Alison Gopnik: What do babies think?

397,448 views ・ 2011-10-10

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

λ²ˆμ—­: Jina Kim κ²€ν† : Bianca Lee
00:15
What is going on
0
15260
2000
이 μ•„κΈ°λŠ” μ§€κΈˆ
00:17
in this baby's mind?
1
17260
2000
무슨 생각을 ν•˜κ³  μžˆμ„κΉŒμš”?
00:19
If you'd asked people this 30 years ago,
2
19260
2000
만일 30λ…„ 전에 μ‚¬λžŒλ“€μ—κ²Œ 이 μ§ˆλ¬Έμ„ ν–ˆλ‹€λ©΄
00:21
most people, including psychologists,
3
21260
2000
μ‹¬λ¦¬ν•™μžλ₯Ό λΉ„λ‘―ν•œ λŒ€λΆ€λΆ„μ˜ μ‚¬λžŒλ“€μ€
00:23
would have said that this baby was irrational,
4
23260
3000
이 μ•„κΈ°λŠ” 뢄별λ ₯이 μ—†κ³ ,
00:26
illogical, egocentric --
5
26260
2000
비논리적이며, μžκΈ°μ€‘μ‹¬μ μ΄λ―€λ‘œ
00:28
that he couldn't take the perspective of another person
6
28260
2000
λ‹€λ₯Έ μ‚¬λžŒμ˜ 견해λ₯Ό λ°›μ•„λ“€μ΄κ±°λ‚˜
00:30
or understand cause and effect.
7
30260
2000
원인과 κ²°κ³Όλ₯Ό μ΄ν•΄ν•˜μ§€ λͺ»ν•œλ‹€κ³  λ§ν–ˆμ„ κ²ƒμž…λ‹ˆλ‹€.
00:32
In the last 20 years,
8
32260
2000
졜근 20λ…„ λ™μ•ˆ
00:34
developmental science has completely overturned that picture.
9
34260
3000
λ°œλ‹¬ν•˜λŠ” 과학은 이 그림을 μ™„μ „νžˆ λ’€μ§‘μ—ˆμŠ΅λ‹ˆλ‹€.
00:37
So in some ways,
10
37260
2000
λ”°λΌμ„œ 관점에 따라
00:39
we think that this baby's thinking
11
39260
2000
우린 이 μ•„κΈ°κ°€ μƒκ°ν•˜λŠ” 것이
00:41
is like the thinking of the most brilliant scientists.
12
41260
4000
κ°€μž₯ λ›°μ–΄λ‚œ κ³Όν•™μžκ°€ μƒκ°ν•˜λŠ” 것과 λΉ„μŠ·ν•˜λ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€.
00:45
Let me give you just one example of this.
13
45260
2000
이에 λŒ€ν•œ μ˜ˆμ‹œλ₯Ό ν•˜λ‚˜ 듀어보도둝 ν•˜μ£ .
00:47
One thing that this baby could be thinking about,
14
47260
3000
이 μ•„κΈ°κ°€ 생각쀑인 λŒ€μƒμΌ 수 μžˆλŠ” 것,
00:50
that could be going on in his mind,
15
50260
2000
즉, 이 μ•„κΈ°μ˜ 머릿속에 λ§΄λ„λŠ” 것 쀑 ν•˜λ‚˜μΌ 수 μžˆλŠ” 건
00:52
is trying to figure out
16
52260
2000
λ°”λ‘œ λ‹€λ₯Έ μ•„κΈ°κ°€ μ–΄λ–€ 생각 쀑일지
00:54
what's going on in the mind of that other baby.
17
54260
3000
μ•Œμ•„λ‚΄κ³ μž ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
00:57
After all, one of the things that's hardest for all of us to do
18
57260
3000
무엇보닀도, 우리 λͺ¨λ‘κ°€ κ°€μž₯ ν•˜κΈ° νž˜λ“  일 쀑 ν•˜λ‚˜λŠ”
01:00
is to figure out what other people are thinking and feeling.
19
60260
3000
λ‹€λ₯Έ μ‚¬λžŒμ΄ 무얼 μƒκ°ν•˜κ³  느끼고 μžˆλŠ”μ§€λ₯Ό μ•Œμ•„λ‚΄λŠ” κ²ƒμž…λ‹ˆλ‹€.
01:03
And maybe the hardest thing of all
20
63260
2000
그리고 μ•„λ§ˆλ„ κ°€μž₯ μ–΄λ €μš΄ 것은
01:05
is to figure out that what other people think and feel
21
65260
3000
λ‹€λ₯Έ μ‚¬λžŒμ΄ μƒκ°ν•˜κ³  λŠλΌλŠ” 것이
01:08
isn't actually exactly like what we think and feel.
22
68260
2000
μ‹€μ œ μš°λ¦¬κ°€ μƒκ°ν•˜κ³  λŠλΌλŠ” 것과 κΌ­ κ°™μ§€λŠ” μ•ŠμŒμ„ λ°œκ²¬ν•˜λŠ” 일일 κ²λ‹ˆλ‹€.
01:10
Anyone who's followed politics can testify
23
70260
2000
μ •μΉ˜κ°€λ₯Ό λ”°λ₯΄λŠ” μ‚¬λžŒμ΄λΌλ©΄ λˆ„κ΅¬λ“ 
01:12
to how hard that is for some people to get.
24
72260
3000
μ–΄λ–€ μ‚¬λžŒμ˜ λ§ˆμŒμ„ μ•Œμ•„λ‚΄λŠ” 것이 μ–Όλ§ˆλ‚˜ μ–΄λ €μš΄μ§€λ₯Ό μž…μ¦ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
01:15
We wanted to know
25
75260
2000
μš°λ¦¬λŠ” 아기와 μ–΄λ¦° 아이듀이
01:17
if babies and young children
26
77260
2000
λ‹€λ₯Έ μ‚¬λžŒμ— λŒ€ν•œ μ΄λŸ¬ν•œ μ‹€λ‘œ λ‚œν•΄ν•œ 문제λ₯Ό
01:19
could understand this really profound thing about other people.
27
79260
3000
μ •λ§λ‘œ 이해할 수 μžˆλŠ”μ§€λ₯Ό μ•Œκ³  μ‹Άμ—ˆμŠ΅λ‹ˆλ‹€.
01:22
Now the question is: How could we ask them?
28
82260
2000
이제 λ¬Έμ œλŠ” μ•„κΈ°λ“€μ—κ²Œ μ–΄λ–»κ²Œ λ¬Όμ–΄λ³Ό 것인가 μž…λ‹ˆλ‹€.
01:24
Babies, after all, can't talk,
29
84260
2000
아기듀은 μš°μ„  말을 ν•  수 μ—†μŠ΅λ‹ˆλ‹€.
01:26
and if you ask a three year-old
30
86260
2000
그리고 3μ‚΄λ°°κΈ°μ—κ²Œ 무슨 생각 쀑인지
01:28
to tell you what he thinks,
31
88260
2000
μ–˜κΈ°ν•΄ 달라고 ν•œλ‹€λ©΄
01:30
what you'll get is a beautiful stream of consciousness monologue
32
90260
3000
μ—¬λŸ¬λΆ„μ—κ²Œ λŒμ•„μ˜€λŠ” 것이라곀 μ‘°λž‘λ§κ³Ό 생일 같은 것듀에 λŒ€ν•œ
01:33
about ponies and birthdays and things like that.
33
93260
3000
생각듀을 λŠ˜μ–΄ λ†“λŠ” 독백 정도일 κ²ƒμž…λ‹ˆλ‹€.
01:36
So how do we actually ask them the question?
34
96260
3000
κ·Έλ ‡λ‹€λ©΄ μš°λ¦¬λŠ” μ–΄λ–»κ²Œ μ•„κΈ°λ“€μ—κ²Œ μ§ˆλ¬Έν•΄μ•Ό ν• κΉŒμš”?
01:39
Well it turns out that the secret was broccoli.
35
99260
3000
비밀은 λ°”λ‘œ λΈŒλ‘œμ½œλ¦¬μ— μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
01:42
What we did -- Betty Rapacholi, who was one of my students, and I --
36
102260
4000
제 학생 쀑 ν•˜λ‚˜μΈ Betty Rapacholi와 μ €λŠ”
01:46
was actually to give the babies two bowls of food:
37
106260
3000
μ•„κΈ°μ—κ²Œ 생 브둜콜리 ν•œ 그릇과
01:49
one bowl of raw broccoli
38
109260
2000
λ§›μžˆλŠ” κΈˆλΆ•μ–΄ λͺ¨μ–‘ 크래컀 ν•œ 그릇을
01:51
and one bowl of delicious goldfish crackers.
39
111260
3000
μ£Όμ–΄ λ³΄μ•˜μŠ΅λ‹ˆλ‹€.
01:54
Now all of the babies, even in Berkley,
40
114260
3000
그러자 λͺ¨λ“  μ•„κΈ°λ“€, 심지어 λ²„ν΄λ¦¬μ—μ„œλ„
01:57
like the crackers and don't like the raw broccoli.
41
117260
3000
이 크래컀λ₯Ό μ’‹μ•„ν•˜κ³  생 λΈŒλ‘œμ½œλ¦¬λŠ” μ‹«μ–΄ν–ˆμŠ΅λ‹ˆλ‹€.
02:00
(Laughter)
42
120260
2000
(μ›ƒμŒ)
02:02
But then what Betty did
43
122260
2000
Bettyκ°€ λ‹€μŒμœΌλ‘œ ν•œ 일은
02:04
was to take a little taste of food from each bowl.
44
124260
3000
각 κ·Έλ¦‡μ˜ μŒμ‹μ„ μ‘°κΈˆμ”© 맛본 κ²ƒμ΄μ—ˆμŠ΅λ‹ˆλ‹€.
02:07
And she would act as if she liked it or she didn't.
45
127260
2000
그리곀 μŒμ‹μ„ μ’‹μ•„ν•˜κ±°λ‚˜ μ‹«μ–΄ν•˜λŠ” κ²ƒμ²˜λŸΌ ν–‰λ™ν–ˆμŠ΅λ‹ˆλ‹€.
02:09
So half the time, she acted
46
129260
2000
μ‹€ν—˜ μ‹œκ°„μ˜ 절반 λ™μ•ˆμ€
02:11
as if she liked the crackers and didn't like the broccoli --
47
131260
2000
크래컀λ₯Ό μ’‹μ•„ν•˜κ³  브둜콜리λ₯Ό μ‹«μ–΄ν•˜λŠ” κ²ƒμ²˜λŸΌ ν–‰λ™ν–ˆμ§€μš”.
02:13
just like a baby and any other sane person.
48
133260
3000
아기와 λ‹€λ₯Έ 일반적인 μ‚¬λžŒμ΄ κ·ΈλŸ¬λ“―μ΄μš”.
02:16
But half the time,
49
136260
2000
κ·ΈλŸ¬λ‚˜ λ‚˜λ¨Έμ§€ μ‹œκ°„μ—λŠ”
02:18
what she would do is take a little bit of the broccoli
50
138260
2000
브둜콜리λ₯Ό μ•½κ°„ 맛본 λ‹€μŒ
02:20
and go, "Mmmmm, broccoli.
51
140260
3000
"음, 브둜콜리.
