How I Teach Kids to Love Science | Cesar Harada | TED Talks

158,508 views ใƒป 2015-11-18

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Liblib Fib ืžื‘ืงืจ: Zeeva Livshitz
00:13
When I was a kid, my parents would tell me,
0
13800
2816
ื›ืฉื”ื™ื™ืชื™ ื™ืœื“, ื”ื”ื•ืจื™ื ืฉืœื™ ืืžืจื• ืœื™,
00:16
"You can make a mess, but you have to clean up after yourself."
1
16640
3399
"ืืชื” ื™ื›ื•ืœ ืœืขืฉื•ืช ื‘ืœื’ืŸ, ืื‘ืœ ืืชื” ืžืกื“ืจ ืื—ืจื™ืš."
00:20
So freedom came with responsibility.
2
20440
3336
ืื–, ื—ื•ืคืฉ ื”ื’ื™ืข ืขื ืื—ืจื™ื•ืช.
00:23
But my imagination would take me to all these wonderful places,
3
23800
3576
ืื‘ืœ ื”ื“ืžื™ื•ืŸ ืฉืœื™ ื”ื™ื” ืœื•ืงื— ืื•ืชื™ ืœืžืงื•ืžื•ืช ื ืคืœืื™ื,
00:27
where everything was possible.
4
27400
2096
ื‘ื”ื ื”ื›ืœ ื”ื™ื” ืืคืฉืจื™.
00:29
So I grew up in a bubble of innocence --
5
29520
2896
ื›ืš ืฉื’ื“ืœืชื™ ื‘ื‘ื•ืขื” ืฉืœ ืชืžื™ืžื•ืช --
00:32
or a bubble of ignorance, I should say,
6
32440
2336
ืื• ื‘ื•ืขื” ืฉืœ ื‘ื•ืจื•ืช, ืขืœื™ ืœื•ืžืจ,
00:34
because adults would lie to us to protect us from the ugly truth.
7
34800
5096
ื›ื™ ืžื‘ื•ื’ืจื™ื ืฉื™ืงืจื• ืœื ื•, ื›ื“ื™ ืœื”ื’ืŸ ืขืœื™ื ื• ืžื”ืืžืช ื”ืžื›ื•ืขืจืช.
00:39
And growing up, I found out that adults make a mess,
8
39920
3576
ื›ืฉื’ื“ืœืชื™, ื’ื™ืœื™ืชื™ ืฉืžื‘ื•ื’ืจื™ื ืขื•ืฉื™ื ื‘ืœื’ืŸ,
00:43
and they're not very good at cleaning up after themselves.
9
43520
2800
ื•ื”ื ืœื ื›ืœ ื›ืš ื˜ื•ื‘ื™ื ื‘ืœื ืงื•ืช ืื—ืจื™ื”ื.
00:47
Fast forward, I am an adult now,
10
47360
2136
ื ืจื™ืฅ ืงื“ื™ืžื”, ืื ื™ ืžื‘ื•ื’ืจ ื›ืขืช,
00:49
and I teach citizen science and invention at the Hong Kong Harbour School.
11
49520
4976
ื•ืื ื™ ืžืœืžื“ ืžื“ืขื™ ื”ืื–ืจื—ื•ืช ื•ื—ื“ืฉื ื•ืช ื‘ื‘ื™ืช ืกืคืจ ืดื”ืจื‘ื•ืจืด(ื ืžืœ) ื‘ื”ื•ื ื’ ืงื•ื ื’.
00:54
And it doesn't take too long
12
54520
1336
ื•ืœื ืขื•ื‘ืจ ื–ืžืŸ ืจื‘
00:55
before my students walk on a beach and stumble upon piles of trash.
13
55880
4216
ืขื“ ืฉืชืœืžื™ื“ื™ื™ ื”ื•ืœื›ื™ื ื‘ื—ื•ืฃ ื”ื™ื ื•ื ืชืงืœื™ื ื‘ืขืจืžื•ืช ืืฉืคื”.
01:00
So as good citizens, we clean up the beaches --
14
60120
2656
ืื–, ื›ืื–ืจื—ื™ื ื˜ื•ื‘ื™ื, ืื ื—ื ื• ืžื ืงื™ื ืืช ื—ื•ืคื™ ื”ื™ื --
01:02
and no, he is not drinking alcohol, and if he is, I did not give it to him.
15
62800
4720
ื•ืœื, ื”ื•ื ืœื ืฉื•ืชื” ืืœื›ื•ื”ื•ืœ, ื•ืื ื›ืŸ, ืœื ืื ื™ ื–ื” ืฉื ืชืชื™ ืœื• ื–ืืช.
01:07
(Laughter)
16
67880
1760
(ืฆื—ื•ืง)
01:09
And so it's sad to say,
17
69960
1216
ื•ื›ืš, ืขืฆื•ื‘ ืœื•ืžืจ,
01:11
but today more than 80 percent of the oceans have plastic in them.
18
71200
3776
ื›ื™ื•ื ื‘ื™ื•ืชืจ ืž 80% ืžื”ืื•ืงื™ื™ื ื•ืกื™ื ื™ืฉ ืคืœืกื˜ื™ืง.
ื–ื• ืขื•ื‘ื“ื” ืžื—ืจื™ื“ื”.
01:15
It's a horrifying fact.
19
75000
1280
01:16
And in past decades,
20
76800
1376
ื•ื‘ืขืฉื•ืจื™ื ื”ืื—ืจื•ื ื™ื,
01:18
we've been taking those big ships out and those big nets,
21
78200
3456
ื”ื•ืฆืื ื• ืกืคื™ื ื•ืช ื’ื“ื•ืœื•ืช ืœื™ื, ื•ืจืฉืชื•ืช ื’ื“ื•ืœื•ืช,
01:21
and we collect those plastic bits that we look at under a microscope,
22
81680
3336
ื•ืืกืคื ื• ืืช ื—ืœืงื™ ื”ืคืœืกื˜ื™ืง, ื‘ื—ื ื• ืื•ืชื ืชื—ืช ืžื™ืงืจื•ืกืงื•ืค,
01:25
and we sort them,
23
85040
1216
ื•ืžื™ื™ื ื• ืื•ืชื,
01:26
and then we put this data onto a map.
