 18 month-old babies.
58
160260
2000
ืขืฉื™ื ื• ืืช ื–ื” ืขื ืชื™ื ื•ืงื•ืช ื‘ื ื™ 15 ื•-18 ื—ื•ื“ืฉื™ื.
02:42
And then she would simply put her hand out and say,
59
162260
3000
ืื– ื”ื™ื ื”ื™ื™ืชื” ืžื•ืฉื™ื˜ื” ืืช ื™ื“ื” ื•ืื•ืžืจืช
02:45
"Can you give me some?"
60
165260
2000
"ืชื•ื›ืœ ืœืชืช ืœื™ ืงืฆืช?"
02:47
So the question is: What would the baby give her,
61
167260
2000
ืื– ื”ืฉืืœื” ื”ื™ื: ืžื” ื™ื™ืชื ื• ืœื” ื”ืชื™ื ื•ืงื•ืช?
02:49
what they liked or what she liked?
62
169260
2000
ืžื” ืฉื”ื ืื”ื‘ื• ืื• ืžื” ืฉื”ื™ื ืื”ื‘ื”?
02:51
And the remarkable thing was that 18 month-old babies,
63
171260
3000
ื•ื”ื“ื‘ืจ ื”ืžื“ื”ื™ื ื”ื™ื” ืฉืชื™ื ื•ืงื•ืช ื‘ื ื™ 18 ื—ื•ื“ืฉื™ื,
02:54
just barely walking and talking,
64
174260
2000
ืฉื‘ืงื•ืฉื™ ื”ืœื›ื• ื•ื“ื™ื‘ืจื•,
02:56
would give her the crackers if she liked the crackers,
65
176260
3000
ื ืชื ื• ืœื” ืืช ื”ืงืจืงืจื™ื ืื ืื”ื‘ื” ืืช ื”ืงืจืงืจื™ื,
02:59
but they would give her the broccoli if she liked the broccoli.
66
179260
3000
ืื‘ืœ ื ืชื ื• ืœื” ืืช ื”ื‘ืจื•ืงื•ืœื™ ืื ืื”ื‘ื” ืืช ื”ื‘ืจื•ืงื•ืœื™.
03:02
On the other hand,
67
182260
2000
ืžืฆื“ ืฉื ื™,
03:04
15 month-olds would stare at her for a long time
68
184260
2000
ืชื™ื ื•ืงื•ืช ื‘ื ื™ 15 ื—ื•ื“ืฉื™ื ืคืฉื•ื˜ ื”ื™ื• ื‘ื•ื”ื™ื ื‘ื” ื–ืžืŸ ืžืžื•ืฉืš
03:06
if she acted as if she liked the broccoli,
69
186260
2000
ืื ื”ืชื ื”ื’ื” ื›ืื™ืœื• ืื”ื‘ื” ืืช ื”ื‘ืจื•ืงื•ืœื™,
03:08
like they couldn't figure this out.
70
188260
3000
ื›ืื™ืœื• ืœื ื™ื›ืœื• ืœื”ื‘ื™ืŸ ืืช ื–ื”.
03:11
But then after they stared for a long time,
71
191260
2000
ืืš ืœืื—ืจ ืฉื”ื ื‘ื”ื• ื‘ื” ื–ืžืŸ ืจื‘,
03:13
they would just give her the crackers,
72
193260
2000
ื”ื ืคืฉื•ื˜ ื ืชื ื• ืœื” ืืช ื”ืงืจืงืจื™ื,
03:15
what they thought everybody must like.
73
195260
2000
ืžื” ืฉื”ื ื—ืฉื‘ื• ืฉื›ื•ืœื ืื•ื”ื‘ื™ื.
03:17
So there are two really remarkable things about this.
74
197260
3000
ืื– ื™ืฉ ืฉื ื™ ื“ื‘ืจื™ื ืžื“ื”ื™ืžื™ื ื‘ืงืฉืจ ืœื–ื”.
03:20
The first one is that these little 18 month-old babies
75
200260
3000
ื”ืจืืฉื•ืŸ ื”ื•ื ืฉืชื™ื ื•ืงื•ืช ืงื˜ื ื™ื ืืœื”, ื‘ื ื™ 18 ื—ื•ื“ืฉื™ื
03:23
have already discovered
76
203260
2000
ื›ื‘ืจ ื’ื™ืœื•
03:25
this really profound fact about human nature,
77
205260
2000
ืืช ื”ืขื•ื‘ื“ื” ื”ืขืžื•ืงื” ื”ื–ืืช ื”ืงืฉื•ืจื” ืœื˜ื‘ืข ื”ืื ื•ืฉื™
03:27
that we don't always want the same thing.
78
207260
2000
ืฉืื ื—ื ื• ืœื ืชืžื™ื“ ืจื•ืฆื™ื ืืช ืื•ืชื ื”ื“ื‘ืจื™ื.
03:29
And what's more, they felt that they should actually do things
79
209260
2000
ื™ืชืจื” ืžื–ืืช, ื”ื ื”ืจื’ื™ืฉื• ืฉืขืœื™ื”ื ืœืขืฉื•ืช ื“ื‘ืจื™ื
03:31
to help other people get what they wanted.
80
211260
3000
ื‘ื›ื“ื™ ืœืขื–ื•ืจ ืœืื ืฉื™ื ืื—ืจื™ื ืœืงื‘ืœ ืืช ืžื” ืฉืจืฆื•.
03:34
Even more remarkably though,
81
214260
2000
ืืคื™ืœื• ื™ื•ืชืจ ืจืื•ื™ ืœืฆื™ื™ืŸ
03:36
the fact that 15 month-olds didn't do this
82
216260
3000
ื”ื™ื ื”ืขื•ื‘ื“ื” ืฉืžืื—ืจ ื•ื‘ื ื™ 15 ื”ื—ื•ื“ืฉื™ื ืœื ืขืฉื• ื›ืš
03:39
suggests that these 18 month-olds had learned
83
219260
3000
ืžืจืžื–ืช ืขืœ ื›ืš ืฉื‘ื ื™ ื”18 ื—ื•ื“ืฉื™ื ื”ืืœื” ืœืžื“ื•
03:42
this deep, profound fact about human nature
84
222260
3000
ืืช ื”ืขื•ื‘ื“ื” ื”ืขืžื•ืงื” ื•ื”ืžื”ื•ืชื™ืช ื”ืงืฉื•ืจื” ืœื˜ื‘ืข ื”ืื ื•ืฉื™
03:45
in the three months from when they were 15 months old.
85
225260
3000
ื‘ืฉืœื•ืฉืช ื”ื—ื•ื“ืฉื™ื ืฉืขื‘ืจื• ืžื”ื™ื•ืชื ื‘ื ื™ 15 ื—ื•ื“ืฉื™ื.
03:48
So children both know more and learn more
86
228260
2000
ืžืฉืžืขื•ืช ื”ื“ื‘ืจ ื”ื™ื ืฉื™ืœื“ื™ื ื™ื•ื“ืขื™ื ื™ื•ืชืจ ื•ื’ื ืœื•ืžื“ื™ื ื™ื•ืชืจ
03:50
than we ever would have thought.
87
230260
2000
ืžืืฉืจ ื”ื™ื™ื ื• ืžืขืœื™ื ืขืœ ื“ืขืชื ื•.
03:52
And this is just one of hundreds and hundreds of studies over the last 20 years
88
232260
4000
ื•ื–ื” ืจืง ืื—ื“ ืžืžืื•ืช ืจื‘ื•ืช ืฉืœ ืžื—ืงืจื™ื ืžืขืฉืจื™ื ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
03:56
that's actually demonstrated it.
89
236260
2000
ืฉืžื•ื›ื™ื—ื™ื ื–ืืช ื‘ืืžืช.
03:58
The question you might ask though is:
90
238260
2000
ื”ืฉืืœื” ืฉืื•ืœื™ ืชืฉืืœื• ื”ื™ื:
04:00
Why do children learn so much?
91
240260
3000
ืœืžื” ื™ืœื“ื™ื ืœื•ืžื“ื™ื ื›ืœ ื›ืš ื”ืจื‘ื”?
04:03
And how is it possible for them to learn so much
92
243260
2000
ื•ืื™ืš ื–ื” ืืคืฉืจื™ ื‘ืฉื‘ื™ืœื ืœืœืžื•ื“ ื›ืœ ื›ืš ื”ืจื‘ื”
04:05
in such a short time?
93
245260
2000
ื‘ื–ืžืŸ ื›ืœ ื›ืš ืงืฆืจ?
04:07
I mean, after all, if you look at babies superficially,
94
247260
2000
ืื—ืจื™ ื”ื›ืœ, ืื ื ืกืชื›ืœ ืขืœ ืชื™ื ื•ืงื•ืช, ื‘ืžื‘ื˜ ืจืืฉื•ืŸ
04:09
they seem pretty useless.
95
249260
2000
ื”ื ื ืจืื™ื ื“ื™ ื—ืกืจื™ ืชื•ืขืœืช.
04:11
And actually in many ways, they're worse than useless,
96
251260
3000
ืœืžืขืŸ ื”ืืžืช, ื‘ืžื•ื‘ื ื™ื ืจื‘ื™ื ื”ื ื’ืจื•ืขื™ื ื™ื•ืชืจ ืžื—ืกืจื™ ืชื•ืขืœืช,
04:14
because we have to put so much time and energy
97
254260
2000
ื›ื™ ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ืฉืงื™ืข ื›ืœ ื›ืš ื”ืจื‘ื” ื–ืžืŸ ื•ืื ืจื’ื™ื”
04:16
into just keeping them alive.
98
256260
2000
ืจืง ื›ื“ื™ ืœื”ื—ื–ื™ืง ืื•ืชื ื‘ื—ื™ื™ื.
04:18
But if we turn to evolution
99
258260
2000
ืืš ืื ื ืกืชื›ืœ ืขืœ ื”ืื‘ื•ืœื•ืฆื™ื”
04:20
for an answer to this puzzle
100
260260
2000
ื›ื“ื™ ืœืžืฆื•ื ืชืฉื•ื‘ื” ืœืฉืืœื”
04:22
of why we spend so much time
101
262260
2000
ืœืžื” ืื ื—ื ื• ืžื‘ืœื™ื ื–ืžืŸ ื›ื” ืจื‘
04:24
taking care of useless babies,
102
264260
3000
ื‘ื˜ื™ืคื•ืœ ื‘ืชื™ื ื•ืงื•ืช ื—ืกืจื™ ืชื•ืขืœืช,
04:27
it turns out that there's actually an answer.