02:23
I tasted the broccoli. Mmmmm."
52
143260
3000
λ‚œ 브둜콜리 맛을 λ΄€μ–΄. 음~"κ³Ό 같이 ν–ˆμŠ΅λ‹ˆλ‹€.
02:26
And then she would take a little bit of the crackers,
53
146260
2000
그런 λ‹€μŒ 크래컀λ₯Ό μ•½κ°„ 맛본 ν›„
02:28
and she'd go, "Eww, yuck, crackers.
54
148260
4000
"으, μ›©, 크래컀.
02:32
I tasted the crackers. Eww, yuck."
55
152260
3000
λ‚œ 크래컀 맛을 λ΄€μ–΄. 으, μ›©."
02:35
So she'd act as if what she wanted
56
155260
2000
즉, κ·Έλ…€λŠ” 아기듀이 μ›ν•˜λŠ” κ²ƒκ³ΌλŠ”
02:37
was just the opposite of what the babies wanted.
57
157260
3000
μ • λ°˜λŒ€λ‘œ μ›ν•˜λŠ” κ²ƒμ²˜λŸΌ ν–‰λ™ν–ˆμŠ΅λ‹ˆλ‹€.
02:40
We did this with 15 and 18 month-old babies.
58
160260
2000
이 μ‹€ν—˜μ„ 15~18κ°œμ›” μ•„κΈ°λ“€μ—κ²Œ ν•œ λ‹€μŒ
02:42
And then she would simply put her hand out and say,
59
162260
3000
손을 λ»—μ–΄μ„œ μ•„κΈ°λ“€μ—κ²Œ
02:45
"Can you give me some?"
60
165260
2000
"μ’€ μ€„λž˜?"라고 λ§ν–ˆμŠ΅λ‹ˆλ‹€.
02:47
So the question is: What would the baby give her,
61
167260
2000
κ³Όμ—° 아기듀은 κ·Έλ…€μ—κ²Œ μžκΈ°λ“€μ΄ μ’‹μ•„ν–ˆλ˜ 것과
02:49
what they liked or what she liked?
62
169260
2000
κ·Έλ…€κ°€ μ’‹μ•„ν–ˆλ˜ 것 쀑 무엇을 μ€¬μ„κΉŒμš”?
02:51
And the remarkable thing was that 18 month-old babies,
63
171260
3000
λ†€λž„λ§Œν•œ 사싀은 겨우 κ±·κ³  λ§ν•˜κΈ° μ‹œμž‘ν•œ
02:54
just barely walking and talking,
64
174260
2000
18κ°œμ›”λœ 아기듀이
02:56
would give her the crackers if she liked the crackers,
65
176260
3000
κ·Έλ…€κ°€ 크래컀λ₯Ό μ’‹μ•„ν–ˆλ‹€λ©΄ 크래컀λ₯Ό μ£Όκ³ 
02:59
but they would give her the broccoli if she liked the broccoli.
66
179260
3000
브둜콜리λ₯Ό μ’‹μ•„ν–ˆλ‹€λ©΄ 브둜콜리λ₯Ό μ€€λ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
03:02
On the other hand,
67
182260
2000
ν•œνŽΈμœΌλ‘ 
03:04
15 month-olds would stare at her for a long time
68
184260
2000
15κ°œμ›”λœ 아기듀이 κ·Έλ…€κ°€ 브둜콜리λ₯Ό μ’‹μ•„ν•˜λŠ” κ²ƒμ²˜λŸΌ
03:06
if she acted as if she liked the broccoli,
69
186260
2000
ν–‰λ™ν•˜λ©΄ κ·Έλ…€λ₯Ό 이해할 수 μ—†λ‹€λŠ” 듯이
03:08
like they couldn't figure this out.
70
188260
3000
ν•œμ°Έ λ™μ•ˆ κ·Έλ…€λ₯Ό μ³λ‹€λ΄€μŠ΅λ‹ˆλ‹€.
03:11
But then after they stared for a long time,
71
191260
2000
κ·ΈλŸ¬λ‚˜ ν•œμ°Έμ„ 쳐닀본 ν›„μ—λŠ”
03:13
they would just give her the crackers,
72
193260
2000
κ·Έλ…€μ—κ²Œ λͺ¨λ‘κ°€ μ’‹μ•„ν•  것이라 μƒκ°ν•œ
03:15
what they thought everybody must like.
73
195260
2000
크래컀λ₯Ό μ£Όμ—ˆμŠ΅λ‹ˆλ‹€.
03:17
So there are two really remarkable things about this.
74
197260
3000
λ”°λΌμ„œ μ—¬κΈ°μ—” 두 가지 μ‹€λ‘œ μ£Όλͺ©ν•  λ§Œν•œ 사싀이 μžˆμŠ΅λ‹ˆλ‹€.
03:20
The first one is that these little 18 month-old babies
75
200260
3000
μ²«λ²ˆμ§ΈλŠ” 이런 μ–΄λ¦° 18κ°œμ›”μ§œλ¦¬ 아기듀도
03:23
have already discovered
76
203260
2000
λͺ¨λ‘κ°€ 항상 같은 것을 μ’‹μ•„ν•˜μ§€λŠ” μ•ŠλŠ”λ‹€λŠ”
03:25
this really profound fact about human nature,
77
205260
2000
인λ₯˜μ— λŒ€ν•œ 이렇듯 μ‹¬μ˜€ν•œ 사싀에 λŒ€ν•΄
03:27
that we don't always want the same thing.
78
207260
2000
이미 νŒŒμ•…ν–ˆλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
03:29
And what's more, they felt that they should actually do things
79
209260
2000
그리고 더 λ‚˜μ•„κ°€, 아기듀이 λ‹€λ₯Έ μ‚¬λžŒμ΄ μ›ν•˜λŠ” 것을 얻도둝
03:31
to help other people get what they wanted.
80
211260
3000
λ„μšΈ 수 μžˆλŠ” 일을 ν•΄μ•Ό ν•œλ‹€κ³  λŠλ‚€λ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
03:34
Even more remarkably though,
81
214260
2000
κ·ΈλŸ¬λ‚˜ 이보닀 더 λ†€λΌμš΄ 사싀은
03:36
the fact that 15 month-olds didn't do this
82
216260
3000
18κ°œμ›”μ§œλ¦¬ 아기듀이 15κ°œμ›”μΌ λ•ŒλΆ€ν„°
03:39
suggests that these 18 month-olds had learned
83
219260
3000
3κ°œμ›” λ™μ•ˆ 배운
03:42
this deep, profound fact about human nature
84
222260
3000
인λ₯˜μ— λŒ€ν•œ μ‹¬μ˜€ν•˜κ³  λ‚œν•΄ν•œ μ§„μ‹€λ‘œλΆ€ν„° λΉ„λ‘―λœ μ œμ•ˆμ„
03:45
in the three months from when they were 15 months old.
85
225260
3000
15κ°œμ›”λœ 아기듀이 받아듀이지 μ•Šμ•˜λ‹€λŠ” μ‚¬μ‹€μž…λ‹ˆλ‹€.
03:48
So children both know more and learn more
86
228260
2000
λ”°λΌμ„œ μš°λ¦¬κ°€ κ°€λ₯΄μΉœ 것 보닀
03:50
than we ever would have thought.
87
230260
2000
아이듀은 더 많이 μ•Œκ³  더 많이 λ°°μ›λ‹ˆλ‹€.
03:52
And this is just one of hundreds and hundreds of studies over the last 20 years
88
232260
4000
그리고 μ΄λŠ” 단지 수백 건의 연ꡬ 사둀 쀑 ν•˜λ‚˜μΌ 뿐이며, μ§€λ‚œ 20λ…„ λ™μ•ˆ 수백 건의 연ꡬ가
03:56
that's actually demonstrated it.
89
236260
2000
μ‹€μ œλ‘œ 이λ₯Ό μž…μ¦ν•΄ λ³΄μ˜€μŠ΅λ‹ˆλ‹€.
03:58
The question you might ask though is:
90
238260
2000
κ·ΈλŸΌμ—λ„ λΆˆκ΅¬ν•˜κ³  μ—¬λŸ¬λΆ„μ΄ κ°€μ§ˆ 수 μžˆλŠ” μ§ˆλ¬Έμ€
04:00
Why do children learn so much?
91
240260
3000
μ™œ 아이듀이 κ·Έλ ‡κ²Œ 많이 λ°°μ›Œμ•Ό ν•˜λŠλƒλŠ” κ²ƒμž…λ‹ˆλ‹€.
04:03
And how is it possible for them to learn so much
92
243260
2000
그리고 짧은 μ‹œκ°„ 내에 아이듀이 κ·Έλ ‡κ²Œ 많이 λ°°μš°λŠ” 것이
04:05
in such a short time?
93
245260
2000
μ–΄λ–»κ²Œ κ°€λŠ₯ν• κΉŒμš”?
04:07
I mean, after all, if you look at babies superficially,
94
247260
2000
말인 즉, 일단 아기듀을 ν‘œλ©΄μ μœΌλ‘œ λ°”λΌλ³΄μ•˜μ„ 땐
04:09
they seem pretty useless.
95
249260
2000
κ½€λ‚˜ 무λŠ₯ν•΄ λ³΄μΈλ‹€λŠ” κ²λ‹ˆλ‹€.
04:11
And actually in many ways, they're worse than useless,
96
251260
3000
그리고 μ‹€μ œ μ—¬λŸ¬ 츑면으둠, μš°λ¦¬κ°€ 단지 μ•„κΈ°λ“€μ˜ 생λͺ… μœ μ§€λ₯Ό μœ„ν•΄
04:14
because we have to put so much time and energy
97
254260
2000
μŸμ•„ λΆ€μ–΄μ•Ό ν•˜λŠ” λ§Žμ€ μ‹œκ°„κ³Ό λ…Έλ ₯을 μƒκ°ν•˜λ©΄
04:16
into just keeping them alive.
98
256260
2000
무λŠ₯ν•œ μˆ˜μ€€ μ΄ν•˜λΌκ³  λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
04:18
But if we turn to evolution
99
258260
2000
ν•˜μ§€λ§Œ μš°λ¦¬κ°€ 무λŠ₯ν•œ 아기듀을 돌보기 μœ„ν•΄
04:20
for an answer to this puzzle
100
260260
2000
μ–΄μ§Έμ„œ κ·Έλ ‡κ²Œ λ§Žμ€ μ‹œκ°„μ„ λ“€μ—¬μ•Ό ν•˜λŠ”κ°€ ν•˜λŠ”
04:22
of why we spend so much time
101
262260
2000
이 퍼즐에 λŒ€ν•œ 닡을 μ°ΎκΈ° μœ„ν•΄
04:24
taking care of useless babies,
102
264260
3000
μ§„ν™”λ‘œ λˆˆμ„ 돌렀보면
04:27
it turns out that there's actually an answer.
103
267260
3000
μ‹€μ œ κ·Έ 닡이 μžˆμŒμ„ μ•Œκ²Œ λ©λ‹ˆλ‹€.