24
86280
1762
ื•ืืช ื”ื ืชื•ื ื™ื ื”ื–ื ื• ืœืžืคื”.
01:28
But that takes forever, it's very expensive,
25
88440
2336
ืื‘ืœ ื–ื” ืœื•ืงื— ื ืฆื—, ื•ื–ื” ืžืื•ื“ ื™ืงืจ,
01:30
and so it's quite risky to take those big boats out.
26
90800
3136
ื•ื–ื” ื“ื™ ืžืกื•ื›ืŸ ืœืฆืืช ืขื ื”ืกืคื™ื ื•ืช ื”ื’ื“ื•ืœื•ืช ืœื™ื.
01:33
So with my students, ages six to 15,
27
93960
2936
ืื– ื™ื—ื“ ืขื ืชืœืžื™ื“ื™ื™, ื‘ื’ื™ืœืื™ 6 ืขื“ 15,
01:36
we've been dreaming of inventing a better way.
28
96920
2216
ื—ืœืžื ื• ืœื”ืžืฆื™ื ื“ืจืš ื˜ื•ื‘ื” ื™ื•ืชืจ.
01:39
So we've transformed our tiny Hong Kong classroom into a workshop.
29
99160
4416
ืื– ื”ืคื›ื ื• ืืช ื”ื›ื™ืชื” ื”ืงื˜ื ื˜ื•ื ืช ืฉืœื ื• ื‘ื”ื•ื ื’ ืงื•ื ื’ ืœืกื“ื ื”.
01:43
And so we started building this small workbench,
30
103600
2656
ื”ืชื—ืœื ื• ืœื‘ื ื•ืช ืฉื•ืœื—ืŸ ืขื‘ื•ื“ื” ืงื˜ืŸ,
01:46
with different heights, so even really short kids can participate.
31
106280
3176
ื‘ื’ื‘ื”ื™ื ืฉื•ื ื™ื, ื›ืš ืฉื’ื ื”ื™ืœื“ื™ื ื”ื ืžื•ื›ื™ื ื‘ื™ื•ืชืจ ื™ื•ื›ืœื• ืœื”ืฉืชืชืฃ.
01:49
And let me tell you, kids with power tools are awesome and safe.
32
109480
4176
ื•ืชื ื• ืœื™ ืœื•ืžืจ ืœื›ื, ื™ืœื“ื™ื ืขื ื›ืœื™ ืขื‘ื•ื“ื” ื”ื ืื“ื™ืจื™ื ื•ื‘ื˜ื™ื—ื•ืชื™ื™ื.
01:53
(Laughter)
33
113680
1336
(ืฆื—ื•ืง)
01:55
Not really.
34
115040
1896
ืœื, ื‘ืืžืช!
01:56
And so, back to plastic.
35
116960
1216
ื•ื‘ื›ืŸ, ื—ื–ืจื” ืœืคืœืกื˜ื™ืง.
01:58
We collect this plastic and we grind it to the size we find it in the ocean,
36
118200
3616
ืื ื—ื ื• ืื•ืกืคื™ื ืืช ื”ืคืœืกื˜ื™ืง ื•ื˜ื•ื—ื ื™ื ืื•ืชื• ืœื’ื•ื“ืœ ืฉืžืฆืื ื• ืื•ืชื• ื‘ืื•ืงื™ื™ื ื•ืก,
02:01
which is very small because it breaks down.
37
121840
2176
ืฉื”ื•ื ืงื˜ืŸ ืžืื•ื“ ืžืฉื•ื ืฉื”ื•ื ื ืฉื‘ืจ
02:04
And so this is how we work.
38
124040
1376
ื•ื›ื›ื” ืื ื—ื ื• ืขื•ื‘ื“ื™ื.
02:05
I let the imaginations of my students run wild.
39
125440
3136
ืื ื™ ื ื•ืชืŸ ืœื“ืžื™ื•ืŸ ืฉืœ ื”ืชืœืžื™ื“ื™ื ืฉืœื™ ืœื”ืชืคืจืข.
02:08
And my job is to try to collect the best of each kid's idea
40
128600
4256
ื•ื”ืชืคืงื™ื“ ืฉืœื™ ื”ื•ื ืœื ืกื•ืช ืœืืกื•ืฃ ืืช ื”ืจืขื™ื•ืŸ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉืœ ื›ืœ ื™ืœื“
02:12
and try to combine it into something that hopefully would work.
41
132880
4280
ื•ืœื ืกื•ืช ืœืฉืœื‘ ืื•ืชื• ืœืชื•ืš ืžืฉื”ื• ืฉื‘ืชืงื•ื•ื”, ื™ืขื‘ื•ื“.
02:17
And so we have agreed that instead of collecting plastic bits,
42
137920
3136
ื•ื”ืกื›ืžื ื• ืฉื‘ืžืงื•ื ืœืืกื•ืฃ ื—ืœืงื™ ืคืœืกื˜ื™ืง,
02:21
we are going to collect only the data.
43
141080
1976
ื ืืกื•ืฃ ืจืง ืืช ื”ื ืชื•ื ื™ื.
02:23
So we're going to get an image of the plastic with a robot --
44
143080
2976
ืื ื• ื ืงื‘ืœ ื”ื“ืžื™ื” ืฉืœ ื”ืคืœืกื˜ื™ืง ืขืœ ื™ื“ื™ ืจื•ื‘ื•ื˜ --
02:26
so robots, kids get very excited.
45
146080
2376
ื ื• ืจื•ื‘ื•ื˜ื™ื, ื™ืœื“ื™ื ืžืชืœื”ื‘ื™ื ืžื”ื.
02:28
And the next thing we do -- we do what we call "rapid prototyping."