103
267260
3000
ืžืชื‘ืจืจ ืฉื™ืฉ ื‘ืขืฆื ืชืฉื•ื‘ื” ื‘ืจื•ืจื”.
04:30
If we look across many, many different species of animals,
104
270260
3000
ืื ื ืกืชื›ืœ ืขืœ ื”ืจื‘ื” ืžืื•ื“ ื–ื ื™ื ืฉืœ ื—ื™ื•ืช,
04:33
not just us primates,
105
273260
2000
ืœื ืจืง ืคืจื™ืžืื˜ื™ื ื›ืžื•ื ื•,
04:35
but also including other mammals, birds,
106
275260
2000
ืืœื ื’ื ื™ื•ื ืงื™ื ืื—ืจื™ื, ืฆื™ืคื•ืจื™ื,
04:37
even marsupials
107
277260
2000
ืืคื™ืœื• ื—ื™ื•ืช ื›ื™ืก
04:39
like kangaroos and wombats,
108
279260
2000
ื›ืžื• ื•ื•ืžื‘ื˜ ื•ืงื ื’ื•ืจื•,
04:41
it turns out that there's a relationship
109
281260
2000
ืžืกืชื‘ืจ ืฉื™ืฉ ืงืฉืจ
04:43
between how long a childhood a species has
110
283260
4000
ื‘ื™ืŸ ืื•ืจืš ืชืงื•ืคืช ื”ื™ืœื“ื•ืช
04:47
and how big their brains are compared to their bodies
111
287260
4000
ืœื’ื•ื“ืœ ื”ืžื•ื— ื‘ื”ืฉื•ื•ืื” ืœื’ื•ืฃ
04:51
and how smart and flexible they are.
112
291260
2000
ื•ื›ืžื” ื—ื›ืžื™ื ื•ื’ืžื™ืฉื™ื ื”ื™ืฆื•ืจื™ื.
04:53
And sort of the posterbirds for this idea are the birds up there.
113
293260
3000
ื‘ื—ืจื ื• ื›"ื ืขืจื•ืช ืคื•ืกื˜ืจ" ืืช ืฉืชื™ ื”ืฆื™ืคื•ืจื™ื ื›ืืŸ.
04:56
On one side
114
296260
2000
ืžืฆื“ ืื—ื“
04:58
is a New Caledonian crow.
115
298260
2000
ื ืžืฆื ื”ืขื•ืจื‘ืŸ ื”ื ื™ื• ืงืœื•ื ื“ื™ืื ื™.
05:00
And crows and other corvidae, ravens, rooks and so forth,
116
300260
3000
ื”ืขื•ืจื‘ืŸ ื•ืขื•ืจื‘ื™ื™ื ืื—ืจื™ื, ื”ืขื•ืจื‘ ื•ื›ื•'
05:03
are incredibly smart birds.
117
303260
2000
ื”ื ืฆื™ืคื•ืจื™ื ื—ื›ืžื•ืช ื‘ืฆื•ืจื” ืžืคืชื™ืขื”.
05:05
They're as smart as chimpanzees in some respects.
118
305260
3000
ื”ื ื—ื›ืžื™ื ื›ืžื• ืฉื™ืžืคื ื–ื™ื ื‘ืžื•ื‘ื ื™ื ืžืกื•ื™ื™ืžื™ื.
05:08
And this is a bird on the cover of science
119
308260
2000
ื•ื–ื• ืฆื™ืคื•ืจ ืขืœ ื”ืฉืขืจ ืฉืœ ืžื’ื–ื™ืŸ "Science"
05:10
who's learned how to use a tool to get food.
120
310260
3000
ืฉืœืžื“ื” ืœื”ืฉืชืžืฉ ื‘ื›ืœื™ ื‘ื›ื“ื™ ืœื”ืฉื™ื’ ืื•ื›ืœ.
05:13
On the other hand,
121
313260
2000
ื‘ืฆื“ ื”ืฉื ื™,
05:15
we have our friend the domestic chicken.
122
315260
2000
ื™ืฉ ืœื ื• ืืช ื—ื‘ืจืชื ื• ื”ืชืจื ื’ื•ืœืช ื”ืžื‘ื•ื™ืชืช.
05:17
And chickens and ducks and geese and turkeys
123
317260
3000
ืื•ื•ื–ื™ื, ื‘ืจื•ื•ื–ื™ื, ืชืจื ื’ื•ืœื•ืช ื•ืชืจื ื’ื•ืœื™ ื”ื•ื“ื•
05:20
are basically as dumb as dumps.
124
320260
2000
ื”ื ื‘ืขืฆื ื˜ื™ืคืฉื™ื ื›ืžื• ื—ืžื•ืจื™ื.
05:22
So they're very, very good at pecking for grain,
125
322260
3000
ื”ื ืžืื•ื“ ืžืื•ื“ ื˜ื•ื‘ื™ื ื‘ื ื™ืงื•ืจ ื’ืจืขื™ื ื™ื,
05:25
and they're not much good at doing anything else.
126
325260
3000
ืื‘ืœ ืœื ืžืžืฉ ื˜ื•ื‘ื™ื ื‘ืฉื•ื ื“ื‘ืจ ืื—ืจ.
05:28
Well it turns out that the babies,
127
328260
2000
ื˜ื•ื‘, ืื– ืžืกืชื‘ืจ ืฉืชื™ื ื•ืงื•ืช
05:30
the New Caledonian crow babies, are fledglings.
128
330260
2000
ื”ืชื™ื ื•ืงื•ืช ืฉืœ ื”ืขื•ืจื‘ืŸ, ื”ื ื’ื•ื–ืœื™ื.
05:32
They depend on their moms
129
332260
2000
ื”ื ืžืกืชืžื›ื™ื ืขืœ ืืžื
05:34
to drop worms in their little open mouths
130
334260
3000
ืฉืชื ื™ื— ืชื•ืœืขื™ื ื‘ืคื™ื•ืช ื”ืงื˜ื ื™ื ืฉืœื”ื
05:37
for as long as two years,
131
337260
2000
ืœืชืงื•ืคื” ื‘ืื•ืจืš ืฉืœ ืฉื ืชื™ื™ื,
05:39
which is a really long time in the life of a bird.
132
339260
2000
ืฉื–ื” ื–ืžืŸ ืืจื•ืš ืžืื•ื“ ื‘ืชื•ื—ืœืช ื”ื—ื™ื™ื ืฉืœ ืฆื™ืคื•ืจ.
05:41
Whereas the chickens are actually mature
133
341260
2000
ื‘ืขื•ื“ ืฉื”ืชืจื ื’ื•ืœื•ืช ื‘ืขืฆื ื‘ื•ื’ืจื•ืช
05:43
within a couple of months.
134
343260
2000
ืชื•ืš ื—ื•ื“ืฉื™ื ืกืคื•ืจื™ื.
05:45
So childhood is the reason
135
345260
3000
ืื– ื”ื™ืœื“ื•ืช ื”ื™ื ื”ืกื™ื‘ื”
05:48
why the crows end up on the cover of Science
136
348260
2000
ืœื›ืš ืฉื”ืขื•ืจื‘ื ื™ื ืžื’ื™ืขื™ื ืœืฉืขืจ ืžื’ื–ื™ืŸ "Science"
05:50
and the chickens end up in the soup pot.
137
350260
2000
ื•ื”ืชืจื ื’ื•ืœื•ืช ืžืกื™ื™ืžื•ืช ื‘ืกื™ืจ ืžืจืง.
05:52
There's something about that long childhood
138
352260
3000
ื™ืฉ ืžืฉื”ื• ื‘ื™ืœื“ื•ืช ื”ืืจื•ื›ื” ื”ื–ืืช
05:55
that seems to be connected
139
355260
2000
ืฉื ืจืื” ืงืฉื•ืจ
05:57
to knowledge and learning.
140
357260
2000
ืœื™ื“ืข ื•ืœืžื™ื“ื”.
05:59
Well what kind of explanation could we have for this?
141
359260
3000
ืื– ืื™ื” ืกื•ื’ ืฉืœ ื”ืกื‘ืจ ื™ืฉ ืœื ื• ืœื–ื”?
06:02
Well some animals, like the chicken,
142
362260
3000
ื—ื™ื•ืช ืžืกื•ื™ื™ืžื•ืช, ื›ืžื• ื”ืชืจื ื’ื•ืœื•ืช
06:05
seem to be beautifully suited
143
365260
2000
ื ืจืื•ืช ืžื•ืชืืžื•ืช ื‘ืื•ืคืŸ ื ืคืœื
06:07
to doing just one thing very well.
144
367260
2000
ืœื‘ื™ืฆื•ืข ืžืฉื™ืžื” ืื—ืช ื‘ืฆื•ืจื” ืžืฆื•ื™ื ืช.
06:09
So they seem to be beautifully suited
145
369260
3000
ืื– ื”ื ืžืžืฉ ืžื•ืชืืžื™ื
06:12
to pecking grain in one environment.
146
372260
2000
ืœื ืงืจ ืืช ื”ื’ืจืขื™ื ื™ื ื‘ืกื‘ื™ื‘ื” ืžืกื•ื™ื™ืžืช.
06:14
Other creatures, like the crows,
147
374260
2000
ื‘ืขื•ื“ ื™ืฆื•ืจื™ื ืื—ืจื™ื, ื›ืžื• ื”ืขื•ืจื‘ื ื™ื,
06:16
aren't very good at doing anything in particular,
148
376260
2000
ืœื ืžืฆื˜ื™ื™ื ื™ื ื‘ืฉื•ื ื“ื‘ืจ ืžืกื•ื™ื™ื,
06:18
but they're extremely good
149
378260
2000
ืื‘ืœ ื”ื ื˜ื•ื‘ื™ื ืžืื•ื“
06:20
at learning about laws of different environments.