04:30
If we look across many, many different species of animals,
104
270260
3000
우리 영μž₯λ₯˜ 뿐만 μ•„λ‹ˆλΌ
04:33
not just us primates,
105
273260
2000
λ‹€λ₯Έ 포유λ₯˜, μ‘°λ₯˜,
04:35
but also including other mammals, birds,
106
275260
2000
심지어 μΊ₯κ±°λ£¨λ‚˜ μ›œλ²³κ³Ό 같은
04:37
even marsupials
107
277260
2000
μœ λŒ€λ₯˜ 동물을 λΉ„λ‘―ν•œ
04:39
like kangaroos and wombats,
108
279260
2000
μ„œλ‘œ λ‹€λ₯Έ 동물 μ’… 간을 μ‚΄νŽ΄λ³΄λ©΄,
04:41
it turns out that there's a relationship
109
281260
2000
ν•œ 쒅이 μœ λ…„κΈ°λ₯Ό 보낸 κΈ°κ°„κ³Ό
04:43
between how long a childhood a species has
110
283260
4000
κ·Έλ“€μ˜ 신체 λŒ€λΉ„ λ‡Œ 크기 및
04:47
and how big their brains are compared to their bodies
111
287260
4000
지λŠ₯ μˆ˜μ€€, μœ΅ν†΅μ„± 정도 사이에
04:51
and how smart and flexible they are.
112
291260
2000
μ–΄λ–€ 관계가 μžˆμŒμ„ μ•Œκ²Œ λ©λ‹ˆλ‹€.
04:53
And sort of the posterbirds for this idea are the birds up there.
113
293260
3000
이런 생각에 λŒ€ν•œ μ „ν˜•μ΄ λ°”λ‘œ 이 μƒˆλ“€μž…λ‹ˆλ‹€.
04:56
On one side
114
296260
2000
ν•œμͺ½μ€
04:58
is a New Caledonian crow.
115
298260
2000
λ‰΄μΉΌλ ˆλ„λ‹ˆμ•„ κΉŒλ§ˆκ·€μž…λ‹ˆλ‹€.
05:00
And crows and other corvidae, ravens, rooks and so forth,
116
300260
3000
그리고 이런 κ°ˆκ°€λ§ˆκ·€, λ‹ΉκΉŒλ§ˆκ·€ λ“±μ˜ κΉŒλ§ˆκ·€λ“€μ€
05:03
are incredibly smart birds.
117
303260
2000
맀우 μ˜λ¦¬ν•œ μƒˆλ“€μž…λ‹ˆλ‹€.
05:05
They're as smart as chimpanzees in some respects.
118
305260
3000
κΉŒλ§ˆκ·€λ“€μ€ μ–΄λ–€ 면으둠 μΉ¨νŒ¬μ§€λ§ŒνΌ μ˜λ¦¬ν•˜μ£ .
05:08
And this is a bird on the cover of science
119
308260
2000
그리고 이건 κ³Όν•™μ§€μ˜ ν‘œμ§€λ₯Ό μž₯μ‹ν•œ μƒˆμΈλ°,
05:10
who's learned how to use a tool to get food.
120
310260
3000
먹이λ₯Ό κ΅¬ν•˜λŠ” λ„κ΅¬μ˜ μ‚¬μš©λ²•μ„ 읡힌 λ…€μ„μž…λ‹ˆλ‹€.
05:13
On the other hand,
121
313260
2000
ν•œνŽΈ μš°λ¦¬μ—κ²
05:15
we have our friend the domestic chicken.
122
315260
2000
닭을 μ‚¬μœ‘ν•˜λŠ” μΉœκ΅¬λ„ μžˆμ§€μš”.
05:17
And chickens and ducks and geese and turkeys
123
317260
3000
그리고 λ‹­, 였리, κ±°μœ„, μΉ λ©΄μ‘° 등은
05:20
are basically as dumb as dumps.
124
320260
2000
기본적으둜 λ©μ²­ν•©λ‹ˆλ‹€.
05:22
So they're very, very good at pecking for grain,
125
322260
3000
λ”°λΌμ„œ 이녀석듀은 λͺ¨μ΄λ₯Ό μͺΌμ•„λ¨ΉλŠ”λ° μ•„μ£Ό λŠ₯μˆ™ν•˜κ³ 
05:25
and they're not much good at doing anything else.
126
325260
3000
κ·Έ λ°–μ˜ 것듀은 그닀지 잘 ν•˜μ§€ λͺ»ν•˜μ£ .
05:28
Well it turns out that the babies,
127
328260
2000
λ―Έμˆ™ν•œ μ–΄λ¦° μƒˆμ— λΆˆκ³Όν•œ
05:30
the New Caledonian crow babies, are fledglings.
128
330260
2000
이 λ‰΄μΉΌλ ˆλ„λ‹ˆμ•„ κΉŒλ§ˆκ·€μ˜ μƒˆλΌλ“€μ€
05:32
They depend on their moms
129
332260
2000
2λ…„μ—¬ λ™μ•ˆ 어미에 μ˜μ‘΄ν•˜μ—¬
05:34
to drop worms in their little open mouths
130
334260
3000
μ‘°κ·Έλ§ˆν•œ μž…μ„ 벌렀 벌레λ₯Ό λ°›μ•„ λ¨ΉλŠ” 걸둜
05:37
for as long as two years,
131
337260
2000
λ°ν˜€μ‘ŒλŠ”λ°μš”,
05:39
which is a really long time in the life of a bird.
132
339260
2000
2년이면 μƒˆμ˜ 일생에선 λŒ€λ‹¨νžˆ κΈ΄ μ‹œκ°„μ΄μ£ .
05:41
Whereas the chickens are actually mature
133
341260
2000
반면 닭은 2λ…„ 이내에
05:43
within a couple of months.
134
343260
2000
μ™„μ „νžˆ μ„±μž₯ν•©λ‹ˆλ‹€.
05:45
So childhood is the reason
135
345260
3000
λ”°λΌμ„œ μœ λ…„κΈ°λŠ”
05:48
why the crows end up on the cover of Science
136
348260
2000
μ™œ κΉŒλ§ˆκ·€κ°€ κ³Όν•™μ§€μ˜ ν‘œμ§€λ₯Ό μž₯μ‹ν•˜κ²Œ 되고
05:50
and the chickens end up in the soup pot.
137
350260
2000
닭이 μˆ˜ν”„ 그릇에 λ‹΄κ²¨μ§€λŠ”μ§€λ₯Ό μ„€λͺ…ν•©λ‹ˆλ‹€.
05:52
There's something about that long childhood
138
352260
3000
κΈ΄ μœ λ…„κΈ°μ—λŠ”
05:55
that seems to be connected
139
355260
2000
지식 및 ν•™μŠ΅κ³Ό μ—°κ΄€λœ
05:57
to knowledge and learning.
140
357260
2000
무언가가 μžˆμŠ΅λ‹ˆλ‹€.
05:59
Well what kind of explanation could we have for this?
141
359260
3000
κ·Έλ ‡λ‹€λ©΄ 이에 λŒ€ν•΄ μ–΄λ–€ μ„€λͺ…이 κ°€λŠ₯ν• κΉŒμš”?
06:02
Well some animals, like the chicken,
142
362260
3000
λ‹­κ³Ό 같은 일뢀 동물듀은
06:05
seem to be beautifully suited
143
365260
2000
단지 ν•˜λ‚˜μ˜ μΌλ§Œμ„ μ•„μ£Ό 잘 ν•˜λ„λ‘
06:07
to doing just one thing very well.
144
367260
2000
μ μ‘λœ κ²ƒμ²˜λŸΌ λ³΄μž…λ‹ˆλ‹€.
06:09
So they seem to be beautifully suited
145
369260
3000
λ”°λΌμ„œ 닭은 ν•œ 곳의 ν™˜κ²½μ—μ„œ
06:12
to pecking grain in one environment.
146
372260
2000
λͺ¨μ΄λ₯Ό μͺΌμ•„λ¨ΉλŠ”λ° μ ν•©ν•œ κ²ƒμœΌλ‘œ λ³΄μž…λ‹ˆλ‹€.
06:14
Other creatures, like the crows,
147
374260
2000
κΉŒλ§ˆκ·€μ™€ 같은 λ‹€λ₯Έ 동물은
06:16
aren't very good at doing anything in particular,
148
376260
2000
μ–΄λ–€ 일에 νŠΉλ³„νžˆ λŠ₯μˆ™ν•˜μ§€λŠ” μ•Šμ§€λ§Œ
06:18
but they're extremely good
149
378260
2000
λ‹€μ–‘ν•œ ν™˜κ²½μ˜ κ·œμΉ™μ— λŒ€ν•΄ λ°°μš°λŠ” 것에
06:20
at learning about laws of different environments.
150
380260
2000
맀우 λ°œλ‹¬λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€.
06:22
And of course, we human beings
151
382260
2000
그리고 λ¬Όλ‘  우리 인λ₯˜λŠ”
06:24
are way out on the end of the distribution like the crows.
152
384260
3000
κΉŒλ§ˆκ·€μ™€ 같은 λΆ„ν¬μ˜ 끝 μΆœκ΅¬μ―€μ— μœ„μΉ˜ν•©λ‹ˆλ‹€.
06:27
We have bigger brains relative to our bodies
153
387260
2000
μš°λ¦¬λŠ” λ‹€λ₯Έ μ–΄λ–€ 동물과 λΉ„κ΅ν•˜λ”λΌλ„
06:29
by far than any other animal.
154
389260
2000
신체 λŒ€λΉ„ 훨씬 더 큰 λ‡Œλ₯Ό κ°–κ³  μžˆμŠ΅λ‹ˆλ‹€.
06:31
We're smarter, we're more flexible,
155
391260
2000
μš°λ¦¬λŠ” 훨씬 μ˜λ¦¬ν•˜κ³ , μœ΅ν†΅μ„± 있으며,
06:33
we can learn more,
156
393260
2000
더 많이 배울 수 있고,
06:35
we survive in more different environments,
157
395260
2000
보닀 λ‹€μ–‘ν•œ ν™˜κ²½μ—μ„œ μ‚΄μ•„λ‚¨μœΌλ©°,
06:37
we migrated to cover the world and even go to outer space.
158
397260
3000
μ „ μ„Έκ³„λ‘œ μ΄μ£Όν•˜λŠ” 것은 λ¬Όλ‘  우주 λ°–μœΌλ‘œλ„ λ‚˜κ°‘λ‹ˆλ‹€.
06:40
And our babies and children are dependent on us
159
400260
3000
그리고 우리 μΈκ°„μ˜ 아기와 아이듀은
06:43
for much longer than the babies of any other species.
160
403260
3000
λ‹€λ₯Έ μ–΄λ–€ μ’…μ˜ μƒˆλΌλ“€μ— λΉ„ν•΄ 훨씬 더 였래 λΆ€λͺ¨μ—κ²Œ μ˜μ‘΄ν•©λ‹ˆλ‹€.
06:46
My son is 23.
161
406260
2000
제 아듀은 23μ‚΄μΈλ°μš”.
06:48
(Laughter)
162
408260
2000
(μ›ƒμŒ)
06:50
And at least until they're 23,
163
410260
2000
그리고 23살이 될 λ•ŒκΉŒμ§€
06:52
we're still popping those worms
164
412260
2000
μ•„μ§κΉŒμ§€λ„ 그런 벌레λ₯Ό μž‘μ€ μž… 속에
06:54
into those little open mouths.