46
148480
3143
ื•ื”ื“ื‘ืจ ื”ื‘ื ืฉืื ื• ืขื•ืฉื™ื, ืื ื• ืขื•ืฉื™ื, ืžื” ืฉื ืงืจื, "ืื‘-ื˜ื™ืคื•ืก ืžื”ื™ืจ"
02:31
We are so rapid at prototyping
47
151647
1689
ืื ื—ื ื• ื›ืœ ื›ืš ืžื”ื™ืจื™ื ื‘ืื™ืคื™ื•ืŸ
02:33
that the lunch is still in the lunchbox when we're hacking it.
48
153360
3176
ืฉืืจื•ื—ืช ื”ืฆื”ืจื™ื™ื ืขื“ื™ื™ืŸ ื‘ืชื™ืง ื”ืื•ื›ืœ ื›ืฉืื ื—ื ื• ื›ื‘ืจ ื‘ื•ื ื™ื ืื•ืชื•.
02:36
(Laughter)
49
156560
1296
(ืฆื—ื•ืง)
02:37
And we hack table lamps and webcams, into plumbing fixtures
50
157880
4256
ื•ืื ื—ื ื• ืžื•ืฆืื™ื ื“ืจืš ืื™ืš ืžื ื•ืจื•ืช ืฉื•ืœื—ืŸ ื•ืžืฆืœืžื•ืช ืจืฉืช, ื™ืื•ื›ืกื ื• ื‘ืชื•ืš ืฆื ืจืช
02:42
and we assemble that into a floating robot that will be slowly moving through water
51
162160
5136
ื•ืื ื—ื ื• ืžืจื›ื™ื‘ื™ื ืื•ืชื ืœืจื•ื‘ื•ื˜ ืฆืฃ ืฉืื˜ ืื˜ ื™ื ื•ืข ืขืœ-ืคื ื™ ื”ืžื™ื
02:47
and through the plastic that we have there --
52
167320
2096
ื•ื“ืจืš ื”ืคืœืกื˜ื™ืง, ืฉืื ื• ืจื•ืื™ื ื›ืืŸ --
02:49
and this is the image that we get in the robot.
53
169440
2191
ื•ื–ื• ื”ืชืžื•ื ื” ืฉืื ื• ืžืงื‘ืœื™ื ืžื”ืจื•ื‘ื•ื˜.
02:51
So we see the plastic pieces floating slowly through the sensor,
54
171655
3721
ืื– ืื ื• ืจื•ืื™ื ืืช ื—ืœืงื™ ื”ืคืœืกื˜ื™ืง ืฆืคื™ื ื‘ืื™ื˜ื™ื•ืช ื‘ืขื–ืจืช ื”ื—ื™ื™ืฉืŸ,
02:55
and the computer on board will process this image,
55
175400
3296
ื•ื”ืžื—ืฉื‘ ื‘ืชื—ื ื” ื™ืขื‘ื“ ืืช ื”ืชืžื•ื ื”,
02:58
and measure the size of each particle,
56
178720
2096
ื•ื™ืžื“ื•ื“ ืืช ื’ื•ื“ืœื• ืฉืœ ื›ืœ ื—ืœืงื™ืง,
03:00
so we have a rough estimate of how much plastic there is in the water.
57
180840
4120
ื›ืš ืฉื™ืฉ ืœื ื• ื”ืขืจื›ื” ื’ืกื” ืฉืœ ื›ืžื” ืคืœืกื˜ื™ืง ื™ืฉ ื‘ืžื™ื.
03:05
So we documented this invention step by step
58
185520
3016
ื•ืชื™ืขื“ื ื• ืืช ื”ื”ืžืฆืื” ืฉืœื ื• ืฉืœื‘ ืื—ืจื™ ืฉืœื‘
03:08
on a website for inventors called Instructables,
59
188560
3376
ื‘ืืชืจ ืœืžืžืฆื™ืื™ื ืฉื ืงืจื "Instructables",
03:11
in the hope that somebody would make it even better.
60
191960
2800
ื‘ืชืงื•ื•ื” ืฉืžื™ืฉื”ื• ืืคื™ืœื• ื™ืฉืคืจ ืื•ืชื•.
03:15
What was really cool about this project was that the students saw a local problem,
61
195838
3858
ืžื” ืฉื”ื™ื” ื‘ืืžืช ืžื“ืœื™ืง ื‘ืคืจื•ื™ื™ืงื˜ ื”ื–ื”, ื”ื™ื” ืฉื”ืชืœืžื™ื“ื™ื ืจืื• ื‘ืขื™ื” ืžืงื•ืžื™ืช,
03:19
and boom -- they are trying to immediately address it.
62
199720
2667
ื•ื‘ื•ื - ื”ื ืžื™ื“ ื ื™ืกื• ืœื˜ืคืœ ื‘ื”.
03:22
[I can investigate my local problem]
63
202411
2325
[ืื ื™ ื™ื›ื•ืœ ืœื—ืงื•ืจ ืืช ื”ื‘ืขื™ื” ื”ืžืงื•ืžื™ืช ืฉืœื™]
03:24
But my students in Hong Kong are hyperconnected kids.
64
204760
3216
ืื‘ืœ ื”ืชืœืžื™ื“ื™ื ืฉืœื™ ื‘ื”ื•ื ื’ ืงื•ื ื’ ื”ื ื™ืœื“ื™ื ื”ื™ืคืจ ืžื—ื•ื‘ืจื™ื.
ื”ื ืฆื•ืคื™ื ื‘ื—ื“ืฉื•ืช, ื”ื ื’ื•ืœืฉื™ื ื‘ืื™ื ื˜ืจื ื˜,
03:28
And they watch the news, they watch the Internet,
65
208000
2296
03:30
and they came across this image.
66
210320
2240
ื•ื”ื ื ืชืงืœื• ื‘ืชืžื•ื ื” ื”ื–ื•.