150
380260
2000
ื‘ืœืœืžื•ื“ ืืช ื”ื—ื•ืงื™ื ืฉืœ ืกื‘ื™ื‘ื•ืช ืฉื•ื ื•ืช.
06:22
And of course, we human beings
151
382260
2000
ื•ื›ืžื•ื‘ืŸ, ืื ื—ื ื•
06:24
are way out on the end of the distribution like the crows.
152
384260
3000
ื‘ืงืฆื” ื”ืกืคืงื˜ืจื•ื ื›ืžื• ื”ืขื•ืจื‘ื ื™ื.
06:27
We have bigger brains relative to our bodies
153
387260
2000
ื™ืฉ ืœื ื• ืžื•ื—ื•ืช ื’ื“ื•ืœื™ื ื™ื•ืชืจ ื™ื—ืกื™ืช ืœื’ื•ืฃ ืฉืœื ื•
06:29
by far than any other animal.
154
389260
2000
ื”ืจื‘ื” ืžืืฉืจ ืœื›ืœ ื—ื™ื” ืื—ืจืช.
06:31
We're smarter, we're more flexible,
155
391260
2000
ืื ื—ื ื• ื—ื›ืžื™ื ื™ื•ืชืจ, ื’ืžื™ืฉื™ื ื™ื•ืชืจ,
06:33
we can learn more,
156
393260
2000
ื™ื›ื•ืœืช ื”ืœืžื™ื“ื” ืฉืœื ื• ื’ื“ื•ืœื” ื™ื•ืชืจ,
06:35
we survive in more different environments,
157
395260
2000
ืื ื—ื ื• ืฉื•ืจื“ื™ื ื‘ืกื‘ื™ื‘ื•ืช ืฉื•ื ื•ืช,
06:37
we migrated to cover the world and even go to outer space.
158
397260
3000
ืื ื—ื ื• ื”ืชืคืจืฉื ื• ื›ื“ื™ ืœื›ืกื•ืช ืืช ื”ืขื•ืœื ื•ืืคื™ืœื• ื”ื’ืขื ื• ืœื—ืœืœ ื”ื—ื™ืฆื•ืŸ.
06:40
And our babies and children are dependent on us
159
400260
3000
ื•ื”ื™ืœื“ื™ื ื•ื”ืชื™ื ื•ืงื•ืช ืฉืœื ื• ืชืœื•ื™ื™ื ื‘ื ื•
06:43
for much longer than the babies of any other species.
160
403260
3000
ื”ืจื‘ื” ื™ื•ืชืจ ื–ืžืŸ ืžืืฉืจ ืืฆืœ ื›ืœ ืžื™ืŸ ืื—ืจ.
06:46
My son is 23.
161
406260
2000
ื”ื‘ืŸ ืฉืœื™ ื‘ืŸ 23.
06:48
(Laughter)
162
408260
2000
(ืฆื—ื•ืง)
06:50
And at least until they're 23,
163
410260
2000
ื•ืœืคื—ื•ืช ืขื“ ืฉื”ื ื‘ื ื™ 23,
06:52
we're still popping those worms
164
412260
2000
ืื ื—ื ื• ืขื“ื™ื™ืŸ ื–ื•ืจืงื™ื ืืช ื”ืชื•ืœืขื™ื ื”ืืœื”
06:54
into those little open mouths.
165
414260
3000
ืืœ ื”ืคื™ื•ืช ื”ืงื˜ื ื™ื ื”ืคืชื•ื—ื™ื ืฉืœื”ื.
06:57
All right, why would we see this correlation?
166
417260
3000
ืื•ืงื™ื™, ืœืžื” ืจื•ืื™ื ืืช ื”ืžืชืื ื”ื–ื”?
07:00
Well an idea is that that strategy, that learning strategy,
167
420260
4000
ื™ืชื›ืŸ ืฉื”ืืกื˜ืจื˜ื’ื™ื” ื”ื–ืืช, ืืกื˜ืจื˜ื’ื™ื™ืช ื”ืœื™ืžื•ื“ ื”ื–ื•,
07:04
is an extremely powerful, great strategy for getting on in the world,
168
424260
3000
ื”ื™ื ืืกื˜ืจื˜ื’ื™ื” ืžื•ืฆืœื—ืช ืžืื•ื“ ืœื”ืกืชื“ืจ ื‘ืขื•ืœื ื”ื–ื”,
07:07
but it has one big disadvantage.
169
427260
2000
ืืš ื™ืฉ ืœื” ื—ืกืจื•ืŸ ืื—ื“ ื’ื“ื•ืœ
07:09
And that one big disadvantage
170
429260
2000
ื•ื—ืกืจื•ืŸ ื–ื”
07:11
is that, until you actually do all that learning,
171
431260
3000
ื”ื•ื ืฉืขื“ ืฉืืชื” ื‘ืขืฆื ืžืกื™ื™ื ืœืœืžื•ื“ ืืช ื”ื›ืœ,
07:14
you're going to be helpless.
172
434260
2000
ืืชื” ื—ืกืจ ืื•ื ื™ื.
07:16
So you don't want to have the mastodon charging at you
173
436260
3000
ืื– ืœื ืžืžืฉ ืชืจืฆื” ืฉืžืžื•ืชื” ืชืจื“ื•ืฃ ืื—ืจื™ืš
07:19
and be saying to yourself,
174
439260
2000
ื•ืชืฉืืœ ืืช ืขืฆืžืš
07:21
"A slingshot or maybe a spear might work. Which would actually be better?"
175
441260
4000
"ืงืœืข ืื• ืื•ืœื™ ื—ื ื™ืช ื™ื›ื•ืœื™ื ืœื”ืชืื™ื. ืžื™ ืžื”ืŸ ื˜ื•ื‘ื” ื™ื•ืชืจ?"
07:25
You want to know all that
176
445260
2000
ืืชื” ืจื•ืฆื” ืœื“ืขืช ืืช ื›ืœ ื–ื”
07:27
before the mastodons actually show up.
177
447260
2000
ืœืคื ื™ ืฉื”ืžืžื•ืชื•ืช ืžื’ื™ืขื•ืช.
07:29
And the way the evolutions seems to have solved that problem
178
449260
3000
ื•ื”ื“ืจืš ื‘ื” ื ืจืื” ืฉื”ืื‘ื•ืœื•ืฆื™ื” ืคืชืจื” ืืช ื”ื‘ืขื™ื” ื”ื–ื•
07:32
is with a kind of division of labor.
179
452260
2000
ื”ื™ื ื‘ืขื–ืจืช ืกื•ื’ ืฉืœ ื—ืœื•ืงืช ืชืคืงื™ื“ื™ื.
07:34
So the idea is that we have this early period when we're completely protected.
180
454260
3000
ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉื™ืฉ ืœื ื• ืืช ื”ืชืงื•ืคื” ื”ืžื•ืงื“ืžืช ื‘ื” ืื ื—ื ื• ืžื•ื’ื ื™ื ืœื—ืœื•ื˜ื™ืŸ.
07:37
We don't have to do anything. All we have to do is learn.
181
457260
3000
ืื ื—ื ื• ืœื ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื“ื‘ืจ. ื›ืœ ืฉืขืœื™ื ื• ืœืขืฉื•ืช ื”ื•ื ืœืœืžื•ื“.
07:40
And then as adults,
182
460260
2000
ื•ืื–, ื›ืžื‘ื•ื’ืจื™ื,
07:42
we can take all those things that we learned when we were babies and children
183
462260
3000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืืช ื›ืœ ืื•ืชื ื“ื‘ืจื™ื ืฉืœืžื“ื ื• ื›ืชื™ื ื•ืงื•ืช ื•ืœื™ื“ื™ื
07:45
and actually put them to work to do things out there in the world.
184
465260
3000
ื•ืœื”ืฉืชืžืฉ ื‘ื”ื ืœื‘ื™ืฆื•ืข ืžื˜ืœื•ืช ื‘ืขื•ืœื ื”ืืžื™ืชื™.
07:48
So one way of thinking about it
185
468260
2000
ืื– ื“ืจืš ืื—ืช ืœื—ืฉื•ื‘ ืขืœ ื–ื”
07:50
is that babies and young children
186
470260
2000
ื”ื™ื ืฉืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื ืงื˜ื ื™ื
07:52
are like the research and development division of the human species.
187
472260
3000
ื”ื ื›ืžื• ืžื—ืœืงืช ื”ืžื—ืงืจ ื•ื”ืคื™ืชื•ื— ืฉืœ ื”ืžื™ืŸ ื”ืื ื•ืฉื™.
07:55
So they're the protected blue sky guys
188
475260
3000
ืื– ื”ื ื”ื—ื‘ืจื” ื”ืืœื”
07:58
who just have to go out and learn and have good ideas,
189
478260
2000
ืฉื›ืœ ืžื” ืฉื”ื ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื–ื” ืœืฆืืช ื•ืœืœืžื•ื“ ื•ืœื”ืขืœื•ืช ืจืขื™ื•ื ื•ืช ื˜ื•ื‘ื™ื,
08:00
and we're production and marketing.
190
480260
2000
ื•ืื ื—ื ื• ื™ื™ืฆื•ืจ ื•ืฉื™ื•ื•ืง.
08:02
We have to take all those ideas
191
482260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืงื—ืช ืืช ื›ืœ ื”ืจืขื™ื•ื ื•ืช ื”ืืœื•
08:04
that we learned when we were children
192
484260
2000
ืฉืœืžื“ื ื• ื‘ื”ื™ื•ืชื ื• ื™ืœื“ื™ื
08:06
and actually put them to use.
193
486260
2000
ื•ื‘ืืžืช ืœื”ืฉืชืžืฉ ื‘ื”ื.