165
414260
3000
λ„£μ–΄μ£Όκ³  μžˆμŠ΅λ‹ˆλ‹€.
06:57
All right, why would we see this correlation?
166
417260
3000
자, μš°λ¦¬λŠ” μ–΄μ§Έμ„œ μ΄λŸ¬ν•œ 상관 관계λ₯Ό μ‚΄νŽ΄λ³ΌκΉŒμš”?
07:00
Well an idea is that that strategy, that learning strategy,
167
420260
4000
κ·ΈλŸ¬ν•œ ν•™μŠ΅ μ „λž΅μ€ 맀우 κ°•λ ₯ν•˜λ©°
07:04
is an extremely powerful, great strategy for getting on in the world,
168
424260
3000
이 μ„Έμƒμ—μ„œ μ‚΄μ•„ λ‚˜κ°€κΈ° μœ„ν•œ μœ„λŒ€ν•œ μ „λž΅μ΄μ§€λ§Œ
07:07
but it has one big disadvantage.
169
427260
2000
λ‹€λ§Œ ν•œ 가지 큰 단점이 μžˆμŠ΅λ‹ˆλ‹€.
07:09
And that one big disadvantage
170
429260
2000
이 큰 단점은 λ°”λ‘œ
07:11
is that, until you actually do all that learning,
171
431260
3000
μ—¬λŸ¬λΆ„μ΄ μ‹€μ œλ‘œ κ·Έ λͺ¨λ“  ν•™μŠ΅μ„ 마칠 λ•ŒκΉŒμ§€λŠ”
07:14
you're going to be helpless.
172
434260
2000
μ†μˆ˜λ¬΄μ±…μ΄λΌλŠ” κ²ƒμž…λ‹ˆλ‹€.
07:16
So you don't want to have the mastodon charging at you
173
436260
3000
μ—¬λŸ¬λΆ„μ—κ²Œ λ§ˆμŠ€ν† λˆ(μ—­μ£Ό: 코끼리 λΉ„μŠ·ν•œ 고생물)이 λŒμ§„ν•˜λŠ” κ±Έ μ›μΉ˜ μ•ŠμœΌλ©΄
07:19
and be saying to yourself,
174
439260
2000
μŠ€μŠ€λ‘œμ—κ²Œ μ΄λ ‡κ²Œ λ§ν•˜κ² μ£ .
07:21
"A slingshot or maybe a spear might work. Which would actually be better?"
175
441260
4000
"μƒˆμ΄μ΄λ‚˜ 창을 μ“°λ©΄ λ˜κ² λ„€. μ‹€μ œλ‘  μ–΄λŠ μͺ½μ΄ 더 λ‚˜μ„κΉŒ?"
07:25
You want to know all that
176
445260
2000
λ§ˆμŠ€ν† λˆμ΄ 눈 μ•žμ— λ‚˜νƒ€λ‚˜κΈ° 전에
07:27
before the mastodons actually show up.
177
447260
2000
λͺ¨λ“  κ±Έ μ•Œκ³  싢을 κ²λ‹ˆλ‹€.
07:29
And the way the evolutions seems to have solved that problem
178
449260
3000
그리고 μ§„ν™”μ—μ„œ 이 문제λ₯Ό ν•΄κ²°ν•΄ 온 방법은
07:32
is with a kind of division of labor.
179
452260
2000
μΌμ’…μ˜ λ…Έλ™μ˜ κ΅¬λΆ„μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
07:34
So the idea is that we have this early period when we're completely protected.
180
454260
3000
그런 이유둜 μš°λ¦¬λŠ” μ™„λ²½ν•˜κ²Œ λ³΄ν˜Έλ˜λŠ” μ΄λŸ¬ν•œ μœ λ…„κΈ°λ₯Ό κ°–κ²Œ λ˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
07:37
We don't have to do anything. All we have to do is learn.
181
457260
3000
μš°λ¦¬λŠ” 아무것도 ν•  ν•„μš”κ°€ μ—†μŠ΅λ‹ˆλ‹€. κ·Έμ € 배우기만 ν•˜λ©΄ λ˜μ§€μš”.
07:40
And then as adults,
182
460260
2000
그런 λ‹€μŒ μ–΄λ₯Έμ΄ λ˜μ–΄
07:42
we can take all those things that we learned when we were babies and children
183
462260
3000
μš°λ¦¬κ°€ μ•„κΈ°λ‚˜ μ•„μ΄μ˜€μ„ λ•Œ 배운 λͺ¨λ“  것듀을 ν™œμš©ν•  수 있고
07:45
and actually put them to work to do things out there in the world.
184
465260
3000
μ„Έμƒμ˜ 일듀을 ν•΄ λ‚˜κ°€λŠ” 데 μ‹€μ œλ‘œ μ‚¬μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
07:48
So one way of thinking about it
185
468260
2000
이에 λŒ€ν•΄ μƒκ°ν•˜λŠ” ν•œ 방식은
07:50
is that babies and young children
186
470260
2000
λ°”λ‘œ κ·ΈλŸ¬ν•œ 아기와 μ–΄λ¦° 아이듀이
07:52
are like the research and development division of the human species.
187
472260
3000
인λ₯˜μ˜ 연ꡬ 및 개발 λΆ€μ„œμ™€ κ°™λ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
07:55
So they're the protected blue sky guys
188
475260
3000
λ”°λΌμ„œ 그듀은 ν‘Έλ₯Έ ν•˜λŠ˜ μ•„λž˜ 보호 λ°›μœΌλ©°
07:58
who just have to go out and learn and have good ideas,
189
478260
2000
κ·Έμ € λ°–μœΌλ‘œ λ‚˜κ°€ 배우며 멋진 아이디어λ₯Ό λ– μ˜¬λ¦¬κ³ 
08:00
and we're production and marketing.
190
480260
2000
μš°λ¦¬λŠ” 생산과 μ‹œμž₯ 거래λ₯Ό λ‹΄λ‹Ήν•˜λŠ” κ²λ‹ˆλ‹€.
08:02
We have to take all those ideas
191
482260
2000
μš°λ¦¬λŠ” μ–΄λ¦° μ‹œμ ˆμ— 배운
08:04
that we learned when we were children
192
484260
2000
κ·ΈλŸ¬ν•œ λͺ¨λ“  아이디어λ₯Ό κ°–κ³ 
08:06
and actually put them to use.
193
486260
2000
μ‹€μ œλ‘œ κ·Έκ±Έ μ‚¬μš©ν•΄μ•Ό ν•©λ‹ˆλ‹€.
08:08
Another way of thinking about it
194
488260
2000
또 λ‹€λ₯Έ λ°©μ‹μœΌλ‘œ 생각해 λ³Έλ‹€λ©΄
08:10
is instead of thinking of babies and children
195
490260
2000
μ•„κΈ°λ“€κ³Ό 아이듀이라고 μ—¬κΈ°λŠ” λŒ€μ‹ 
08:12
as being like defective grownups,
196
492260
2000
λΆˆμ™„μ „ν•œ 성체와 같이 μƒκ°ν•˜λŠ” κ²ƒμœΌλ‘œ,
08:14
we should think about them
197
494260
2000
μš°λ¦¬λŠ” 그듀에 λŒ€ν•΄
08:16
as being a different developmental stage of the same species --
198
496260
2000
같은 μ’…μ˜ μ„œλ‘œ λ‹€λ₯Έ 개발 단계에 μžˆλŠ” κ²ƒμœΌλ‘œ
08:18
kind of like caterpillars and butterflies --
199
498260
3000
즉, μ• λ²Œλ ˆμ™€ λ‚˜λΉ„ 같이 생각해야 ν•©λ‹ˆλ‹€.
08:21
except that they're actually the brilliant butterflies
200
501260
2000
그듀이 μ‹€μ œλ‘  정원을 λ‚ μ•„λ‹€λ‹ˆκ³  μ—¬κΈ°μ €κΈ° νƒμƒ‰ν•˜λŠ”
08:23
who are flitting around the garden and exploring,
201
503260
3000
λˆˆλΆ€μ‹  λ‚˜λΉ„μ΄κ³ 
08:26
and we're the caterpillars
202
506260
2000
μš°λ¦¬λŠ” 쒁은 μ„±μ²΄λ‘œμ˜ μ„±μž₯ 과정을 따라 μ‘°κΈˆμ”© 움직이고 μžˆλŠ”
08:28
who are inching along our narrow, grownup, adult path.
203
508260
3000
μ• λ²Œλ ˆμž…λ‹ˆλ‹€.
08:31
If this is true, if these babies are designed to learn --
204
511260
3000
μ΄λŸ¬ν•œ 아기듀은 ν•™μŠ΅ν•˜κ²Œλ” λ˜μ–΄ 있으며
08:34
and this evolutionary story would say children are for learning,
205
514260
3000
그리고 이 진화둠적 μ΄μ•ΌκΈ°μ—μ„œ 아이듀은 배우기 μœ„ν•΄ μ‘΄μž¬ν•˜λ©°,
08:37
that's what they're for --
206
517260
2000
λ°”λ‘œ 그것이 κ·Έλ“€μ˜ λͺ©μ μž„이 사싀이라면,
08:39
we might expect
207
519260
2000
μš°λ¦¬λŠ” 그듀이 맀우 κ°•λ ₯ν•œ ν•™μŠ΅ λ©”μ»€λ‹ˆμ¦˜μ„ κ°–κ³  μžˆλ‹€κ³ 
08:41
that they would have really powerful learning mechanisms.
208
521260
2000
μ˜ˆμΈ‘ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
08:43
And in fact, the baby's brain
209
523260
3000
그리고 사싀, μ•„κΈ°μ˜ λ‡ŒλŠ”
08:46
seems to be the most powerful learning computer
210
526260
2000
μ§€κ΅¬μƒμ—μ„œ κ°€μž₯ κ°•λ ₯ν•œ
08:48
on the planet.
211
528260
2000
ν•™μŠ΅ μ»΄ν“¨ν„°μ²˜λŸΌ λ³΄μž…λ‹ˆλ‹€.
08:50
But real computers are actually getting to be a lot better.
212
530260
3000
ν•˜μ§€λ§Œ μ§„μ§œ μ»΄ν“¨ν„°λŠ” μ‹€μ œλ‘  훨씬 더 쒋아지고 μžˆμŠ΅λ‹ˆλ‹€.
08:53
And there's been a revolution
213
533260
2000
그리고 졜근 컴퓨터 ν•™μŠ΅μ— λŒ€ν•œ 이해도에
08:55
in our understanding of machine learning recently.
214
535260
2000
ν˜μ‹ μ μΈ 진보가 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
08:57
And it all depends on the ideas of this guy,
215
537260
3000
이 λͺ¨λ“  것은 18μ„ΈκΈ°μ˜ ν†΅κ³„ν•™μžμ΄μž μˆ˜ν•™μžμ˜€λ˜
09:00
the Reverend Thomas Bayes,
216
540260
2000
'Thomas Bayes 경'의
09:02
who was a statistician and mathematician in the 18th century.
217
542260
3000
아이디어에 μ „μ μœΌλ‘œ μ˜μ‘΄ν•©λ‹ˆλ‹€.