03:33
This was a child, probably under 10, cleaning up an oil spill bare-handed,
67
213840
4736
ื–ื”ื• ื™ืœื“, ื›ื ืจืื” ืžืชื—ืช ืœื’ื™ืœ 10, ืžื ืงื” ื›ืชื ืฉืžืŸ ื‘ื™ื“ื™ื™ื ื—ืฉื•ืคื•ืช,
03:38
in the Sundarbans, which is the world's largest mangrove forest in Bangladesh.
68
218600
4496
ื‘ืกื•ื ื“ืจื‘ืื ืก, ืฉื”ื•ื ื”ื™ืขืจ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ื‘ืขื•ืœื ืฉืœ ืžื ื’ืจื•ื‘, ื‘ื‘ื ื’ืœื“ืฉ.
03:43
So they were very shocked,
69
223120
2456
ื”ื ื”ื™ื• ืžืื•ื“ ื”ืžื•ืžื™ื,
03:45
because this is the water they drink, this is the water they bathe in,
70
225600
3296
ืžืฉื•ื ืฉืืœื• ื”ืžื™ื ืฉื”ื ืฉื•ืชื™ื, ื”ืžื™ื ื‘ื”ื ื”ื ืžืชืจื—ืฆื™ื,
03:48
this is the water they fish in -- this is the place where they live.
71
228920
3376
ื”ืžื™ื ื‘ื”ื ื”ื ื“ื’ื™ื-- ื–ื” ื”ืžืงื•ื ื‘ื• ื”ื ื—ื™ื™ื.
03:52
And also you can see the water is brown, the mud is brown and oil is brown,
72
232320
3896
ื•ื’ื ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื”ืžื™ื ื—ื•ืžื™ื, ื”ื‘ื•ืฅ ื—ื•ื ื•ื”ืฉืžืŸ ื—ื•ื,
03:56
so when everything is mixed up,
73
236240
1477
ื›ืš ืฉื›ืืฉืจ ื”ื›ืœ ืžืชืขืจื‘ื‘ ื™ื—ื“,
03:57
it's really hard to see what's in the water.
74
237741
2475
ืงืฉื” ืžืื•ื“ ืœืจืื•ืช ืžื” ื ืžืฆื ื‘ืžื™ื.
04:00
But, there's a technology that's rather simple,
75
240240
2256
ืื‘ืœ, ืงื™ื™ืžืช ื˜ื›ื ื•ืœื•ื’ื™ื”, ืฉื”ื™ื ื“ื™ ืคืฉื•ื˜ื”,
04:02
that's called spectrometry,
76
242520
1536
ืืฉืจ ื ืงืจืืช ืกืคืงื˜ืจื•ืžื˜ืจื™ื”,
04:04
that allows you see what's in the water.
77
244080
1905
ืฉืžืืคืฉืจืช ืœืจืื•ืช ืžื” ื ืžืฆื ื‘ืชื•ืš ื”ืžื™ื.
04:06
So we built a rough prototype of a spectrometer,
78
246009
3047
ืื– ื‘ื ื™ื ื• ืื‘-ื˜ื™ืคื•ืก ื’ืก ืฉืœ ืกืคืงื˜ืจื•ืžื˜ืจ,
04:09
and you can shine light through different substances
79
249080
2936
ื•ืืชื ื™ื›ื•ืœื™ื ืœื”ืื™ืจ ื“ืจืš ื—ื•ืžืจื™ื ืฉื•ื ื™ื
04:12
that produce different spectrums,
80
252040
2416
ืฉืžื™ื™ืฆืจื™ื ืกืคืงื˜ืจื•ืžื™ื ืฉื•ื ื™ื,
04:14
so that can help you identify what's in the water.
81
254480
3856
ื•ื–ื” ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœื›ื ืœื–ื”ื•ืช ืžื” ื ืžืฆื ื‘ืžื™ื.
04:18
So we packed this prototype of a sensor,
82
258360
2896
ืื– ืืจื–ื ื• ืืช ื”ืื‘-ื˜ื™ืคื•ืก ืฉืœ ื”ื—ื™ื™ืฉืŸ,
04:21
and we shipped it to Bangladesh.
83
261280
2240
ื•ืฉืœื—ื ื• ืื•ืชื• ืœื‘ื ื’ืœื“ืฉ.
04:23
So what was cool about this project
84
263989
1667
ื•ืžื” ืฉื”ื™ื” ืžื’ื ื™ื‘ ื‘ืคืจื•ื™ื™ืงื˜ ื”ื–ื”
04:25
was that beyond addressing a local problem,
85
265680
3135
ื”ื•ื ืฉืžืขื‘ืจ ืœื˜ื™ืคื•ืœ ื‘ื‘ืขื™ื” ืžืงื•ืžื™ืช,
04:28
or looking at a local problem,
86
268839
1430
ืื• ื”ืกืชื›ืœื•ืช ืขืœ ื‘ืขื™ื” ืžืงื•ืžื™ืช,
04:30
my students used their empathy and their sense of being creative
87
270293
3923
ื”ืชืœืžื™ื“ื™ื ืฉืœื™ ื”ืฉืชืžืฉื• ื‘ืืžืคืชื™ื” ื•ื‘ื™ืฆื™ืจืชื™ื•ืช ืฉืœื”ื
04:34
to help, remotely, other kids.
88
274240
2256
ื›ื“ื™ ืœืขื–ื•ืจ, ืžืจื—ื•ืง, ืœื™ืœื“ื™ื ืื—ืจื™ื.
04:36
[I can investigate a remote problem]
89
276520
1715
[ืื ื™ ื™ื›ื•ืœ ืœื—ืงื•ืจ ื‘ืขื™ื” ืžืจื•ื—ืงืช]
04:38
So I was very compelled by doing the second experiments,
90
278259
2620
ื”ื™ื™ืชื™ ืžืื•ื“ ืžื—ื•ื™ื™ื‘ ื‘ืขืงื‘ื•ืช ื”ื ื™ืกื•ื™ ื”ืฉื ื™,
04:40
and I wanted to take it even further --
91
280903
2513
ื•ืจืฆื™ืชื™ ืœืงื—ืช ืืช ื–ื” ืืคื™ืœื• ืจื—ื•ืง ื™ื•ืชืจ --
04:43
maybe addressing an even harder problem, and it's also closer to my heart.