08:08
Another way of thinking about it
194
488260
2000
ื“ืจืš ื ื•ืกืคืช ืœื—ืฉื•ื‘ ืขืœ ื–ื”
08:10
is instead of thinking of babies and children
195
490260
2000
ื”ื™ื ืฉื‘ืžืงื•ื ืœื—ืฉื•ื‘ ืขืœ ืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื
08:12
as being like defective grownups,
196
492260
2000
ื›ืžื‘ื•ื’ืจื™ื ืคื’ื•ืžื™ื,
08:14
we should think about them
197
494260
2000
ืขืœื™ื ื• ืœื—ืฉื•ื‘ ืขืœื™ื”ื
08:16
as being a different developmental stage of the same species --
198
496260
2000
ื›ืฉืœื‘ ื”ืชืคืชื—ื•ืชื™ ืฉื•ื ื” ืฉืœ ืื•ืชื• ื”ืžื™ืŸ -
08:18
kind of like caterpillars and butterflies --
199
498260
3000
ืงืฆืช ื›ืžื• ื–ื—ืœื™ื ื•ืคืจืคืจื™ื -
08:21
except that they're actually the brilliant butterflies
200
501260
2000
ื—ื•ืฅ ืžื–ื” ืฉื”ื ื”ืคืจืคืจื™ื ื”ื ื”ื“ืจื™ื
08:23
who are flitting around the garden and exploring,
201
503260
3000
ืืฉืจ ืžืกืชื•ื‘ื‘ื™ื ื‘ื’ืŸ ื•ื—ื•ืงืจื™ื ืืช ืกื‘ื™ื‘ืชื,
08:26
and we're the caterpillars
202
506260
2000
ื•ืื ื—ื ื• ื”ื–ื—ืœื™ื
08:28
who are inching along our narrow, grownup, adult path.
203
508260
3000
ืืฉืจ ื–ื•ื—ืœื™ื ืœืื•ืจืš ื”ื“ืจืš ื”ืฆืจื”, ื”ื‘ื•ื’ืจืช ืฉืœื ื•.
08:31
If this is true, if these babies are designed to learn --
204
511260
3000
ืื ื–ื” ื ื›ื•ืŸ, ืื ืชื™ื ื•ืงื•ืช ื‘ืืžืช ืžืชื•ื›ื ื ื™ื ื›ื“ื™ ืœืœืžื•ื“
08:34
and this evolutionary story would say children are for learning,
205
514260
3000
ื•ื”ืกื™ืคื•ืจ ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ ื”ื–ื” ื™ืกืคืจ ืœื ื• ืฉื™ืœื“ื™ื ื ื•ืขื“ื• ืœืœืžื•ื“,
08:37
that's what they're for --
206
517260
2000
ื–ื• ื”ืกื™ื‘ื” ืœืงื™ื•ืžื,
08:39
we might expect
207
519260
2000
ื ื•ื›ืœ ืื•ืœื™ ืœืฆืคื•ืช ืœื›ืš
08:41
that they would have really powerful learning mechanisms.
208
521260
2000
ืฉื™ื”ื™ื• ื‘ื™ื“ื™ื”ื ืžื ื’ื ื•ื ื™ ืœืžื™ื“ื” ื—ื–ืงื™ื ื‘ืžื™ื•ื—ื“.
08:43
And in fact, the baby's brain
209
523260
3000
ื•ื‘ืืžืช, ืžื•ื—ื• ืฉืœ ืชื™ื ื•ืง
08:46
seems to be the most powerful learning computer
210
526260
2000
ื”ื•ื ื›ื ืจืื” ืžื—ืฉื‘ ื”ืœืžื™ื“ื” ื”ื—ื–ืง
08:48
on the planet.
211
528260
2000
ื‘ื™ื•ืชืจ ื‘ืขื•ืœื.
08:50
But real computers are actually getting to be a lot better.
212
530260
3000
ืื‘ืœ ืžื—ืฉื‘ื™ื ืืžื™ืชื™ื™ื ืžืฉืชืคืจื™ื ืžืื•ื“.
08:53
And there's been a revolution
213
533260
2000
ื”ื™ื™ืชื” ืžื”ืคื›ื” ืฉืœ ืžืžืฉ
08:55
in our understanding of machine learning recently.
214
535260
2000
ื‘ืฆื•ืจื” ื‘ื” ืื ื—ื ื• ืžื‘ื™ื ื™ื ืœืžื™ื“ืช ืžื›ื•ื ื•ืช ืœืื—ืจื•ื ื”.
08:57
And it all depends on the ideas of this guy,
215
537260
3000
ื”ื›ืœ ืžืกืชืžืš ืขืœ ืจืขื™ื•ื ื•ืชื™ื• ืฉืœ ื”ื‘ื—ื•ืจ ื”ื–ื”,
09:00
the Reverend Thomas Bayes,
216
540260
2000
ื”ื›ื•ืžืจ Thomas Bayes,
09:02
who was a statistician and mathematician in the 18th century.
217
542260
3000
ืฉื”ื™ื” ืกื˜ื˜ื™ืกื˜ื™ืงืื™ ื•ืžืชืžื˜ื™ืงืื™ ื‘ืžืื” ื”-18.
09:05
And essentially what Bayes did
218
545260
3000
ื‘ืขื™ืงืจื•ืŸ, ืžื” ืฉ- Bayes ืขืฉื”
09:08
was to provide a mathematical way
219
548260
2000
ื”ื™ื” ืœืกืคืง ื“ืจืš ืžืชืžื˜ื™ืช
09:10
using probability theory
220
550260
2000
ืชื•ืš ื›ื“ื™ ืฉื™ืžื•ืฉ ื‘ืชืื•ืจื™ืช ื”ื”ืกืชื‘ืจื•ืช
09:12
to characterize, describe,
221
552260
2000
ื›ื“ื™ ืœืืคื™ื™ืŸ, ืœืชืืจ
09:14
the way that scientists find out about the world.
222
554260
2000
ืืช ื”ื“ืจืš ื‘ื” ืžื“ืขื ื™ื ืžื’ืœื™ื ื“ื‘ืจื™ื ืขืœ ื”ืขื•ืœื.
09:16
So what scientists do
223
556260
2000
ืื– ืื™ืš ืžื“ืขื ื™ื ืคื•ืขืœื™ื?
09:18
is they have a hypothesis that they think might be likely to start with.
224
558260
3000
ื”ื ืžื ื™ื—ื™ื ื”ืฉืขืจื” ืฉืœื“ืขืชื ืกื‘ื™ืจื”.
09:21
They go out and test it against the evidence.
225
561260
2000
ื•ืื– ื”ื ื”ื•ืœื›ื™ื ื•ื‘ื•ื“ืงื™ื ืื•ืชื” ื›ื ื’ื“ ื”ื”ื•ื›ื—ื•ืช.
09:23
The evidence makes them change that hypothesis.
226
563260
2000
ื”ื”ื•ื›ื—ื” ื’ื•ืจืžืช ืœื”ื ืœืฉื ื•ืช ืืช ื”ื”ืฉืขืจื”.
09:25
Then they test that new hypothesis
227
565260
2000
ื•ืื– ื”ื ื‘ื•ื“ืงื™ื ืืช ื”ื”ืฉืขืจื” ื”ื—ื“ืฉื”
09:27
and so on and so forth.
228
567260
2000
ื•ื›ืš ื”ืœืื” ื•ื”ืœืื”.
09:29
And what Bayes showed was a mathematical way that you could do that.
229
569260
3000
ื•ืžื” ืฉื‘ื™ื™ืก ื”ืจืื” ื”ื™ื™ืชื” ื“ืจืš ืžืชืžื˜ื™ืช ืœืขืฉื•ืช ื–ืืช.
09:32
And that mathematics is at the core
230
572260
2000
ื•ื”ืžืชืžื˜ื™ืงื” ื”ื–ืืช ืขื•ืžื“ืช ื‘ื‘ืกื™ืก
09:34
of the best machine learning programs that we have now.
231
574260
2000
ืœืชื•ื›ื ื™ื•ืช ืœืžื™ื“ื” ื‘ืืžืฆืขื•ืช ืžื›ื•ื ื” ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ ืฉื™ืฉ ืœื ื• ื›ื™ื•ื.
09:36
And some 10 years ago,
232
576260
2000
ืœืคื ื™ ื›- 10 ืฉื ื™ื
09:38
I suggested that babies might be doing the same thing.
233
578260
4000
ื”ืฆืขืชื™ ืืช ื”ืจืขื™ื•ืŸ ืฉืชื™ื ื•ืงื•ืช ืขื•ืฉื™ื ืืช ืื•ืชื• ื”ื“ื‘ืจ.
09:42
So if you want to know what's going on
234
582260
2000
ืื– ืื ืชืจืฆื• ืœื“ืขืช ืžื” ืงื•ืจื”
09:44
underneath those beautiful brown eyes,
235
584260
2000
ืžืขื‘ืจ ืœืขื™ื ื™ื™ื ื”ื—ื•ืžื•ืช ื•ื”ื™ืคื•ืช ื”ืืœื”,
09:46
I think it actually looks something like this.
236
586260
2000
ืื ื™ ื—ื•ืฉื‘ืช ืฉื–ื” ื ืจืื” ื‘ืขืจืš ื›ื›ื”.
09:48
This is Reverend Bayes's notebook.
237
588260
2000
ื–ื• ื”ืžื—ื‘ืจืช ืฉืœ ื”ื›ื•ืžืจ Bayes.
09:50
So I think those babies are actually making complicated calculations
238
590260
3000
ืื– ืื ื™ ื—ื•ืฉื‘ืช ืฉืชื™ื ื•ืงื•ืช ืืœื” ื‘ืขืฆื ืžื‘ืฆืขื™ื ื—ื™ืฉื•ื‘ื™ื ืžืกื•ื‘ื›ื™ื
09:53
with conditional probabilities that they're revising
239
593260
3000
ืขื ื”ืกืชื‘ืจื•ื™ื•ืช ืžื•ืชื ื•ืช ืฉื”ื ืžื ืชื—ื™ื
09:56
to figure out how the world works.
240
596260
2000
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืื™ืš ื”ืขื•ืœื ืขื•ื‘ื“.
09:58
All right, now that might seem like an even taller order to actually demonstrate.
241
598260
4000
ื–ื” ื™ื›ื•ืœ ืœื”ื™ืจืื•ืช ื›ืžื• ืžืฉื”ื• ืžืกื•ื‘ืš ืžื›ื“ื™ ืฉื ื•ื›ื™ื— ื‘ืืžืช.
10:02
Because after all, if you ask even grownups about statistics,
242
602260
2000
ื›ื™ ืื—ืจื™ ื”ื›ืœ, ืื ืชืฉืืœื• ืžื‘ื•ื’ืจื™ื ืขืœ ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช,
10:04
they look extremely stupid.