09:05
And essentially what Bayes did
218
545260
3000
본질적으둜 Bayes 씨가 ν•œ 일은
09:08
was to provide a mathematical way
219
548260
2000
ν™•λ₯  이둠을 μ‚¬μš©ν•˜μ—¬
09:10
using probability theory
220
550260
2000
κ³Όν•™μžκ°€ 세상에 λŒ€ν•΄ λ°œκ²¬ν•˜λŠ” 방식에
09:12
to characterize, describe,
221
552260
2000
νŠΉμ§•μ„ λΆ€μ—¬ν•˜κ³  μ„€λͺ…ν•˜λŠ”
09:14
the way that scientists find out about the world.
222
554260
2000
μˆ˜ν•™μ μΈ 방법을 μ œκ³΅ν•œ κ²ƒμ΄μ—ˆμŠ΅λ‹ˆλ‹€.
09:16
So what scientists do
223
556260
2000
λ”°λΌμ„œ κ³Όν•™μžλ“€μ΄ ν•  일은
09:18
is they have a hypothesis that they think might be likely to start with.
224
558260
3000
μ‹œμž‘μ μ΄ 되기 μ‰¬μš΄ 가섀을 μ„Έμš°λŠ” κ²ƒμž…λ‹ˆλ‹€.
09:21
They go out and test it against the evidence.
225
561260
2000
κ³Όν•™μžλ“€μ€ λ°–μœΌλ‘œ λ‚˜κ°€ 증거에 λ°˜ν•΄ 가섀을 μ‹€ν—˜ν•©λ‹ˆλ‹€.
09:23
The evidence makes them change that hypothesis.
226
563260
2000
이 μ¦κ±°λŠ” κ·Έλ“€λ‘œ ν•˜μ—¬κΈˆ 가섀을 λ°”κΎΈκ²Œ ν•˜λ©°,
09:25
Then they test that new hypothesis
227
565260
2000
그런 뒀에 또 μƒˆλ‘œμš΄ 가섀을 μ‹€ν—˜ν•˜κ³ 
09:27
and so on and so forth.
228
567260
2000
μ΄λŸ¬ν•œ 과정을 λ°˜λ³΅ν•©λ‹ˆλ‹€.
09:29
And what Bayes showed was a mathematical way that you could do that.
229
569260
3000
λ˜ν•œ Bayes 씨가 μ œμ‹œν•œ 것은 μ—¬λŸ¬λΆ„λ„ ν•  수 μžˆλŠ” μˆ˜ν•™μ μΈ λ°©λ²•μž…λ‹ˆλ‹€.
09:32
And that mathematics is at the core
230
572260
2000
그리고 이 μˆ˜ν•™μ€ 역사상 κ°€μž₯ λ›°μ–΄λ‚œ
09:34
of the best machine learning programs that we have now.
231
574260
2000
컴퓨터 ν•™μŠ΅ ν”„λ‘œκ·Έλž¨μ˜ 쀑심에 μžˆμŠ΅λ‹ˆλ‹€.
09:36
And some 10 years ago,
232
576260
2000
10μ—¬λ…„ μ―€ 전에
09:38
I suggested that babies might be doing the same thing.
233
578260
4000
μ „ 아기듀이 이와 λ™μΌν•œ 일을 ν•˜κ³  μžˆμ„ 수 μžˆλ‹€κ³  μ œμ•ˆν–ˆμ—ˆμŠ΅λ‹ˆλ‹€.
09:42
So if you want to know what's going on
234
582260
2000
λ”°λΌμ„œ μ—¬λŸ¬λΆ„μ΄ 이 μ•„λ¦„λ‹€μš΄ κ°ˆμƒ‰ λˆˆλ™μž μ•„λž˜μ—μ„œ
09:44
underneath those beautiful brown eyes,
235
584260
2000
무슨 생각을 ν•˜κ³  μžˆλŠ”μ§€ μ•Œκ³  μ‹ΆμœΌμ‹œλ‹€λ©΄
09:46
I think it actually looks something like this.
236
586260
2000
μ „ μ‹€μ œλ‘œ 이와 κ°™λ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€.
09:48
This is Reverend Bayes's notebook.
237
588260
2000
이것은 Bayes 경의 λ…ΈνŠΈμž…λ‹ˆλ‹€.
09:50
So I think those babies are actually making complicated calculations
238
590260
3000
μ „ κ·ΈλŸ¬ν•œ 아기듀이 μ‹€μ œλ‘œ
09:53
with conditional probabilities that they're revising
239
593260
3000
μ„Έμƒμ˜ 일듀을 μ•Œμ•„λ³΄κΈ° μœ„ν•΄ μžμ‹ λ“€μ΄ μˆ˜μ •ν•˜κ³  μžˆλŠ”
09:56
to figure out how the world works.
240
596260
2000
μ‘°κ±΄λΆ€μ˜ ν™•λ₯ μ„ 톡해 λ³΅μž‘ν•œ 계산을 ν•˜κ³  μžˆλ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€.
09:58
All right, now that might seem like an even taller order to actually demonstrate.
241
598260
4000
λ„€, 그것은 μ‹€μ œλ‘œ μž…μ¦ν•˜κΈ°μ—” 훨씬 더 λ¬΄λ¦¬ν•œ μš”κ΅¬μ²˜λŸΌ 보일 수 μžˆμŠ΅λ‹ˆλ‹€.
10:02
Because after all, if you ask even grownups about statistics,
242
602260
2000
μ™œλƒν•˜λ©΄ 톡계에 λŒ€ν•΄ μ„±μΈμ—κ²Œ λ¬Όμ–΄λ³Έλ‹€κ³  해도
10:04
they look extremely stupid.
243
604260
2000
λ§ˆμ°¬κ°€μ§€λ‘œ λ¬΄μ²™μ΄λ‚˜ 멍청해 보이기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
10:06
How could it be that children are doing statistics?
244
606260
3000
아이듀이 톡계λ₯Ό ν•œλ‹€λŠ” 것이 μ–΄λ–»κ²Œ κ°€λŠ₯ν• κΉŒμš”?
10:09
So to test this we used a machine that we have
245
609260
2000
κ·Έλž˜μ„œ 이λ₯Ό μ‹€ν—˜ν•˜κΈ° μœ„ν•΄ 우린 Blicket Detector라고 ν•˜λŠ”
10:11
called the Blicket Detector.
246
611260
2000
μ‹€ν—˜ 기ꡬλ₯Ό μ‚¬μš©ν–ˆμŠ΅λ‹ˆλ‹€.
10:13
This is a box that lights up and plays music
247
613260
2000
이것은 μ–΄λ–€ 물건을 이 μœ„μ— 올렀 λ†“μœΌλ©΄
10:15
when you put some things on it and not others.
248
615260
3000
뢈이 μΌœμ§€κ³  μŒμ•…μ΄ μ—°μ£Όλ˜λŠ” μƒμžμΌ λΏμž…λ‹ˆλ‹€.
10:18
And using this very simple machine,
249
618260
2000
이 맀우 κ°„λ‹¨ν•œ μ‹€ν—˜ 기ꡬλ₯Ό μ‚¬μš©ν•˜μ—¬
10:20
my lab and others have done dozens of studies
250
620260
2000
제 μ‹€ν—˜μ‹€ 인원과 λ‹€λ₯Έ μ‚¬λžŒλ“€μ΄
10:22
showing just how good babies are
251
622260
2000
아기듀이 세상에 λŒ€ν•΄ μ–Όλ§ˆλ‚˜ 잘 λ°°μš°λŠ”μ§€λ₯Ό 보여 μ£ΌλŠ”
10:24
at learning about the world.
252
624260
2000
λ§Žμ€ 연ꡬλ₯Ό μ‹€μ‹œν–ˆμŠ΅λ‹ˆλ‹€.
10:26
Let me mention just one
253
626260
2000
ν•œ 가지 μ–ΈκΈ‰ν•˜μžλ©΄,
10:28
that we did with Tumar Kushner, my student.
254
628260
2000
제 학생인 Tumar Kushner와 ν•¨κ»˜ 이 연ꡬλ₯Ό μ§„ν–‰ν–ˆμŠ΅λ‹ˆλ‹€.
10:30
If I showed you this detector,
255
630260
2000
이 탐지기λ₯Ό μ—¬λŸ¬λΆ„κ»˜ λ³΄μ—¬λ“œλ¦¬λ©΄
10:32
you would be likely to think to begin with
256
632260
2000
μ—¬λŸ¬λΆ„μ€ 이 탐지기λ₯Ό μž‘λ™ν•˜λŠ” 방식이
10:34
that the way to make the detector go
257
634260
2000
탐지기 μœ„μ— 블둝을 올렀 λ†“λŠ” 것이라고
10:36
would be to put a block on top of the detector.
258
636260
3000
μƒκ°ν•˜κΈ° μ‰¬μš°μ‹€ν…λ°μš”,
10:39
But actually, this detector
259
639260
2000
ν•˜μ§€λ§Œ, μ‹€μ œ 이 νƒμ§€κΈ°λŠ”
10:41
works in a bit of a strange way.
260
641260
2000
μ•½κ°„ λ…νŠΉν•œ λ°©μ‹μœΌλ‘œ μž‘λ™ν•©λ‹ˆλ‹€.
10:43
Because if you wave a block over the top of the detector,
261
643260
3000
μ™œλƒν•˜λ©΄ μ—¬λŸ¬λΆ„μ΄ μ „ν˜€ 생각할 수 μ—†λŠ” μž‘λ™ 방식 즉,
10:46
something you wouldn't ever think of to begin with,
262
646260
3000
탐지기 μœ„μͺ½μœΌλ‘œ 블둝을 κ°€μ Έκ°€ 흔듀면
10:49
the detector will actually activate two out of three times.
263
649260
3000
탐지기가 μ‹€μ œλ‘œ 3번 쀑 2번 μž‘λ™λ˜κΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
10:52
Whereas, if you do the likely thing, put the block on the detector,
264
652260
3000
반면, μ—¬λŸ¬λΆ„μ΄ μƒκ°ν•˜κΈ° μ‰¬μš΄ 방식 즉, 탐지기 μœ„μ— 블둝을 올렀 λ†“μœΌλ©΄
10:55
it will only activate two out of six times.
265
655260
4000
6번 쀑 2번만 μž‘λ™λ©λ‹ˆλ‹€.
10:59
So the unlikely hypothesis
266
659260
2000
λ”°λΌμ„œ μ˜ˆμƒ λ°–μ˜ 가섀이
11:01
actually has stronger evidence.
267
661260
2000
μ‹€μ œλ‘œλŠ” λ”μš± κ°•λ ₯ν•œ 증거λ₯Ό κ°–κ³  μžˆμŠ΅λ‹ˆλ‹€.
11:03
It looks as if the waving
268
663260
2000
μ΄λŠ” 블둝을 ν”λ“œλŠ” 것이
11:05
is a more effective strategy than the other strategy.
269
665260
2000
λ‹€λ₯Έ μ „λž΅λ³΄λ‹€ λ”μš± 효과적인 μ „λž΅μΈ κ²ƒμ²˜λŸΌ λ³΄μž…λ‹ˆλ‹€.