92
283440
4600
ืื•ืœื™ ืœื˜ืคืœ ื‘ื‘ืขื™ื” ืืคื™ืœื• ื™ื•ืชืจ ืงืฉื”, ืฉื’ื ืงืจื•ื‘ื” ื™ื•ืชืจ ืœืœื™ื‘ื™.
04:48
So I'm half Japanese and half French,
93
288560
2616
ื•ื‘ื›ืŸ, ืื ื™ ื—ืฆื™ ื™ืคื ื™ ื•ื—ืฆื™ ืฆืจืคืชื™,
04:51
and maybe you remember in 2011 there was a massive earthquake in Japan.
94
291200
5320
ื•ืื•ืœื™ ืืชื ื–ื•ื›ืจื™ื ืฉื‘- 2011 ื”ื™ื™ืชื” ืจืขื™ื“ืช ืื“ืžื” ืžืกื™ื‘ื™ืช ื‘ื™ืคืŸ.
04:57
It was so violent that it triggered several giant waves --
95
297120
3816
ื”ื™ื ื”ื™ื™ืชื” ื›ืœ ื›ืš ืืœื™ืžื”, ืฉื”ื™ืชื” ื”ื˜ืจื™ื’ืจ ืฉืœ ืžืกืคืจ ื’ืœื™ ืขื ืง --
05:00
they are called tsunami --
96
300960
1416
ืฉื ืงืจืื™ื ืฆื•ื ืืžื™ --
05:02
and those tsunami destroyed many cities on the eastern coast of Japan.
97
302400
6960
ื•ืื•ืชื ื’ืœื™ ืฆื•ื ืืžื™ ื”ืจืกื• ืขืจื™ื ืจื‘ื•ืช ื‘ื—ื•ืฃ ื”ืžื–ืจื—ื™ ืฉืœ ื™ืคืŸ.
05:10
More than 14,000 people died in an instant.
98
310680
3360
ื™ื•ืชืจ ืž- 14,000 ืื ืฉื™ื ืžืชื• ื‘ืจื’ืข.
05:15
Also, it damaged the nuclear power plant of Fukushima,
99
315600
3736
ื‘ื ื•ืกืฃ, ื”ื ืคื’ืขื• ื‘ืชื—ื ืช ื”ื›ื•ื— ื”ื’ืจืขื™ื ื™ืช ื‘ืคื•ืงื•ืฉื™ืžื”,
05:19
the nuclear power plant just by the water.
100
319360
2680
ืชื—ื ืช ื”ื›ื•ื— ื”ื’ืจืขื™ื ื™ืช ืฉื ืžืฆืืช ืžืžืฉ ืœื™ื“ ื”ืžื™ื.
05:22
And today, I read the reports
101
322480
2416
ื•ื”ื™ื•ื, ืื ื™ ืงื•ืจื ืืช ื”ื“ื•ื—ื•ืช
05:24
and an average of 300 tons
102
324920
3056
ื•ืžืžื•ืฆืข ืฉืœ 300 ื˜ื•ื ื•ืช
05:28
are leaking from the nuclear power plant into the Pacific Ocean.
103
328000
3576
ื“ื•ืœืคื™ื ืžืชื—ื ืช ื”ื›ื•ื— ื”ื’ืจืขื™ื ื™ืช ืืœ ืชื•ืš ื”ืื•ืงื™ื™ื ื•ืก ื”ืคืกื™ืคื™.
05:31
And today the whole Pacific Ocean has traces of contamination of cesium-137.
104
331600
6376
ื•ื”ื™ื•ื, ื‘ื›ืœ ื”ืื•ืงื™ื™ื ื•ืก ื”ืคืกื™ืคื™ ื™ืฉ ืขืงื‘ื•ืช ืฉืœ ื–ื™ื”ื•ื ืฉืœ ืฆืกื™ื•ื -137.
05:38
If you go outside on the West Coast, you can measure Fukushima everywhere.
105
338000
4416
ืื ื™ื•ืฆืื™ื ืžืชื•ืš ื”ื—ื•ืฃ ื”ืžืขืจื‘ื™, ื ื™ืชืŸ ืœืžื“ื•ื“ ืืช ืคื•ืงื•ืฉื™ืžื” ื‘ื›ืœ ืžืงื•ื.
05:42
But if you look at the map, it can look like most of the radioactivity
106
342440
3296
ืื‘ืœ ืื ื ื‘ื™ื˜ ื‘ืžืคื”, ื–ื” ื™ื›ื•ืœ ืœื”ื™ืจืื•ืช ื›ืื™ืœื• ืจื•ื‘ ื”ืจื“ื™ื•ืืงื˜ื™ื‘ื™ื•ืช
05:45
has been washed away from the Japanese coast,
107
345760
2096
ื ืฉื˜ืคื” ื”ืœืื” ืžื”ื—ื•ืฃ ื”ื™ืคื ื™,
05:47
and most of it is now -- it looks like it's safe, it's blue.
108
347880
2816
ื•ืจื•ื‘ื” ื›ืขืช -- ื ืจืื™ืช ื›ืื™ืœื• ื‘ื˜ื•ื—ื”, ื”ื™ื ื›ื—ื•ืœื”.
05:50
Well, reality is a bit more complicated than this.
109
350720
3416
ื”ืืžืช, ื”ืžืฆื™ืื•ืช ื”ื™ื ืžืขื˜ ื™ื•ืชืจ ืžืกื•ื‘ื›ืช ืžื›ืš.
05:54
So I've been going to Fukushima every year since the accident,
110
354160
3656
ืื ื™ ืžื‘ืงืจ ื‘ืคื•ืงื•ืฉื™ืžื” ื›ืœ ืฉื ื” ืžืื– ื”ืชืื•ื ื”,
05:57
and I measure independently and with other scientists,
111
357840
2536
ื•ืžื•ื“ื“ ื‘ืื•ืคืŸ ืขืฆืžืื™, ื•ืขื ืžื“ืขื ื™ื ืื—ืจื™ื,
06:00
on land, in the river --
112
360400
1856
ื‘ื™ื‘ืฉื”, ื‘ื ื”ืจ --
06:02
and this time we wanted to take the kids.