243
604260
2000
ื”ื ื™ื™ืจืื• ื˜ื™ืคืฉื™ื ืžืื•ื“.
10:06
How could it be that children are doing statistics?
244
606260
3000
ืื– ืื™ืš ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื™ืœื“ื™ื ืขื•ืกืงื™ื ื‘ืกื˜ื˜ื™ืกื˜ื™ืงื”?
10:09
So to test this we used a machine that we have
245
609260
2000
ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ื–ื” ื”ืฉืชืžืฉื ื• ื‘ืžื›ื•ื ื” ืฉื‘ืฉืจื•ืชื ื•
10:11
called the Blicket Detector.
246
611260
2000
ื‘ืฉื ื’ืœืื™ Blicket.
10:13
This is a box that lights up and plays music
247
613260
2000
ืžื“ื•ื‘ืจ ื‘ืงื•ืคืกื” ื‘ื” ื ื“ืœืงืช ื ื•ืจื” ื•ืžื ื’ื ืช ืžื•ืกื™ืงื”
10:15
when you put some things on it and not others.
248
615260
3000
ื›ืืฉืจ ืžื ื™ื—ื™ื ืขืœื™ื” ืคืจื™ื˜ื™ื ืžืกื•ื™ืžื™ื, ื•ืื™ืœื• ืขื ืื—ืจื™ื, ืœื.
10:18
And using this very simple machine,
249
618260
2000
ื•ื‘ืฉื™ืžื•ืฉ ื‘ืžื›ื•ื ื” ื”ืคืฉื•ื˜ื” ื”ื–ื•
10:20
my lab and others have done dozens of studies
250
620260
2000
ื”ืžืขื‘ื“ื” ืฉืœื™ ื•ืžืขื‘ื“ื•ืช ืื—ืจื•ืช ืขืจื›ื• ืขืฉืจื•ืช ืžื—ืงืจื™ื
10:22
showing just how good babies are
251
622260
2000
ืืฉืจ ืžืจืื™ื ืขื“ ื›ืžื” ื‘ืืžืช ื˜ื•ื‘ื™ื ื”ืชื™ื ื•ืงื•ืช
10:24
at learning about the world.
252
624260
2000
ื‘ืœื™ืžื•ื“ ื”ืขื•ืœื.
10:26
Let me mention just one
253
626260
2000
ืชื ื• ืœื™ ืœื”ืจืื•ืช ืจืง ืื—ืช
10:28
that we did with Tumar Kushner, my student.
254
628260
2000
ืฉืขืฉื™ื ื• ืขื ืชื•ืžืจ ืงื•ืฉื ืจ, ืชืœืžื™ื“ ืฉืœื™.
10:30
If I showed you this detector,
255
630260
2000
ืื ื”ื™ื™ืชื™ ืžืจืื” ืœื›ื ืืช ื”ื’ืœืื™ ื”ื–ื”
10:32
you would be likely to think to begin with
256
632260
2000
ื›ื ืจืื” ืฉื”ื™ื™ืชื ืžืชื—ื™ืœื™ื ืœื—ืฉื•ื‘
10:34
that the way to make the detector go
257
634260
2000
ืฉื”ื“ืจืš ืœื”ืคืขื™ืœ ืืช ื”ื’ืœืื™
10:36
would be to put a block on top of the detector.
258
636260
3000
ืชื”ื™ื” ืœื”ื ื™ื— ืงื•ื‘ื™ื” ืขืœ ื”ื’ืœืื™.
10:39
But actually, this detector
259
639260
2000
ื‘ืžืฆื™ืื•ืช, ื”ื’ืœืื™ ื”ื–ื”
10:41
works in a bit of a strange way.
260
641260
2000
ืขื•ื‘ื“ ื‘ื“ืจืš ืงืฆืช ืžืฉื•ื ื”.
10:43
Because if you wave a block over the top of the detector,
261
643260
3000
ืื ื ื ื•ืคืฃ ืขื ื”ืงื•ื‘ื™ื” ืžืขืœ ื”ื’ืœืื™,
10:46
something you wouldn't ever think of to begin with,
262
646260
3000
ื“ื‘ืจ ืฉืœื ื”ื™ื” ืขื•ืœื” ื‘ื“ืขืชื ื•,
10:49
the detector will actually activate two out of three times.
263
649260
3000
ื”ื’ืœืื™ ื™ื•ืคืขืœ ื‘ืขืฆื ื‘ืคืขืžื™ื™ื ืžืชื•ืš ืฉืœื•ืฉ.
10:52
Whereas, if you do the likely thing, put the block on the detector,
264
652260
3000
ื‘ืขื•ื“ ืฉืื ืชืขืฉื” ืืช ื”ื“ื‘ืจ ื”ื‘ืจื•ืจ ืžืื™ืœื•, ืฉื–ื” ืœื”ื ื™ื— ืืช ื”ืงื•ื‘ื™ื” ืขืœ ื”ื’ืœืื™,
10:55
it will only activate two out of six times.
265
655260
4000
ื”ื’ืœืื™ ื™ื•ืคืขืœ ืจืง ื‘ืคืขืžื™ื™ื ืžืชื•ืš ืฉืฉ.
10:59
So the unlikely hypothesis
266
659260
2000
ืื– ืœื”ื ื—ื” ื”ืกื‘ื™ืจื” ืคื—ื•ืช
11:01
actually has stronger evidence.
267
661260
2000
ื™ืฉ ืœืžืขืฉื” ืจืื™ื•ืช ื—ื–ืงื•ืช ื™ื•ืชืจ.
11:03
It looks as if the waving
268
663260
2000
ื ืจืื” ื›ืื™ืœื• ื ื™ืคื•ืฃ ื”ืงื•ื‘ื™ื” ืžืขืœ ื”ื’ืœืื™
11:05
is a more effective strategy than the other strategy.
269
665260
2000
ื”ื™ื ืืกื˜ืจื˜ื’ื™ื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืžืืฉืจ ืืกื˜ืจื˜ื’ื™ื” ื”ืื—ืจืช.
11:07
So we did just this; we gave four year-olds this pattern of evidence,
270
667260
3000
ืื– ื›ืš ืขืฉื™ื ื•; ื ืชื ื• ืœื™ืœื“ื™ื ื‘ื ื™ ืืจื‘ืข ืืช ื“ืคื•ืก ื”ืจืื™ื•ืช ื”ื–ื”
11:10
and we just asked them to make it go.
271
670260
2000
ื•ื‘ื™ืงืฉื ื• ืžื”ื ืœื’ืจื•ื ืœื–ื” ืœืขื‘ื•ื“.
11:12
And sure enough, the four year-olds used the evidence
272
672260
3000
ื•ืื›ืŸ, ื”ื™ืœื“ื™ื ื”ืืœื” ื”ืฉืชืžืฉื• ื‘ื“ืคื•ืก ื”ืจืื™ื•ืช
11:15
to wave the object on top of the detector.
273
675260
3000
ื›ื“ื™ ืœื ื•ืคืฃ ืขื ื”ืงื•ื‘ื™ื” ืžืขืœ ื”ื’ืœืื™.
11:18
Now there are two things that are really interesting about this.
274
678260
3000
ืžืฆืื ื• ืฉื ื™ ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื ื‘ืžื™ื•ื—ื“ ื‘ื–ื”.
11:21
The first one is, again, remember, these are four year-olds.
275
681260
3000
ื”ืจืืฉื•ืŸ ื”ื•ื - ืฉื•ื‘, ื–ื™ื›ืจื•, ืžื“ื•ื‘ืจ ื‘ื™ืœื“ื™ื ื‘ื ื™ ืืจื‘ืข.
11:24
They're just learning how to count.
276
684260
2000
ืฉืจืง ืœื•ืžื“ื™ื ืœืกืคื•ืจ.
11:26
But unconsciously,
277
686260
2000
ืื‘ืœ ื‘ืื•ืคืŸ ืœื ืžื•ื“ืข
11:28
they're doing these quite complicated calculations
278
688260
2000
ื”ื ืขื•ืฉื™ื ื—ื™ืฉื•ื‘ื™ื ื“ื™ ืžืกื•ื‘ื›ื™ื
11:30
that will give them a conditional probability measure.
279
690260
3000
ืฉื ื•ืชื ื™ื ืœื”ื ื›ืœื™ ืœืžื“ื™ื“ืช ื”ื”ืกืชื‘ืจื•ืช ื”ืžื•ืชื ื™ืช.
11:33
And the other interesting thing
280
693260
2000
ื•ื”ื“ื‘ืจ ื”ืžืขื ื™ื™ืŸ ื”ื ื•ืกืฃ ื”ื•ื
11:35
is that they're using that evidence
281
695260
2000
ืฉื”ื ืžืฉืชืžืฉื™ื ื‘ืจืื™ื•ืช ืฉืงื™ื‘ืœื•
11:37
to get to an idea, get to a hypothesis about the world,
282
697260
3000
ื›ื“ื™ ืœืงื‘ืœ ืžื•ืฉื’, ืœืงื‘ืœ ื”ื ื—ื” ืœื’ื‘ื™ ื”ืขื•ืœื,
11:40
that seems very unlikely to begin with.
283
700260
3000
ืฉื ืจืื™ืช ืžืื•ื“ ืœื ืกื‘ื™ืจื” ืžืœื›ืชื—ื™ืœื”.
11:43
And in studies we've just been doing in my lab, similar studies,
284
703260
3000
ื‘ืžื—ืงืจื™ื ืฉืขืฉื™ื ื• ื‘ืžืขื‘ื“ื” ืฉืœื™, ืžื—ืงืจื™ื ื“ื•ืžื™ื,
11:46
we've show that four year-olds are actually better
285
706260
2000
ื”ืจืื™ื ื• ืฉื™ืœื“ื™ื ื‘ื ื™ ืืจื‘ืข ื”ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ
11:48
at finding out an unlikely hypothesis
286
708260
3000
ื‘ื’ื™ืœื•ื™ ื”ื ื—ื•ืช ืœื ืกื‘ื™ืจื•ืช
11:51
than adults are when we give them exactly the same task.