11:07
So we did just this; we gave four year-olds this pattern of evidence,
270
667260
3000
λ”°λΌμ„œ μš°λ¦¬κ°€ ν•œ 일은 단지 이 증거 νŒ¨ν„΄μ„ 4μ‚΄μ§œλ¦¬ μ•„μ΄λ“€μ—κ²Œ μ œμ‹œν•˜κ³ 
11:10
and we just asked them to make it go.
271
670260
2000
κ·Έ μ•„μ΄λ“€μ—κ²Œ μž‘λ™ν•΄ 보라고 ν•œ κ²ƒμž…λ‹ˆλ‹€.
11:12
And sure enough, the four year-olds used the evidence
272
672260
3000
그리고 λ‹Ήμ—°νžˆ κ·Έ 4μ‚΄μ§œλ¦¬ 아이듀은 증거λ₯Ό μ‚¬μš©ν•˜μ—¬
11:15
to wave the object on top of the detector.
273
675260
3000
물체λ₯Ό 탐지기 μœ„μͺ½μ—μ„œ ν”λ“€μ—ˆμŠ΅λ‹ˆλ‹€.
11:18
Now there are two things that are really interesting about this.
274
678260
3000
μ—¬κΈ° 이에 λŒ€ν•œ μ‹€λ‘œ ν₯미둜운 두 가지 사싀이 μžˆμŠ΅λ‹ˆλ‹€.
11:21
The first one is, again, remember, these are four year-olds.
275
681260
3000
첫 λ²ˆμ§ΈλŠ”, λ‹€μ‹œ ν•œλ²ˆ μƒκΈ°μ‹œμΌœ μ£Όμ‹­μ‹œμ˜€. 이 아이듀은 4μ‚΄μ§œλ¦¬λ“€λ‘œ
11:24
They're just learning how to count.
276
684260
2000
이제 겨우 수λ₯Ό μ„ΈλŠ” κ±Έ 배우고 μžˆμŠ΅λ‹ˆλ‹€.
11:26
But unconsciously,
277
686260
2000
κ·ΈλŸ¬λ‚˜ λ¬΄μ˜μ‹μ μœΌλ‘œ
11:28
they're doing these quite complicated calculations
278
688260
2000
쑰건적인 ν™•λ₯  츑정을 μ œμ‹œν•˜λŠ”
11:30
that will give them a conditional probability measure.
279
690260
3000
μ΄λŸ¬ν•œ 맀우 λ³΅μž‘ν•œ 계산을 ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
11:33
And the other interesting thing
280
693260
2000
그리고 또 λ‹€λ₯Έ ν₯미둜운 사싀은
11:35
is that they're using that evidence
281
695260
2000
이 아이듀이 κ·ΈλŸ¬ν•œ 증거λ₯Ό μ‚¬μš©ν•˜μ—¬
11:37
to get to an idea, get to a hypothesis about the world,
282
697260
3000
μ‹œμž‘μ μœΌλ‘œ λ³΄κΈ°μ—λŠ” 도무지 μ˜ˆμƒ 밖인 생각에 이λ₯΄κ³ 
11:40
that seems very unlikely to begin with.
283
700260
3000
세상에 λŒ€ν•œ 가섀에 λ„λ‹¬ν•˜κ³  μžˆλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
11:43
And in studies we've just been doing in my lab, similar studies,
284
703260
3000
그리고 제 μ‹€ν—˜μ‹€μ—μ„œ μˆ˜ν–‰ν•΄ 온 연ꡬ와 μœ μ‚¬ν•œ μ—°κ΅¬λ“€μ—μ„œ
11:46
we've show that four year-olds are actually better
285
706260
2000
μš°λ¦¬λŠ” 4μ‚΄μ§œλ¦¬λ“€μ΄ μ‹€μ œλ‘œ
11:48
at finding out an unlikely hypothesis
286
708260
3000
λ˜‘κ°™μ€ 과제λ₯Ό λ‚΄μ€€ μ–΄λ₯Έλ“€λ³΄λ‹€
11:51
than adults are when we give them exactly the same task.
287
711260
3000
훨씬 더 μ˜ˆμƒ λ°–μ˜ 가섀을 잘 μ°Ύμ•„λ‚Έλ‹€λŠ” 사싀을 λ°œκ²¬ν–ˆμŠ΅λ‹ˆλ‹€.
11:54
So in these circumstances,
288
714260
2000
λ”°λΌμ„œ μ΄λŸ¬ν•œ ν™˜κ²½μ—μ„œ
11:56
the children are using statistics to find out about the world,
289
716260
3000
아이듀은 톡계λ₯Ό μ‚¬μš©ν•˜μ—¬ 세상에 λŒ€ν•΄ λ°œκ²¬ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
11:59
but after all, scientists also do experiments,
290
719260
3000
ν•˜μ§€λ§Œ κ³Όν•™μžλ“€λ„ μ‹€ν—˜μ„ μ‹€μ‹œν•˜λ―€λ‘œ
12:02
and we wanted to see if children are doing experiments.
291
722260
3000
μš°λ¦¬λŠ” 아이듀이 μ‹€ν—˜μ„ ν•˜λŠ”μ§€λ₯Ό μ•Œκ³  μ‹Άμ—ˆμŠ΅λ‹ˆλ‹€.
12:05
When children do experiments we call it "getting into everything"
292
725260
3000
아이듀이 μ‹€ν—˜μ„ ν•  λ•Œ μš°λ¦¬λŠ” κ·Έκ±Έ "μ•„λ¬΄κ±°λ‚˜ 해보기"
12:08
or else "playing."
293
728260
2000
λ˜λŠ” "놀이"라고 λΆ€λ¦…λ‹ˆλ‹€.
12:10
And there's been a bunch of interesting studies recently
294
730260
3000
그리고 졜근 μ—¬λŸ¬ ν₯미둜운 연ꡬ가 진행 μ€‘μΈλ°μš”,
12:13
that have shown this playing around
295
733260
3000
이 μ—°κ΅¬λ“€μ—μ„œ 이 놀이가 μ‹€μ œλ‘œ
12:16
is really a kind of experimental research program.
296
736260
2000
μΌμ’…μ˜ μ‹€ν—˜μ μΈ 연ꡬ ν”„λ‘œκ·Έλž¨μž„μ„ 보여 μ£Όμ—ˆμŠ΅λ‹ˆλ‹€.
12:18
Here's one from Cristine Legare's lab.
297
738260
3000
이건 Cristine Legare의 μ‹€ν—˜μ‹€ μ‚¬λ‘€μΈλ°μš”,
12:21
What Cristine did was use our Blicket Detectors.
298
741260
3000
Cristine은 우리의 Blicket Detectorλ₯Ό μ‚¬μš©ν•˜μ—¬
12:24
And what she did was show children
299
744260
2000
μ•„μ΄λ“€μ—κ²Œ λ…Έλž€ 블둝은 λ™μž‘ν•˜κ²Œ ν•˜κ³ 
12:26
that yellow ones made it go and red ones didn't,
300
746260
2000
λΉ¨κ°„ 블둝은 그렇지 μ•ŠμŒμ„ 보여 μ€€ λ’€
12:28
and then she showed them an anomaly.
301
748260
3000
κ·Έλ“€μ—κ²Œ μ˜ˆμ™Έμ μΈ 것을 λ³΄μ—¬μ£Όμ—ˆμŠ΅λ‹ˆλ‹€.
12:31
And what you'll see
302
751260
2000
그리고 μ—¬λŸ¬λΆ„μ€ 이제
12:33
is that this little boy will go through five hypotheses
303
753260
3000
이 μ–΄λ¦° μ†Œλ…„μ΄ 2λΆ„ μ•ˆμ— 5개의 가섀을 ν†΅κ³Όν•˜λŠ” 것을
12:36
in the space of two minutes.
304
756260
3000
λ³΄μ‹œκ²Œ λ©λ‹ˆλ‹€.
12:39
(Video) Boy: How about this?
305
759260
3000
(λΉ„λ””μ˜€) μ†Œλ…„: 이건 μ–΄λ•Œ?
12:43
Same as the other side.
306
763260
3000
λ‹€λ₯Έ μͺ½κ³Ό λ˜‘κ°™μ•„.
12:46
Alison Gopnik: Okay, so his first hypothesis has just been falsified.
307
766260
4000
Alison Gopnik: λ„€, κ·Έλž˜μ„œ 이 μ•„μ΄μ˜ 첫 번째 가섀은 κ±°μ§“μž„μ΄ μž…μ¦λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
12:55
(Laughter)
308
775260
2000
(μ›ƒμŒ)
12:57
Boy: This one lighted up, and this one nothing.
309
777260
3000
μ†Œλ…„: 이건 뢈이 켜쑌고, 이건 아무일도 μ•ˆ 일어났어.
13:00
AG: Okay, he's got his experimental notebook out.
310
780260
3000
AG: μ’‹μŠ΅λ‹ˆλ‹€. μžμ‹ λ§Œμ˜ μ‹€ν—˜ λ…ΈνŠΈλ₯Ό κΈ°λ‘ν–ˆλ„€μš”.
13:06
Boy: What's making this light up.
311
786260
4000
μ†Œλ…„: 이걸 뭘둜 μΌœλŠ” 거지?
13:11
(Laughter)
312
791260
9000
(μ›ƒμŒ)
13:20
I don't know.
313
800260
2000
λͺ¨λ₯΄κ² μ–΄.
13:22
AG: Every scientist will recognize that expression of despair.
314
802260
4000
AG: λͺ¨λ“  κ³Όν•™μžκ°€ κ·ΈλŸ¬ν•œ 절망의 ν‘œν˜„μ„ 인정할 κ²λ‹ˆλ‹€.
13:26
(Laughter)
315
806260
3000
(μ›ƒμŒ)
13:29
Boy: Oh, it's because this needs to be like this,
316
809260
6000
μ†Œλ…„: μ•„, 이건 μ΄λ ‡κ²Œ ν•΄μ•Ό ν•˜κ³ ,
13:35
and this needs to be like this.
317
815260
2000
이건 μ΄λ ‡κ²Œ ν•΄μ•Ό ν•˜λŠ” κ±°μ˜€κ΅¬λ‚˜.
13:37
AG: Okay, hypothesis two.
318
817260
3000
AG: λ„€, κ°€μ„€ 2λ‘œκ΅°μš”.
13:40
Boy: That's why.
319
820260
2000
μ†Œλ…„: κ·Έλž˜μ„œμ˜€κ΅°..
13:42
Oh.
320
822260
2000
에이.
13:44
(Laughter)
321
824260
5000
(μ›ƒμŒ)
13:49
AG: Now this is his next idea.
322
829260
2000
AG: 이제 이것이 이 μ•„μ΄μ˜ λ‹€μŒ μƒκ°μž…λ‹ˆλ‹€.
13:51
He told the experimenter to do this,
323
831260
2000
λ‹€λ₯Έ μͺ½μœΌλ‘œ 블둝을 놓아 보라고
13:53
to try putting it out onto the other location.
324
833260
4000
μ‹€ν—˜μžμ—κ²Œ λ§ν–ˆμŠ΅λ‹ˆλ‹€.
13:57
Not working either.
325
837260
2000
μ—­μ‹œ μž‘λ™ν•˜μ§€ μ•Šλ„€μš”.