113
362280
2736
ื•ื”ืคืขื, ืจืฆื™ื ื• ืœืงื—ืช ืืช ื”ื™ืœื“ื™ื.
06:05
So of course we didn't take the kids, the parents wouldn't allow that to happen.
114
365040
3776
ืื– ื›ืžื•ื‘ืŸ ืฉืœื ืœืงื—ื ื• ืืช ื”ื™ืœื“ื™ื, ื”ื”ื•ืจื™ื ืœื ื™ืืคืฉืจื• ืœื–ื” ืœืงืจื•ืช.
06:08
(Laughter)
115
368840
1336
(ืฆื—ื•ืง)
06:10
But every night we would report to "Mission Control" --
116
370200
3936
ืื‘ืœ ื›ืœ ืขืจื‘ ื”ื™ื™ื ื• ืžื“ื•ื•ื—ื™ื ืœ"ืžืจื›ื– ื”ื‘ืงืจื”" --
06:14
different masks they're wearing.
117
374160
2176
ืžืกื›ื•ืช ืฉื•ื ื•ืช ืฉื”ื ืœื•ื‘ืฉื™ื.
06:16
It could look like they didn't take the work seriously, but they really did
118
376360
4376
ื–ื” ื™ื›ื•ืœ ืœื”ืจืื•ืช ื›ืื™ืœื• ื”ื ืœื ืœืงื—ื• ืืช ื”ืขื‘ื•ื“ื” ื‘ืจืฆื™ื ื•ืช, ืื‘ืœ ื”ื ืžืžืฉ ื›ืŸ
06:20
because they're going to have to live with radioactivity their whole life.
119
380760
4200
ืžืฉื•ื ืฉื”ื ื™ื—ื™ื• ืขื ืจื“ื™ื•ืืงื˜ื™ื‘ื™ื•ืช ื›ืœ ื—ื™ื™ื”ื.
06:25
And so what we did with them
120
385640
2056
ืื– ืžื” ืฉืขืฉื™ื ื• ืื™ืชื
06:27
is that we'd discuss the data we collected that day,
121
387720
2616
ื”ื™ื” ืœื“ื•ืŸ ืขืœ ื”ื ืชื•ื ื™ื ืฉืืกืคื ื• ื‘ืื•ืชื• ื”ื™ื•ื,
06:30
and talk about where we should be going next --
122
390360
2191
ื•ืœื“ื‘ืจ ืขืœ ืžื” ืฆืจื™ืš ืœืขืฉื•ืช ื”ืœืื” --
06:32
strategy, itinerary, etc...
123
392575
2121
ืืกื˜ืจื˜ื’ื™ื”, ืœื•ืดื– ื•ื›ื•'...
06:34
And to do this, we built a very rough topographical map
124
394720
3616
ื•ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ื‘ื ื™ื ื• ืœื ื‘ืคืจื˜ื™ ืคืจื˜ื™ื, ืžืคื” ื˜ื™ืคื•ื’ืจืคื™ืช
06:38
of the region around the nuclear power plant.
125
398360
2856
ืฉืœ ื”ืื–ื•ืจ ืกื‘ื™ื‘ ืชื—ื ืช ื”ื›ื•ื— ื”ื’ืจืขื™ื ื™ืช.
06:41
And so we built the elevation map,
126
401240
2016
ื•ื›ืš ื‘ื ื™ื ื• ืืช ืžืคืช ื”ื’ื•ื‘ื”,
06:43
we sprinkled pigments to represent real-time data for radioactivity,
127
403280
4616
ืคื™ื–ืจื ื• ืคื™ื’ืžื ื˜ื™ื ื›ื“ื™ ืœื™ื™ืฆื’ ื ืชื•ื ื™ื ื‘ื–ืžืŸ ืืžืช ืฉืœ ืจื“ื™ื•ืืงื˜ื™ื‘ื™ื•ืช,
06:47
and we sprayed water to simulate the rainfall.
128
407920
4336
ื•ื”ื™ืชื–ื ื• ืžื™ื ื›ื“ื™ ืœื“ืžื•ืช ืžืฉืงืขื™ ื’ืฉืžื™ื.
06:52
And with this we could see that the radioactive dust
129
412280
2976
ื•ื‘ืขื–ืจืช ื–ื” ื™ื›ื•ืœื ื• ืœืจืื•ืช ืฉื”ืื‘ืง ื”ืจื“ื™ื•ืืงื˜ื™ื‘ื™
06:55
was washing from the top of the mountain into the river system,
130
415280
3056
ื ืฉื˜ืฃ ืžืจืืฉ ื”ื”ืจ ืืœ ืขื‘ืจ ืžืขืจื›ืช ื”ื ื”ืจื•ืช,
06:58
and leaking into the ocean.
131
418360
1536
ื•ื“ื•ืœืฃ ืืœ ืชื•ืš ื”ืื•ืงื™ื™ื ื•ืก.
06:59
So it was a rough estimate.
132
419920
1600
ื–ื• ื”ื™ื™ืชื” ื”ืขืจื›ื” ื’ืกื”.
07:02
But with this in mind, we organized this expedition,
133
422680
2936
ืขื ื”ื™ื“ืข ื”ื–ื”, ืื™ืจื’ื ื• ืืช ื”ืžืฉืœื—ืช ื”ื–ืืช,
07:05
which was the closest civilians have been to the nuclear power plant.
134
425640
3616
ืฉื‘ื” ืื–ืจื—ื™ื ื”ื™ื• ื”ื›ื™ ืงืจื•ื‘ื™ื ืืœ ืชื—ื ืช ื”ื›ื•ื— ื”ื’ืจืขื™ื ื™ืช.