287
711260
3000
ืžืืฉืจ ืžื‘ื•ื’ืจื™ื ืฉื ื™ืชื ื” ืœื”ื ืื•ืชื” ื”ืžืฉื™ืžื” ื‘ื“ื™ื•ืง.
11:54
So in these circumstances,
288
714260
2000
ื‘ื ืกื™ื‘ื•ืช ืืœื•,
11:56
the children are using statistics to find out about the world,
289
716260
3000
ื™ืœื“ื™ื ืžืฉืชืžืฉื™ื ื‘ืกื˜ื˜ื™ืกื˜ื™ืงื” ื›ื“ื™ ืœืœืžื•ื“ ืขืœ ื”ืขื•ืœื,
11:59
but after all, scientists also do experiments,
290
719260
3000
ืืš ืื—ืจื™ ื”ื›ืœ, ืžื“ืขื ื™ื ื’ื ืขื•ืจื›ื™ื ื ื™ืกื•ื™ื™ื,
12:02
and we wanted to see if children are doing experiments.
291
722260
3000
ื•ืจืฆื™ื ื• ืœื‘ื“ื•ืง, ื”ืื ื’ื ื”ื™ืœื“ื™ื ืขื•ืจื›ื™ื ื ื™ืกื•ื™ื™ื.
12:05
When children do experiments we call it "getting into everything"
292
725260
3000
ื›ืืฉืจ ื™ืœื“ื™ื ืขื•ืจื›ื™ื ื ื™ืกื•ื™ื™ื, ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื” ืœื”ืชืขืกืง ืขื ื›ืœ ื“ื‘ืจ
12:08
or else "playing."
293
728260
2000
ืื•, ืœืฉื—ืง.
12:10
And there's been a bunch of interesting studies recently
294
730260
3000
ื ืขืจื›ื• ื›ืžื” ืžื—ืงืจื™ื ืžืขื ื™ื™ื ื™ื ืœืื—ืจื•ื ื”
12:13
that have shown this playing around
295
733260
3000
ืฉื”ืจืื• ืฉื”ืžืฉื—ืง ื”ื–ื”
12:16
is really a kind of experimental research program.
296
736260
2000
ื”ื•ื ื‘ืขืฆื ืกื•ื’ ืฉืœ ืžื—ืงืจ ื ืกื™ื•ื ื™.
12:18
Here's one from Cristine Legare's lab.
297
738260
3000
ื”ื ื” ืื—ื“ ืžื”ืžืขื‘ื“ื” ืฉืœ ืงืจื™ืกื˜ื™ืŸ ืœื’ืืจ.
12:21
What Cristine did was use our Blicket Detectors.
298
741260
3000
ืงืจื™ืกื˜ื™ืŸ ื”ืฉืชืžืฉื” ื‘ื’ืœืื™ Blicket.
12:24
And what she did was show children
299
744260
2000
ื”ื™ื ื”ืจืืชื” ืœื™ืœื“ื™ื
12:26
that yellow ones made it go and red ones didn't,
300
746260
2000
ืฉืงื•ื‘ื™ื•ืช ืฆื”ื•ื‘ื•ืช ื’ื•ืจืžื•ืช ืœื’ืœืื™ ืœืคืขื•ืœ ื•ืื“ื•ืžื•ืช ืœื,
12:28
and then she showed them an anomaly.
301
748260
3000
ื•ืœืื—ืจ ืžื›ืŸ ื”ืฆื™ื’ื” ื‘ืคื ื™ื”ื ื—ืจื™ื’ื”.
12:31
And what you'll see
302
751260
2000
ืžื” ืฉืชืจืื• ื›ืืŸ
12:33
is that this little boy will go through five hypotheses
303
753260
3000
ื”ื•ื ืฉื™ืœื“ ืงื˜ืŸ ื–ื” ื™ืขื‘ื•ืจ ื‘ื™ืŸ ื—ืžืฉ ื”ื ื—ื•ืช ืฉื•ื ื•ืช
12:36
in the space of two minutes.
304
756260
3000
ื‘ืคืจืง ื–ืžืŸ ืฉืœ ืฉืชื™ ื“ืงื•ืช.
12:39
(Video) Boy: How about this?
305
759260
3000
ื”ื™ืœื“: ืžื” ืœื’ื‘ื™ ื–ื”?
12:43
Same as the other side.
306
763260
3000
ืื•ืชื• ื“ื‘ืจ ื›ืžื• ื”ืฆื“ ื”ืฉื ื™.
12:46
Alison Gopnik: Okay, so his first hypothesis has just been falsified.
307
766260
4000
ืืœื™ืกื•ืŸ ื’ื•ืคื ื™ืง: ืื• ืงื™ื™, ื”ื”ื ื—ื” ื”ืจืืฉื•ื ื” ืฉืœื• ื ื›ืฉืœื”.
12:55
(Laughter)
308
775260
2000
(ืฆื—ื•ืง)
12:57
Boy: This one lighted up, and this one nothing.
309
777260
3000
ื”ื™ืœื“: ื–ื” ื ื“ืœืง, ื•ื–ื” ื›ืœื•ื.
13:00
AG: Okay, he's got his experimental notebook out.
310
780260
3000
ื.ื’.: ืื• ืงื™ื™, ื”ื•ื ื”ื•ืฆื™ื ืืช ืคื ืงืก ื”ื ื™ืกื•ื™ื™ื ืฉืœื•.
13:06
Boy: What's making this light up.
311
786260
4000
ื”ื™ืœื“: ืžื” ื’ื•ืจื ืœื–ื” ืœื”ื™ื“ืœืง ...
13:11
(Laughter)
312
791260
9000
(ืฆื—ื•ืง)
13:20
I don't know.
313
800260
2000
ืื ื™ ืœื ื™ื•ื“ืข.
13:22
AG: Every scientist will recognize that expression of despair.
314
802260
4000
ื.ื’.: ื›ืœ ื—ื•ืงืจ ื™ื–ื”ื” ืืช ืžื‘ื˜ ื”ื™ื™ืื•ืฉ ื”ื–ื”.
13:26
(Laughter)
315
806260
3000
(ืฆื—ื•ืง)
13:29
Boy: Oh, it's because this needs to be like this,
316
809260
6000
ื™ืœื“: ืื•ืœื™ ื‘ื’ืœืœ ืฉื–ื” ืฆืจื™ืš ืœื”ื™ื•ืช ื›ื›ื”,
13:35
and this needs to be like this.
317
815260
2000
ื•ื–ื” ืฆืจื™ืš ืœื”ื™ื•ืช ื›ื›ื”.
13:37
AG: Okay, hypothesis two.
318
817260
3000
ื.ื’.: ืื• ืงื™ื™, ื”ื ื—ื” ืžืกืคืจ ืฉืชื™ื™ื.
13:40
Boy: That's why.
319
820260
2000
ื™ืœื“: ื–ื” ืœืžื”.
13:42
Oh.
320
822260
2000
ืื”...
13:44
(Laughter)
321
824260
5000
(ืฆื—ื•ืง)
13:49
AG: Now this is his next idea.
322
829260
2000
ื.ื’.: ื›ืขืช ืขื•ื‘ืจ ืœืจืขื™ื•ืŸ ื—ื“ืฉ.
13:51
He told the experimenter to do this,
323
831260
2000
ื”ื•ื ืืžืจ ืœื—ื•ืงืจืช ืœืขืฉื•ืช ื›ื›ื”,
13:53
to try putting it out onto the other location.
324
833260
4000
ืœื ืกื•ืช ืœืฉื™ื ืืช ื–ื” ื‘ืฆื“ ื”ืฉื ื™.
13:57
Not working either.
325
837260
2000
ื’ื ืœื ืขื•ื‘ื“.
14:02
Boy: Oh, because the light goes only to here,
326
842260
4000
ื™ืœื“: ืื”, ื‘ื’ืœืœ ืฉื”ืื•ืจ ื ื“ืœืง ืจืง ื›ืืŸ,
14:06
not here.
327
846260
3000
ื•ืœื ื›ืืŸ.
14:09
Oh, the bottom of this box
328
849260
3000
ืื”, ื‘ืชื—ืชื™ืช ืฉืœ ื”ืงื•ืคืกื” ื”ื–ืืช
14:12
has electricity in here,
329
852260
2000
ื™ืฉ ื—ืฉืžืœ,
14:14
but this doesn't have electricity.
330
854260
2000
ื•ื‘ื–ืืช, ืื™ืŸ.
14:16
AG: Okay, that's a fourth hypothesis.
331
856260
2000
ื.ื’.: ืื• ืงื™ื™, ื–ืืช ื”ื ื—ื” ืจื‘ื™ืขื™ืช.
14:18
Boy: It's lighting up.
332
858260
2000
ื™ืœื“: ื–ื” ื ื“ืœืง.
14:20
So when you put four.
333
860260
5000
ืื– ื›ืฉืืชื” ืฉื ืืจื‘ืข.
14:26
So you put four on this one to make it light up
334
866260
3000
ืื– ืขืœ ื–ื” ืืชื” ืฆืจื™ืš ืœืฉื™ื ืืจื‘ืข ื›ื“ื™ ืฉื–ื” ื™ื™ื“ืœืง
14:29
and two on this one to make it light up.
335
869260
2000
ื•ืฉื ื™ื™ื ืขืœ ื–ื” ื›ื“ื™ ืฉื–ื” ื™ื™ื“ืœืง.
14:31
AG: Okay,there's his fifth hypothesis.
336
871260
2000
ื.ื’.: ืื• ืงื™ื™, ื”ื ื” ื”ื”ื ื—ื” ื”ื—ืžื™ืฉื™ืช ืฉืœื•.
14:33
Now that is a particularly --
337
873260
3000
ืขื›ืฉื™ื•, ื›ืืŸ ืžื“ื•ื‘ืจ
14:36
that is a particularly adorable and articulate little boy,
338
876260
3000
ื‘ื™ืœื“ ื—ืžื•ื“ ื•ื ื‘ื•ืŸ ื‘ืžื™ื•ื—ื“.
14:39
but what Cristine discovered is this is actually quite typical.