14:02
Boy: Oh, because the light goes only to here,
326
842260
4000
μ†Œλ…„: μ•„, μ—¬κΈ°μ—λ§Œ 뢈이 λ“€μ–΄μ˜€κ³ 
14:06
not here.
327
846260
3000
μ—¬κΈ°μ—” μ•ˆ λ“€μ–΄μ™€μ„œκ΅¬λ‚˜.
14:09
Oh, the bottom of this box
328
849260
3000
μ—¬κΈ° 이 μƒμž λ°‘μ—λŠ”
14:12
has electricity in here,
329
852260
2000
μ „κΈ°κ°€ λ“€μ–΄μ˜€μ§€λ§Œ
14:14
but this doesn't have electricity.
330
854260
2000
μ—¬κΈ°μ—” μ „κΈ°κ°€ μ—†λ‚˜λ³΄λ‹€.
14:16
AG: Okay, that's a fourth hypothesis.
331
856260
2000
AG: μ’‹μŠ΅λ‹ˆλ‹€. 4번째 κ°€μ„€μž…λ‹ˆλ‹€.
14:18
Boy: It's lighting up.
332
858260
2000
μ†Œλ…„: 뢈이 λ“€μ–΄μ˜€μž–μ•„.
14:20
So when you put four.
333
860260
5000
그럼 4개λ₯Ό 올렀 λ†“μœΌλ©΄ λ˜λ„€.
14:26
So you put four on this one to make it light up
334
866260
3000
μ—¬κΈ° μœ„μ— 4개λ₯Ό 올렀 λ†“μœΌλ©΄ 뢈이 μΌœμ§€κ³ 
14:29
and two on this one to make it light up.
335
869260
2000
μ—¬κΈ° μœ„μ— 2개λ₯Ό λ†“μœΌλ©΄ 뢈이 μΌœμ§€λ„€.
14:31
AG: Okay,there's his fifth hypothesis.
336
871260
2000
AG: λ„€, 5번째 κ°€μ„€μž…λ‹ˆλ‹€.
14:33
Now that is a particularly --
337
873260
3000
이 μ†Œλ…„μ€
14:36
that is a particularly adorable and articulate little boy,
338
876260
3000
μœ λ… κ·€μ—½κ³  λ˜λ°•λ˜λ°• λ§ν•˜λŠ” μ–΄λ¦° μ†Œλ…„μ΄μ—ˆμ§€λ§Œ
14:39
but what Cristine discovered is this is actually quite typical.
339
879260
3000
Cristine이 λ°œκ²¬ν•œ 사싀은 이것이 맀우 μΌλ°˜μ μ΄λΌλŠ” κ²ƒμž…λ‹ˆλ‹€.
14:42
If you look at the way children play, when you ask them to explain something,
340
882260
3000
만일 μ—¬λŸ¬λΆ„μ΄ 아이듀이 λ…ΈλŠ” 방법을 보고 무언가 μ„€λͺ…ν•˜λΌκ³  μš”κ΅¬ν•˜μ‹ λ‹€λ©΄,
14:45
what they really do is do a series of experiments.
341
885260
3000
μ‹€μ œλ‘œ 아이듀은 μΌμ’…μ˜ μ‹€ν—˜μ„ ν•˜κ³  μžˆλŠ” κ²ƒμž…λ‹ˆλ‹€.
14:48
This is actually pretty typical of four year-olds.
342
888260
3000
이건 μ‹€μ œλ‘œ 4μ‚΄μ§œλ¦¬λ“€μ—κ² κ½€ 일반적인 μΌμž…λ‹ˆλ‹€.
14:51
Well, what's it like to be this kind of creature?
343
891260
3000
μ–΄λ–€ 동물이 이와 κ°™μ„κΉŒμš”?
14:54
What's it like to be one of these brilliant butterflies
344
894260
3000
κ·Έ 무엇이 2λΆ„ 내에 5가지 가섀을 μ‹€ν—˜ν•  수 μžˆλŠ”
14:57
who can test five hypotheses in two minutes?
345
897260
3000
μ΄λŸ¬ν•œ λˆˆλΆ€μ‹  λ‚˜λΉ„μ™€ κ°™μ„κΉŒμš”?
15:00
Well, if you go back to those psychologists and philosophers,
346
900260
3000
λ‹€μ‹œ μ•žμ„œ λ§ν•œ μ‹¬λ¦¬ν•™μžλ‚˜ μ² ν•™μž μ–˜κΈ°λ‘œ λŒμ•„κ°€ 보면
15:03
a lot of them have said
347
903260
2000
κ·Έλ“€ 쀑 λŒ€λ‹€μˆ˜λŠ”
15:05
that babies and young children were barely conscious
348
905260
2000
μ•„κΈ°λ“€κ³Ό μ–΄λ¦° 아이듀이 지각이 μžˆλ‹€κ³  ν•˜λ”λΌλ„
15:07
if they were conscious at all.
349
907260
2000
이제 겨우 μ§€κ°ν•˜κΈ° μ‹œμž‘ν•œ 단계라고 λ§ν–ˆμ„ κ²λ‹ˆλ‹€.
15:09
And I think just the opposite is true.
350
909260
2000
그리고 μ „ 진싀은 μ • λ°˜λŒ€λΌκ³  μƒκ°ν•©λ‹ˆλ‹€.
15:11
I think babies and children are actually more conscious than we are as adults.
351
911260
3000
μ „ μ•„κΈ°λ“€κ³Ό μ–΄λ¦° 아이듀이 μ‹€μ œλ‘  우리 μ–΄λ₯Έλ“€λ³΄λ‹€ 훨씬 더 지각이 μžˆλ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€.
15:14
Now here's what we know about how adult consciousness works.
352
914260
3000
μ„±μΈμ˜ μ˜μ‹μ΄ μž‘μš©ν•˜λŠ” 방식에 λŒ€ν•΄ μš°λ¦¬κ°€ μ•Œκ³  μžˆλŠ” 것은 μ΄λ ‡μŠ΅λ‹ˆλ‹€.
15:17
And adults' attention and consciousness
353
917260
2000
μ„±μΈμ˜ 주의λ ₯κ³Ό μ˜μ‹μ€ 마치
15:19
look kind of like a spotlight.
354
919260
2000
μΌμ’…μ˜ 슀포트라이트 κ°™μ•„ λ³΄μž…λ‹ˆλ‹€.
15:21
So what happens for adults
355
921260
2000
λ”°λΌμ„œ μ„±μΈμ—κ²Œ μΌμ–΄λ‚˜λŠ” 일은
15:23
is we decide that something's relevant or important,
356
923260
2000
무언가 κ΄€λ ¨λ˜μ–΄ μžˆκ±°λ‚˜ μ€‘μš”ν•œ 것,
15:25
we should pay attention to it.
357
925260
2000
μš°λ¦¬κ°€ 주의λ₯Ό κΈ°μšΈμ—¬μ•Ό ν•  일을 κ²°μ •ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
15:27
Our consciousness of that thing that we're attending to
358
927260
2000
μš°λ¦¬κ°€ 주의λ₯Ό 기울이고 μžˆλŠ” κ·ΈλŸ¬ν•œ 것에 λŒ€ν•œ 우리의 μ˜μ‹μ€
15:29
becomes extremely bright and vivid,
359
929260
3000
κ·Ήλ‹¨μ μœΌλ‘œ 밝고 μ„ λͺ…해지며
15:32
and everything else sort of goes dark.
360
932260
2000
κ·Έ μ™Έμ˜ λͺ¨λ“  것은 μ–΄λ‘μ›Œμ§‘λ‹ˆλ‹€.
15:34
And we even know something about the way the brain does this.
361
934260
3000
λ˜ν•œ μš°λ¦¬λŠ” λ‡Œμ—μ„œ 이λ₯Ό μ²˜λ¦¬ν•˜λŠ” 방식을 μ–΄λŠμ •λ„ μ•Œκ³  μžˆμŠ΅λ‹ˆλ‹€.
15:37
So what happens when we pay attention
362
937260
2000
λ”°λΌμ„œ μš°λ¦¬κ°€ 주의λ₯Ό 기울일 λ•Œ μΌμ–΄λ‚˜λŠ” 일은
15:39
is that the prefrontal cortex, the sort of executive part of our brains,
363
939260
3000
우리 λ‡Œμ˜ 관리 뢀뢄을 λ‹΄λ‹Ήν•˜λŠ” 전두엽 ν”Όμ§ˆμ΄
15:42
sends a signal
364
942260
2000
μ‹ ν˜Έλ₯Ό λ³΄λ‚΄μ„œ
15:44
that makes a little part of our brain much more flexible,
365
944260
2000
우리 λ‡Œμ˜ μž‘μ€ 뢀뢄을 훨씬 더 μœ μ—°ν•˜κ³  λ§λž‘ν•˜κ²Œ,
15:46
more plastic, better at learning,
366
946260
2000
ν•™μŠ΅μ— μ ν•©ν•˜λ„λ‘ λ§Œλ“€κ³ 
15:48
and shuts down activity
367
948260
2000
λ‡Œμ˜ λͺ¨λ“  λ‚˜λ¨Έμ§€ λΆ€λΆ„μ—μ„œμ˜ ν™œλ™μ„
15:50
in all the rest of our brains.
368
950260
2000
λ©ˆμΆ”λŠ” κ²ƒμž…λ‹ˆλ‹€.
15:52
So we have a very focused, purpose-driven kind of attention.
369
952260
4000
κ·Έλž˜μ„œ μš°λ¦¬λŠ” 맀우 μ§‘μ€‘ν•˜κ³  λͺ©μ μ— 따라 주의λ₯Ό 기울이게 λ©λ‹ˆλ‹€.
15:56
If we look at babies and young children,
370
956260
2000
μ•„κΈ°λ“€κ³Ό μ–΄λ¦° 아이듀을 바라보면
15:58
we see something very different.
371
958260
2000
맀우 λ‹€λ₯Έ 점을 λ°œκ²¬ν•˜κ²Œ λ˜λŠ”λ°μš”,
16:00
I think babies and young children
372
960260
2000
μ „ μ•„κΈ°λ“€κ³Ό μ–΄λ¦° 아이듀이
16:02
seem to have more of a lantern of consciousness
373
962260
2000
μ˜μ‹μ˜ 슀포트라이트라기 λ³΄λ‹€λŠ”
16:04
than a spotlight of consciousness.
374
964260
2000
μ˜μ‹μ˜ λ“±λΆˆ 같은 것을 κ°–κ³  μžˆλ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€.
16:06
So babies and young children are very bad
375
966260
3000
λ”°λΌμ„œ μ•„κΈ°λ“€κ³Ό μ–΄λ¦° 아이듀은 단 ν•˜λ‚˜μ˜ 일둜
16:09
at narrowing down to just one thing.
376
969260
3000
λ²”μœ„λ₯Ό μ’νžˆλŠ” λ°μ—λŠ” 맀우 λ―Έμˆ™ν•©λ‹ˆλ‹€.
16:12
But they're very good at taking in lots of information
377
972260
3000
ν•˜μ§€λ§Œ λ‹€μ–‘ν•œ μ›μ²œμœΌλ‘œλΆ€ν„° λ§Žμ€ 정보λ₯Ό
16:15
from lots of different sources at once.