07:09
We are sailing 1.5 kilometers away from the nuclear power plant,
135
429280
4336
ืื ื• ืฉื˜ื™ื ื‘ืžืจื—ืง 1.5 ืงืดืž ืžืชื—ื ืช ื”ื›ื•ื— ื”ื’ืจืขื™ื ื™ืช
07:13
and with the help of the local fisherman,
136
433640
1953
ื•ื‘ืขื–ืจืชื• ืฉืœ ื“ื™ื™ื’ ืžืงื•ืžื™,
07:15
we are collecting sediment from the seabed
137
435617
2239
ืื ื—ื ื• ืื•ืกืคื™ื ืžืฉืงืขื™ื ืžืงืจืงืขื™ืช ื”ื™ื
07:17
with a custom sediment sampler we've invented and built.
138
437880
3456
ืขื ืžื›ืฉื™ืจ ื“ื’ื™ืžืช ืžืฉืงืขื™ื ืฉืื ื—ื ื• ื”ืžืฆืื ื• ื•ื‘ื ื™ื ื•.
07:21
We pack the sediment into small bags,
139
441360
3256
ืืจื–ื ื• ืืช ื”ืžืฉืงืขื™ื ืœืชื•ืš ืฉืงื™ื•ืช ืงื˜ื ื•ืช,
07:24
we then dispatch them to hundreds of small bags
140
444640
2256
ืœืื—ืจ ืžื›ืŸ ืคื™ืฆืœื ื• ืื•ืชื ืœืžืื•ืช ืฉืงื™ื•ืช ืงื˜ื ื•ืช.
07:26
that we send to different universities,
141
446920
1936
ืฉืฉืœื—ื ื• ืœืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ืฉื•ื ื•ืช,
07:28
and we produce the map of the seabed radioactivity,
142
448880
2976
ื•ื™ื™ืฆืจื ื• ืžืคื” ืฉืœ ืจื“ื™ื•ืืงื˜ื™ื‘ื™ื•ืช ืฉืœ ืงืจืงืขื™ืช ื”ื™ื,
07:31
especially in estuaries where the fish will reproduce,
143
451880
2536
ื‘ื™ื™ื—ื•ื“ ื‘ืฉืคื›ื™ ื”ื ื”ืจื•ืช ื‘ื”ื ื“ื’ื™ื ืžืชืจื‘ื™ื,
07:34
and I will hope that we will have improved
144
454440
2056
ื•ืื ื™ ืžืงื•ื•ื” ืฉื ืฆืœื™ื— ืœืฉืคืจ
07:36
the safety of the local fishermen and of your favorite sushi.
145
456520
3096
ืืช ื‘ื˜ื™ื—ื•ืชื ืฉืœ ื”ื“ื™ื™ื’ื™ื ื”ืžืงื•ืžื™ื™ื ื•ืฉืœ ื”ืกื•ืฉื™ ื”ืื”ื•ื‘ ืขืœื™ื›ื.
07:39
(Laughter)
146
459640
1296
(ืฆื—ื•ืง)
07:40
You can see a progression here --
147
460960
1576
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ืืŸ ื”ืชืงื“ืžื•ืช --
07:42
we've gone from a local problem to a remote problem to a global problem.
148
462560
4536
ืขื‘ืจื ื• ืžื‘ืขื™ื” ืžืงื•ืžื™ืช, ืืœ ื‘ืขื™ื” ืžืจื•ื—ืงืช ื•ืขื“ ืœื‘ืขื™ื” ื’ืœื•ื‘ืœื™ืช.
07:47
And it's been super exciting to work at these different scales,
149
467120
2953
ื•ื–ื” ื”ื™ื” ืžืจืชืง ื‘ื™ื•ืชืจ ืœืขื‘ื•ื“ ื‘ืงื ื” ืžื™ื“ื” ืฉื•ื ื™ื,
07:50
with also very simple, open-source technologies.
150
470097
3559
ืขื ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืคืฉื•ื˜ื•ืช ืžืื“ ืฉืœ ืงื•ื“ ืคืชื•ื—.
07:53
But at the same time, it's been increasingly frustrating
151
473680
3336
ื•ื‘ื• ื‘ื–ืžืŸ, ื–ื” ื”ื™ื” ื™ื•ืชืจ ื•ื™ื•ืชืจ ืžืชืกื›ืœ
07:57
because we have only started to measure the damage that we have done.
152
477040
3696
ื‘ื’ืœืœ ืฉืจืง ื”ืชื—ืœื ื• ืœืžื“ื•ื“ ืืช ื”ื ื–ืง ืฉืขืฉื™ื ื•.
08:00
We haven't even started to try to solve the problems.
153
480760
4080
ื•ืืคื™ืœื• ืขื•ื“ ืœื ื”ืชื—ืœื ื• ืœื ืกื•ืช ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื•ืช.
08:05
And so I wonder if we should just take a leap
154
485640
2776
ื•ืœื›ืŸ ืื ื™ ืชื•ื”ื”, ืื ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื–ื ืง ืงื“ื™ืžื”
08:08
and try to invent better ways to do all these things.
155
488440
4640
ื•ืœื ืกื•ืช ืœื”ืžืฆื™ื ื“ืจื›ื™ื ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ืœืขืฉื•ืช ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื”.
08:13
And so the classroom started to feel a little bit small,
156
493520
3576
ืœื›ืŸ ื”ื›ื™ืชื” ื”ืชื—ื™ืœื” ืœื”ืจื’ื™ืฉ ืžืขื˜ ืงื˜ื ื”,
08:17
so we found an industrial site in Hong Kong,
157
497120
2696
ืื– ืžืฆืื ื• ืืชืจ ืชืขืฉื™ื™ืชื™ ื‘ื”ื•ื ื’ ืงื•ื ื’,
08:19
and we turned it into the largest mega-space
158
499840
3256
ื•ื”ืคื›ื ื• ืื•ืชื• ืœืžื’ื”-ื—ืœืœ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ
08:23
focused on social and environmental impact.