339
879260
3000
ืืš ืžื” ืฉืงืจื™ืกื˜ื™ืŸ ื’ื™ืœืชื” ื”ื•ื ืฉื‘ืขืฆื ื–ื” ืœื ืžืฉื”ื• ื™ื•ืฆื ืžื’ื“ืจ ื”ืจื’ื™ืœ.
14:42
If you look at the way children play, when you ask them to explain something,
340
882260
3000
ืื ืฆื•ืคื™ื ื‘ื™ืœื“ื™ื ืžืฉื—ืงื™ื, ืื ื ื‘ืงืฉ ืžื”ื ืœื”ืกื‘ื™ืจ ืœื ื• ืžืฉื”ื•,
14:45
what they really do is do a series of experiments.
341
885260
3000
ืžื” ืฉื‘ืขืฆื ื”ื ืขื•ืฉื™ื ื–ืืช ืกื“ืจื” ืฉืœ ื ื™ืกื•ื™ื™ื.
14:48
This is actually pretty typical of four year-olds.
342
888260
3000
ื–ื” ื‘ืขืฆื ื“ื™ ืฉื›ื™ื— ืืฆืœ ื™ืœื“ื™ื ื‘ื ื™ ืืจื‘ืข.
14:51
Well, what's it like to be this kind of creature?
343
891260
3000
ืื–, ืื™ืš ื–ื” ืœื”ื™ื•ืช ื™ื™ืฆื•ืจ ืžื”ืกื•ื’ ื”ื–ื”?
14:54
What's it like to be one of these brilliant butterflies
344
894260
3000
ืื™ืš ื–ื” ืœื”ื™ื•ืช ืื—ื“ ืžื”ืคืจืคืจื™ื ื”ื ืคืœืื™ื ื”ืืœื”
14:57
who can test five hypotheses in two minutes?
345
897260
3000
ืฉืžืกื•ื’ืœื™ื ืœื‘ื—ื•ืŸ ื—ืžืฉ ื”ื ื—ื•ืช ื‘ืฉืชื™ ื“ืงื•ืช?
15:00
Well, if you go back to those psychologists and philosophers,
346
900260
3000
ืื ื ืœืš ืื—ื•ืจื” ืœื›ืœ ืื•ืชื ืคืกื™ื›ื•ืœื•ื’ื™ื ื•ืคื™ืœื•ืกื•ืคื™ื,
15:03
a lot of them have said
347
903260
2000
ืจื‘ื™ื ืžื”ื ืฆื™ื™ื ื•
15:05
that babies and young children were barely conscious
348
905260
2000
ืฉืœืชื™ื ื•ืงื•ืช ื•ืœื™ืœื“ื™ื ืงื˜ื ื™ื ื‘ืงื•ืฉื™ ื™ืฉ ืžื•ื“ืขื•ืช,
15:07
if they were conscious at all.
349
907260
2000
ืื ื‘ื›ืœืœ.
15:09
And I think just the opposite is true.
350
909260
2000
ืื ื™ ื—ื•ืฉื‘ืช ืฉื‘ื“ื™ื•ืง ื”ื”ืคืš ื”ื•ื ื”ื ื›ื•ืŸ.
15:11
I think babies and children are actually more conscious than we are as adults.
351
911260
3000
ืื ื™ ื—ื•ืฉื‘ืช ืฉืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื ืงื˜ื ื™ื ื”ื ื™ื•ืชืจ ืžื•ื“ืขื™ื ืžืžื” ืฉืื ื—ื ื•, ื”ืžื‘ื•ื’ืจื™ื.
15:14
Now here's what we know about how adult consciousness works.
352
914260
3000
ื–ื” ืžื” ืฉืื ื—ื ื• ื™ื•ื“ืขื™ื ืขืœ ืื™ืš ืขื•ื‘ื“ืช ื”ืžื•ื“ืขื•ืช ืฉืœ ื”ืžื‘ื•ื’ืจื™ื.
15:17
And adults' attention and consciousness
353
917260
2000
ื”ืžื•ื“ืขื•ืช ื•ืชืฉื•ืžืช ื”ืœื‘ ืฉืœ ื”ืžื‘ื•ื’ืจื™ื
15:19
look kind of like a spotlight.
354
919260
2000
ื ืจืื™ื ื›ืžื• ืกื•ื’ ืฉืœ ืืœื•ืžืช ืื•ืจ.
15:21
So what happens for adults
355
921260
2000
ืžื” ืฉืงื•ืจื” ืืฆืœ ื”ืžื‘ื•ื’ืจื™ื
15:23
is we decide that something's relevant or important,
356
923260
2000
ื”ื ืฉืื ื—ื ื• ืžื—ืœื™ื˜ื™ื ืฉืžืฉื”ื• ืจืœื•ื•ื ื˜ื™ ืื• ื—ืฉื•ื‘,
15:25
we should pay attention to it.
357
925260
2000
ืœื›ืŸ ื›ื“ืื™ ืฉื ืฉื™ื ืืœื™ื• ืœื‘.
15:27
Our consciousness of that thing that we're attending to
358
927260
2000
ื”ืžื•ื“ืขื•ืช ืฉืœื ื• ืœื’ื‘ื™ ืื•ืชื• ื“ื‘ืจ ื‘ื• ืื ื—ื ื• ืžืชืจื›ื–ื™ื
15:29
becomes extremely bright and vivid,
359
929260
3000
ื”ื•ืคื›ืช ืœื”ื™ื•ืช ืžืื•ื“ ื‘ื”ื™ืจื” ื•ืžืœืืช ื—ื™ื™ื,
15:32
and everything else sort of goes dark.
360
932260
2000
ื•ื›ืœ ื”ืฉืืจ ื›ืื™ืœื• ื ื›ื ืก ืœื—ืฉื›ื”.
15:34
And we even know something about the way the brain does this.
361
934260
3000
ืื ื—ื ื• ืืคื™ืœื• ื™ื•ื“ืขื™ื ืžืฉื”ื• ืขืœ ื”ื“ืจืš ื‘ื” ื”ืžื•ื— ืขื•ืฉื” ื–ืืช.
15:37
So what happens when we pay attention
362
937260
2000
ืžื” ืฉืงื•ืจื”, ื›ืืฉืจ ืื ื—ื ื• ืงืฉื•ื‘ื™ื ืœืžืฉื”ื•
15:39
is that the prefrontal cortex, the sort of executive part of our brains,
363
939260
3000
ื”ื•ื ืฉื”ืงื•ืจื˜ืงืก ื”ืคืจื”-ืคืจื•ื ื˜ืœื™, ื—ืœืง ื ื™ื”ื•ืœื™ ื‘ืžื•ื—ื ื•,
15:42
sends a signal
364
942260
2000
ืฉื•ืœื— ืื•ืช
15:44
that makes a little part of our brain much more flexible,
365
944260
2000
ืฉื”ื•ืคืš ื—ืœืง ืงื˜ืŸ ืžืžื•ื—ื ื• ืœื”ืจื‘ื” ื™ื•ืชืจ ื’ืžื™ืฉ,
15:46
more plastic, better at learning,
366
946260
2000
ื™ื•ืชืจ ืคืœืกื˜ื™, ื™ื•ืชืจ ื˜ื•ื‘ ื‘ืœืžื™ื“ื”,
15:48
and shuts down activity
367
948260
2000
ื•ืกื•ื’ืจืช ืืช ื”ืคืขื™ืœื•ืช
15:50
in all the rest of our brains.
368
950260
2000
ื‘ื›ืœ ืฉืืจ ื”ืžื•ื— ืฉืœื ื•.
15:52
So we have a very focused, purpose-driven kind of attention.
369
952260
4000
ื–ื” ื’ื•ืจื ืœืกื•ื’ ืฉืœ ืงืฉื‘ ืžืื•ื“ ืžืจื•ื›ื–, ืžื•ื ื—ื”-ืžื˜ืจื”.
15:56
If we look at babies and young children,
370
956260
2000
ืื ื ืชื‘ื•ื ืŸ ื‘ืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื ืงื˜ื ื™ื,
15:58
we see something very different.
371
958260
2000
ื ื’ืœื” ืžืฉื”ื• ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ.
16:00
I think babies and young children
372
960260
2000
ืื ื™ ื—ื•ืฉื‘ืช ืฉืœืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื ืงื˜ื ื™ื
16:02
seem to have more of a lantern of consciousness
373
962260
2000
ื™ืฉ ืกื•ื’ ืฉืœ ืขืฉืฉื™ืช ืฉืœ ืžื•ื“ืขื•ืช,
16:04
than a spotlight of consciousness.
374
964260
2000
ืžืืฉืจ ืืœื•ืžื” ืฉืœ ืžื•ื“ืขื•ืช.
16:06
So babies and young children are very bad
375
966260
3000
ื›ืš, ืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื ืงื˜ื ื™ื ืžืžืฉ ืœื ื˜ื•ื‘ื™ื
16:09
at narrowing down to just one thing.
376
969260
3000
ื‘ื”ืฆื˜ืžืฆืžื•ืช ืœื“ื‘ืจ ืื—ื“ ืกืคืฆื™ืคื™.
16:12
But they're very good at taking in lots of information
377
972260
3000
ืืš ื”ื ื˜ื•ื‘ื™ื ืžืื•ื“ ื‘ืฉืื™ื‘ืช ืžื™ื“ืข ืจื‘
16:15
from lots of different sources at once.
378
975260
2000
ืžืžืงื•ืจื•ืช ืจื‘ื™ื ื‘ื‘ืช ืื—ืช.
16:17
And if you actually look in their brains,
379
977260
2000
ื•ืื ื ืชื‘ื•ื ืŸ ื‘ืžื•ื—ื•ืช ืฉืœื”ื,
16:19
you see that they're flooded with these neurotransmitters
380
979260
3000
ื ืจืื” ืฉื”ื ืžื•ืฆืคื™ื ื‘ืžืขื‘ื™ืจื™ื ืขืฆื‘ื™ื™ื ื›ืืœื”
16:22
that are really good at inducing learning and plasticity,
381
982260
2000
ืฉื”ื ืžืขื•ืœื™ื ื‘ื”ืฉืจืืช ืœืžื™ื“ื” ื•ื’ืžื™ืฉื•ืช,
16:24
and the inhibitory parts haven't come on yet.