378
975260
2000
λ™μ‹œμ— μˆ˜μ§‘ν•˜λŠ” λ°λŠ” μ•„μ£Ό λŠ₯μˆ™ν•©λ‹ˆλ‹€.
16:17
And if you actually look in their brains,
379
977260
2000
그리고 μ΄λ“€μ˜ λ‡Œλ₯Ό μ‹€μ œλ‘œ λ“€μ—¬λ‹€ λ³Έλ‹€λ©΄
16:19
you see that they're flooded with these neurotransmitters
380
979260
3000
ν•™μŠ΅κ³Ό 적응λ ₯을 μœ λ°œν•˜λŠ” λ°μ—λŠ” 맀우 μ ν•©ν•œ
16:22
that are really good at inducing learning and plasticity,
381
982260
2000
μ΄λŸ¬ν•œ μ‹ κ²½ 전달 물질둜 가득 μ°¨ 있으며
16:24
and the inhibitory parts haven't come on yet.
382
984260
3000
κΈˆμ§€ν•˜λŠ” 뢀뢄은 아직 μž‘λ™μ„ μ‹œμž‘ν•˜μ§€ μ•Šμ€ μƒνƒœμž„μ„ μ•Œκ²Œ λ©λ‹ˆλ‹€.
16:27
So when we say that babies and young children
383
987260
2000
λ”°λΌμ„œ μ•„κΈ°λ“€κ³Ό μ–΄λ¦° 아이듀이
16:29
are bad at paying attention,
384
989260
2000
주의λ₯Ό μ§‘μ€‘ν•˜λŠ” 데 μ„œνˆ΄λ‹€κ³  말할 λ•ŒλŠ”
16:31
what we really mean is that they're bad at not paying attention.
385
991260
4000
μ‹€μ œλ‘œλŠ” 이듀이 주의λ₯Ό μ§‘μ€‘ν•˜μ§€ μ•ŠλŠ” 것에 μ„œνˆ΄λ‹€λŠ” 것을 μ˜λ―Έν•©λ‹ˆλ‹€.
16:35
So they're bad at getting rid
386
995260
2000
즉, 이듀은 μžμ‹ μ—κ²Œ 무언가 말해쀄 수 μžˆλŠ”
16:37
of all the interesting things that could tell them something
387
997260
2000
κ·Έ λͺ¨λ“  ν₯미둜운 것듀을 μ™Έλ©΄ν•œλ‹€λŠ” 것이
16:39
and just looking at the thing that's important.
388
999260
2000
κ·Έ μ€‘μš”ν•œ 것을 κ·Έμ € λ°”λΌλ³΄κΈ°λ§Œ ν•˜λŠ” 것이 μ–΄λ €μš΄ κ²λ‹ˆλ‹€.
16:41
That's the kind of attention, the kind of consciousness,
389
1001260
3000
그것이 λ°”λ‘œ μΌμ’…μ˜ 주의λ ₯이고 μ˜μ‹μ΄λ©°
16:44
that we might expect
390
1004260
2000
본질적으둜 ν•™μŠ΅ν•˜λ„λ‘ λ˜μ–΄ μžˆλŠ”
16:46
from those butterflies who are designed to learn.
391
1006260
2000
κ·ΈλŸ¬ν•œ λ‚˜λΉ„λ“€λ‘œλΆ€ν„° μ˜ˆμΈ‘ν•  수 μžˆλŠ” κ²ƒμž…λ‹ˆλ‹€.
16:48
Well if we want to think about a way
392
1008260
2000
μ„±μΈμœΌλ‘œμ„œ μš°λ¦¬κ°€ μ•„κΈ°μ˜ μ˜μ‹μ„
16:50
of getting a taste of that kind of baby consciousness as adults,
393
1010260
4000
μ—Ώλ³Ό 수 μžˆλŠ” 방법에 λŒ€ν•΄ 생각해 λ³΄μ‹œκ² λ‹€λ©΄
16:54
I think the best thing is think about cases
394
1014260
2000
μ „ κ°€μž₯ 쒋은 방법은 μš°λ¦¬κ°€ 이전에 κ²ͺ어보지 λͺ»ν•œ
16:56
where we're put in a new situation that we've never been in before --
395
1016260
3000
μƒˆλ‘œμš΄ 상황에 우리 μžμ‹ μ„ 던져 λ³΄λŠ” 거라고 μƒκ°ν•©λ‹ˆλ‹€.
16:59
when we fall in love with someone new,
396
1019260
2000
λˆ„κ΅°κ°€μ™€ μ‚¬λž‘μ— λΉ μ‘Œμ„ λ•Œλ‚˜
17:01
or when we're in a new city for the first time.
397
1021260
3000
μƒˆλ‘œμš΄ λ„μ‹œμ— 처음 λ°©λ¬Έν–ˆμ„ λ•Œ 같이 λ§μ΄μ§€μš”.
17:04
And what happens then is not that our consciousness contracts,
398
1024260
2000
그러면 우리의 μ˜μ‹μ€ μ€„μ–΄λ“œλŠ” 것이 μ•„λ‹ˆκ³ 
17:06
it expands,
399
1026260
2000
였히렀 ν™•μž₯λ˜μ–΄
17:08
so that those three days in Paris
400
1028260
2000
κ±·κ³ , λ§ν•˜κ³ , κ΅μˆ˜νšŒμ— μ°Έμ„ν•˜λŠ”
17:10
seem to be more full of consciousness and experience
401
1030260
2000
무기λ ₯ν•œ μ‚¬λžŒμ΄ λ˜μ–΄ 집에 λŒμ•„μ˜€λŠ” λ‚˜λ‚ λ“€ 보닀
17:12
than all the months of being
402
1032260
2000
κ·ΈλŸ¬ν•œ νŒŒλ¦¬μ—μ„œμ˜ 3일이
17:14
a walking, talking, faculty meeting-attending zombie back home.
403
1034260
4000
보닀 μ˜μ‹κ³Ό κ²½ν—˜μœΌλ‘œ 가득 μ°° 것 κ°™μŠ΅λ‹ˆλ‹€.
17:18
And by the way, that coffee,
404
1038260
2000
그건 κ·Έλ ‡κ³ ,
17:20
that wonderful coffee you've been drinking downstairs,
405
1040260
2000
μ—¬λŸ¬λΆ„μ΄ μ•„λž˜μΈ΅μ—μ„œ λ§ˆμ‹œλ˜ κ·Έ ν›Œλ₯­ν•œ μ»€ν”ΌλŠ”
17:22
actually mimics the effect
406
1042260
2000
사싀 κ·ΈλŸ¬ν•œ μ•„κΈ°μ˜ μ‹ κ²½ 전달 물질이 μ£ΌλŠ” 효과λ₯Ό
17:24
of those baby neurotransmitters.
407
1044260
2000
λͺ¨λ°©ν•œ 것에 λΆˆκ³Όν•©λ‹ˆλ‹€.
17:26
So what's it like to be a baby?
408
1046260
2000
κ·ΈλŸ¬λ‹ˆ μ•„κΈ°κ°€ λ˜μ–΄ λ³΄λŠ” 건 μ–΄λ–»μŠ΅λ‹ˆκΉŒ?
17:28
It's like being in love
409
1048260
2000
이건 마치 μ—¬λŸ¬λΆ„μ΄
17:30
in Paris for the first time
410
1050260
2000
μ„Έ μž”μ˜ 더블 μ—μŠ€ν”„λ ˆμ†Œλ₯Ό λ§ˆμ‹  후에
17:32
after you've had three double-espressos.
411
1052260
2000
νŒŒλ¦¬μ—μ„œ 처음으둜 μ‚¬λž‘μ— λΉ μ§€λŠ” 것과 κ°™μŠ΅λ‹ˆλ‹€.
17:34
(Laughter)
412
1054260
3000
(μ›ƒμŒ)
17:37
That's a fantastic way to be,
413
1057260
2000
그것도 멋진 λ°©λ²•μ΄κ² μŠ΅λ‹ˆλ‹€λ§Œ,
17:39
but it does tend to leave you waking up crying at three o'clock in the morning.
414
1059260
4000
그건 μƒˆλ²½ 3μ‹œ 정각에 울며 κΉ¨μ–΄λ‚˜λ„λ‘ ν•˜κΈ° μ‰½μƒμž…λ‹ˆλ‹€.
17:43
(Laughter)
415
1063260
3000
(μ›ƒμŒ)
17:46
Now it's good to be a grownup.
416
1066260
2000
μ§€κΈˆμ€ 성인이 λ˜μ–΄ 정말 μ’‹μŠ΅λ‹ˆλ‹€.
17:48
I don't want to say too much about how wonderful babies are.
417
1068260
2000
μ „ 아기듀이 μ–Όλ§ˆλ‚˜ 멋진 μ‘΄μž¬μΈμ§€μ— λŒ€ν•΄ λ„ˆλ¬΄ 많이 λ§ν•˜κ³  싢진 μ•ŠμŠ΅λ‹ˆλ‹€.
17:50
It's good to be a grownup.
418
1070260
2000
성인이 λ˜μ–΄ 정말 λ‹€ν–‰μ΄μ—μš”.
17:52
We can do things like tie our shoelaces and cross the street by ourselves.
419
1072260
3000
μš°λ¦¬λŠ” μ‹ λ°œλˆμ„ λ¬Άκ±°λ‚˜ 슀슀둜 길을 건널 μˆ˜λ„ μžˆμ§€μš”.
17:55
And it makes sense that we put a lot of effort
420
1075260
2000
그리고 μš°λ¦¬κ°€ 아기듀이 μ–΄λ₯Έλ“€μ²˜λŸΌ μƒκ°ν•˜κ²Œ λ§Œλ“€κΈ° μœ„ν•΄
17:57
into making babies think like adults do.
421
1077260
4000
λ§Žμ€ λ…Έλ ₯을 κΈ°μšΈμ΄λŠ” 것에도 μΌλ¦¬λŠ” μžˆμŠ΅λ‹ˆλ‹€.
18:01
But if what we want is to be like those butterflies,
422
1081260
3000
ν•˜μ§€λ§Œ μš°λ¦¬κ°€ μ›ν•˜λŠ” 것이
18:04
to have open-mindedness, open learning,
423
1084260
3000
포용λ ₯ 있고, μ—΄λ¦° ν•™μŠ΅, 상상, μ°½μ‘°μ„±, ν˜μ‹ μ„ 가진
18:07
imagination, creativity, innovation,
424
1087260
2000
κ·ΈλŸ¬ν•œ λ‚˜λΉ„λ“€κ³Ό 같이 λ˜λŠ” 것이라면
18:09
maybe at least some of the time
425
1089260
2000
μ•„λ§ˆλ„ μ΅œμ†Œν•œ μ–΄λŠ μ‹œμ μ—λŠ”
18:11
we should be getting the adults
426
1091260
2000
보닀 μ•„μ΄λ“€μ²˜λŸΌ μƒκ°ν•˜κΈ° μœ„ν•΄
18:13
to start thinking more like children.
427
1093260
2000
μ’€ 더 μ–΄λ₯Έμ΄ λ˜μ–΄μ•Όλ§Œ ν•©λ‹ˆλ‹€.
18:15
(Applause)
428
1095260
8000
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7