159
503120
3176
ืฉืžืชืžืงื“ ื‘ืขืฉื™ื™ื” ื—ื‘ืจืชื™ืช ื•ืกื‘ื™ื‘ืชื™ืช.
08:26
It's in central Hong Kong,
160
506320
1296
ื”ื•ื ื‘ืžืจื›ื– ื”ื•ื ื’ ืงื•ื ื’,
08:27
and it's a place we can work with wood, metal, chemistry,
161
507640
3216
ื•ื–ื” ื—ืœืœ ื‘ื• ืื ื• ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ืขื ืขืฅ, ืžืชื›ืช, ื›ื™ืžื™ืงืœื™ื,
08:30
a bit of biology, a bit of optics,
162
510880
1626
ืžืขื˜ ื‘ื™ื•ืœื•ื’ื™ื”, ืžืขื˜ ืื•ืคื˜ื™ืงื”,
08:32
basically you can build pretty much everything there.
163
512530
2492
ืœืžืขืฉื” ื ื™ืชืŸ ืœื‘ื ื•ืช ืฉื ืคื—ื•ืช ืื• ื™ื•ืชืจ ื”ื›ืœ.
08:35
And its a place where adults and kids can play together.
164
515047
2969
ื–ื” ืžืงื•ื ื‘ื• ืžื‘ื•ื’ืจื™ื ื•ื™ืœื“ื™ื ื™ื›ื•ืœื™ื ืœืฉื—ืง ื™ื—ื“.
08:38
It's a place where kids' dreams can come true,
165
518040
3576
ื–ื” ืžืงื•ื ื‘ื• ื—ืœื•ืžื•ืชื™ื”ื ืฉืœ ื™ืœื“ื™ื ื™ื›ื•ืœื™ื ืœื”ืชื’ืฉื,
08:41
with the help of adults,
166
521640
1336
ืขื ืขื–ืจืช ื”ืžื‘ื•ื’ืจื™ื,
08:43
and where adults can be kids again.
167
523000
1816
ื•ืžืงื•ื ื‘ื• ืžื‘ื•ื’ืจื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื™ืœื“ื™ื ืฉื•ื‘.
08:44
Student: Acceleration! Acceleration!
168
524840
3136
ืชืœืžื™ื“: ื”ืืฆื”! ื”ืืฆื”!
08:48
Cesar Harada: We're asking questions such as,
169
528000
2135
ืกื–ืืจ ื”ืจืื“ื”: ืื ื—ื ื• ืฉื•ืืœื™ื ืฉืืœื•ืช ื›ืžื•,
08:50
can we invent the future of mobility with renewable energy?
170
530159
2817
ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืžืฆื™ื ืืช ืขืชื™ื“ ื”ื ื™ื™ื“ื•ืช ืขื ืื ืจื’ื™ื” ืžืชื—ื“ืฉืช?
ืœื“ื•ื’ืžื.
08:53
For example.
171
533000
1200
08:55
Or, can we help the mobility of the aging population
172
535320
4296
ืื•, ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืœื ื™ื™ื“ื•ืช ืื•ื›ืœื•ืกื™ื™ืช ื”ื–ืงื ื™ื?
08:59
by transforming very standard wheelchairs into cool, electric vehicles?
173
539640
4400
ืขืœ ื™ื“ื™ ื”ืคื™ื›ืช ื›ืกืื•ืช ื’ืœื’ืœื™ื ืกื˜ื ื“ืจื˜ื™ื™ื ืœื›ืœื™ ืจื›ื‘ ื—ืฉืžืœื™ื™ื ืžื’ื ื™ื‘ื™ื?
09:05
So plastic, oil and radioactivity are horrible, horrible legacies,
174
545240
6536
ืื– ืคืœืกื˜ื™ืง, ืฉืžืŸ ื•ืจื“ื™ื•ืืงื˜ื™ื‘ื™ื•ืช ื”ืŸ ืžื•ืจืฉื•ืช ื ื•ืจืื™ื•ืช,
09:11
but the very worst legacy that we can leave our children is lies.
175
551800
4520
ืืš ื”ืžื•ืจืฉืช ื”ื ื•ืจืื” ืžื›ื•ืœืŸ ืฉืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืื™ืจ ืœื™ืœื“ื™ื ื•, ื”ื™ื ืฉืงืจื™ื.
09:16
We can no longer afford to shield the kids from the ugly truth
176
556760
5216
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืขื•ื“ ืœื”ืจืฉื•ืช ืœืขืฆืžื ื• ืœื”ื’ืŸ ืขืœ ื™ืœื“ื™ื ื• ืžื”ืืžืช ื”ืžื›ื•ืขืจืช
09:22
because we need their imagination to invent the solutions.
177
562000
3920
ืžืคื ื™ ืฉืื ื• ื–ืงื•ืงื™ื ืœื“ืžื™ื•ืŸ ืฉืœื”ื ื›ื“ื™ ืœื”ืžืฆื™ื ืืช ื”ืคืชืจื•ื ื•ืช.
09:26
So citizen scientists, makers, dreamers --
178
566720
4976
ืื– ืื–ืจื—ื™ื, ืžื“ืขื ื™ื, ื™ื•ืฆืจื™ื, ื—ื•ืœืžื™ื --
09:31
we must prepare the next generation
179
571720
2696
ืื ื• ื—ื™ื™ื‘ื™ื ืœื”ื›ื™ืŸ ืืช ื”ื“ื•ืจ ื”ื‘ื
09:34
that cares about the environment and people,
180
574440
3056
ืฉื“ื•ืื’ ืœืกื‘ื™ื‘ื” ื•ืœืื ืฉื™ื,
09:37
and that can actually do something about it.
181
577520
2200
ื•ืฉื™ื•ื›ืœ ืœืžืขืฉื” ืœืขืฉื•ืช ืžืฉื”ื• ื‘ื ื™ื“ื•ืŸ.
09:40
Thank you.
182
580200
1216
ืชื•ื“ื” ืœื›ื.
09:41
(Applause)
183
581440
3160
(ืชืฉื•ืื•ืช)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7