382
984260
3000
ื•ื”ื—ืœืงื™ื ืžืจืกื ื™ื ื˜ืจื ื”ื•ืคื™ืขื•.
16:27
So when we say that babies and young children
383
987260
2000
ืื– ื›ืฉืื ื—ื ื• ืื•ืžืจื™ื ืฉืชื™ื ื•ืงื•ืช ื•ื™ืœื“ื™ื ืงื˜ื ื™ื
16:29
are bad at paying attention,
384
989260
2000
ืœื ืžื•ืฆืœื—ื™ื ื‘ื”ืคื ื™ื™ืช ืงืฉื‘,
16:31
what we really mean is that they're bad at not paying attention.
385
991260
4000
ืžื” ืฉืื ื—ื ื• ื‘ืขืฆื ืื•ืžืจื™ื ื”ื•ื ืฉื”ื ื’ืจื•ืขื™ื ื‘ืœื ืœืฉื™ื ืœื‘.
16:35
So they're bad at getting rid
386
995260
2000
ื”ื ื’ืจื•ืขื™ื ื‘ืœื”ืชืขืœื
16:37
of all the interesting things that could tell them something
387
997260
2000
ืžื›ืœ ื”ื“ื‘ืจื™ื ื”ืžืขื ื™ื™ื ื™ื ืžื”ื ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืžืฉื”ื•
16:39
and just looking at the thing that's important.
388
999260
2000
ื•ืœื”ืกืชื›ืœ ืจืง ืขืœ ืžื” ืฉื‘ืืžืช ื—ืฉื•ื‘.
16:41
That's the kind of attention, the kind of consciousness,
389
1001260
3000
ื–ื”ื• ืกื•ื’ ืฉืœ ืงืฉื‘, ืฉืœ ืžื•ื“ืขื•ืช,
16:44
that we might expect
390
1004260
2000
ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฆืคื•ืช
16:46
from those butterflies who are designed to learn.
391
1006260
2000
ืžืื•ืชื ืคืจืคืจื™ื ืฉืขื•ืฆื‘ื• ื›ื“ื™ ืœืœืžื•ื“.
16:48
Well if we want to think about a way
392
1008260
2000
ืื ื ืจืฆื” ืœื—ืฉื•ื‘ ืขืœ ื“ืจืš
16:50
of getting a taste of that kind of baby consciousness as adults,
393
1010260
4000
ืœื˜ืขื•ื ืžืกื•ื’ ื–ื” ืฉืœ ืžื•ื“ืขื•ืช ืชื™ื ื•ืงื•ืช, ื›ื‘ื•ื’ืจื™ื,
16:54
I think the best thing is think about cases
394
1014260
2000
ืื ื™ ื—ื•ืฉื‘ืช ืฉื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ื”ื™ื ืœื—ืฉื•ื‘ ืขืœ ื›ืœ ื”ืžืงืจื™ื
16:56
where we're put in a new situation that we've never been in before --
395
1016260
3000
ื‘ื”ื ืฉืžื• ืื•ืชื ื• ื‘ืžืฆื‘ ื‘ื• ืžืขื•ืœื ืœื ื”ื™ื™ื ื• ืงื•ื“ื.
16:59
when we fall in love with someone new,
396
1019260
2000
ื›ืฉืื ื—ื ื• ืžืชืื”ื‘ื™ื ื‘ืžื™ืฉื”ื• ื—ื“ืฉ,
17:01
or when we're in a new city for the first time.
397
1021260
3000
ืื• ื›ืฉืื ื—ื ื• ื‘ืขื™ืจ ืžืกื•ื™ืžืช ื‘ืคืขื ื”ืจืืฉื•ื ื”.
17:04
And what happens then is not that our consciousness contracts,
398
1024260
2000
ืžื” ืฉืงื•ืจื” ื”ื•ื ืœื ืฉื”ืžื•ื“ืขื•ืช ืฉืœื ื• ืžืชื›ื•ื•ืฆืช,
17:06
it expands,
399
1026260
2000
ืืœื ื”ื™ื ืžืชืจื—ื‘ืช,
17:08
so that those three days in Paris
400
1028260
2000
ื›ืš ืฉืฉืœื•ืฉืช ื”ื™ืžื™ื ื”ืืœื” ื‘ืคืจื™ื–
17:10
seem to be more full of consciousness and experience
401
1030260
2000
ื ืจืื™ื ื™ื•ืชืจ ืžืœืื™ื ื‘ื—ื•ื•ื™ื•ืช ื•ืžื•ื“ืขื•ืช
17:12
than all the months of being
402
1032260
2000
ืžืืฉืจ ื›ืœ ื”ื—ื•ื“ืฉื™ื ืฉืœ ืœื”ื™ื•ืช
17:14
a walking, talking, faculty meeting-attending zombie back home.
403
1034260
4000
ื–ื•ืžื‘ื™ ืžื”ืกื•ื’ ืฉื”ื•ืœืš, ืžื“ื‘ืจ ื•ืžืฉืชืชืฃ ื‘ื™ืฉื™ื‘ื•ืช ืืงื“ืžื™ื•ืช, ืฉื, ื‘ื‘ื™ืช.
17:18
And by the way, that coffee,
404
1038260
2000
ื•ืื’ื‘, ื”ืงืคื” ื”ื”ื•ื
17:20
that wonderful coffee you've been drinking downstairs,
405
1040260
2000
ื”ืงืคื” ื”ื ืคืœื ื”ื”ื•ื ืฉืืชื ืฉื•ืชื™ื ืœืžื˜ื”,
17:22
actually mimics the effect
406
1042260
2000
ืžืžืฉ ืžื“ืžื” ืืช ื”ืชื•ืคืขื”
17:24
of those baby neurotransmitters.
407
1044260
2000
ืฉืœ ื”ืžืขื‘ื™ืจื™ื ื”ืขืฆื‘ื™ื™ื ืฉืœ ื”ืชื™ื ื•ืงื•ืช.
17:26
So what's it like to be a baby?
408
1046260
2000
ืื– ืื™ืš ื–ื” ืœื”ื™ื•ืช ืชื™ื ื•ืง?
17:28
It's like being in love
409
1048260
2000
ื–ื” ื›ืžื• ืœื”ื™ื•ืช ืžืื•ื”ื‘
17:30
in Paris for the first time
410
1050260
2000
ื‘ืคืจื™ื–, ืœืจืืฉื•ื ื”
17:32
after you've had three double-espressos.
411
1052260
2000
ืื—ืจื™ ืฉืฉืชื™ืช ืฉืœื•ืฉื” ืืกืคืจืกื• ื›ืคื•ืœ.
17:34
(Laughter)
412
1054260
3000
(ืฆื—ื•ืง)
17:37
That's a fantastic way to be,
413
1057260
2000
ื–ื•ื”ื™ ื“ืจืš ื ื”ื“ืจืช ืœื”ืชืงื™ื™ื,
17:39
but it does tend to leave you waking up crying at three o'clock in the morning.
414
1059260
4000
ืืš ื™ืฉ ืœื–ื” ื ื˜ื™ื” ืœื’ืจื•ื ืœืš ืœื”ืชืขื•ืจืจ ื‘ื“ืžืขื•ืช ื‘ืฉืœื•ืฉ ื‘ื‘ื•ืงืจ.
17:43
(Laughter)
415
1063260
3000
(ืฆื—ื•ืง)
17:46
Now it's good to be a grownup.
416
1066260
2000
ื–ื” ื˜ื•ื‘ ืœื”ื™ื•ืช ื‘ื•ื’ืจ.
17:48
I don't want to say too much about how wonderful babies are.
417
1068260
2000
ืื ื™ ืœื ืจื•ืฆื” ืœื•ืžืจ ื™ื•ืชืจ ืžื“ื™ ืขืœ ืขื“ ื›ืžื” ื”ืชื™ื ื•ืงื•ืช ื ืคืœืื™ื.
17:50
It's good to be a grownup.
418
1070260
2000
ื–ื” ื˜ื•ื‘ ืœื”ื™ื•ืช ื‘ื•ื’ืจ.
17:52
We can do things like tie our shoelaces and cross the street by ourselves.
419
1072260
3000
ืื ื—ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ืžื• ืœืงืฉื•ืจ ืฉืจื•ื›ื™ื ืื• ืœืขื‘ื•ืจ ืืช ื”ื›ื‘ื™ืฉ ืœื‘ื“.
17:55
And it makes sense that we put a lot of effort
420
1075260
2000
ื•ื–ื” ื“ื™ ืžื•ื‘ืŸ ืฉืžืฉืงื™ืขื™ื ืžืืžืฅ ืจื‘
17:57
into making babies think like adults do.
421
1077260
4000
ื‘ืœื’ืจื•ื ืœืชื™ื ื•ืงื•ืช ืœื—ืฉื•ื‘ ื›ืคื™ ืฉื”ื‘ื•ื’ืจื™ื ื—ื•ืฉื‘ื™ื.
18:01
But if what we want is to be like those butterflies,
422
1081260
3000
ืืš ืื ื›ืœ ืžื” ืฉืื ื—ื ื• ืจื•ืฆื™ื ื”ื•ื ืœื”ื™ื•ืช ื›ืžื• ื”ืคืจืคืจื™ื ื”ื”ื,
18:04
to have open-mindedness, open learning,
423
1084260
3000
ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืœืžื•ื“, ืœืฉืžื•ืจ ืขืœ ืจืืฉ ืคืชื•ื—,
18:07
imagination, creativity, innovation,
424
1087260
2000
ื“ื™ืžื™ื•ืŸ, ื™ืฆื™ืจืชื™ื•ืช, ื—ื“ืฉื ื•ืช,
18:09
maybe at least some of the time
425
1089260
2000
ืื•ืœื™ ืœืคื—ื•ืช ื‘ื—ืœืง ืžื”ื–ืžืŸ
18:11
we should be getting the adults
426
1091260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื’ืจื•ื ืœื‘ื•ื’ืจื™ื
18:13
to start thinking more like children.
427
1093260
2000
ืœื”ืชื—ื™ืœ ืœื—ืฉื•ื‘ ื™ื•ืชืจ ื›ืžื• ื™ืœื“ื™ื.
18:15
(Applause)
428
1095260
8000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7