Choice, happiness and spaghetti sauce | Malcolm Gladwell

1,937,573 views ใƒป 2007-01-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Elad Sherf ืžื‘ืงืจ: Yifat Adler
00:25
I think I was supposed to talk about my new book,
0
25515
2461
ืื ื™ ื—ื•ืฉื‘ ืฉื”ื™ื™ืชื™ ืืžื•ืจ ืœื“ื‘ืจ ืขืœ ื”ืกืคืจ ื”ื—ื“ืฉ ืฉืœื™,
00:28
which is called "Blink,"
1
28000
1879
ืฉื ืงืจื "ืžืžื‘ื˜ ืจืืฉื•ืŸ" ("Blink"), ื•ืขื•ืกืง ื‘ื”ื—ืœื˜ื•ืช ืžื”ื™ืจื•ืช ื•ื‘ืจืฉืžื™ื ืจืืฉื•ื ื™ื™ื.
00:29
and it's about snap judgments and first impressions.
2
29903
2744
00:33
And it comes out in January, and I hope you all buy it in triplicate.
3
33000
3791
ื”ื•ื ื™ื•ืฆื ืœืื•ืจ ื‘ื™ื ื•ืืจ, ื•ืื ื™ ืžืงื•ื•ื” ืฉื›ื•ืœื›ื ืชืงื ื• ืœืคื—ื•ืช ืฉืœื•ืฉื” ืขื•ืชืงื™ื ืžืžื ื•.
00:36
(Laughter)
4
36815
1474
ืื‘ืœ, ื—ืฉื‘ืชื™ ืขืœ ื–ื”,
00:38
But I was thinking about this,
5
38313
1663
00:40
and I realized that although my new book makes me happy,
6
40000
4210
ื•ื”ื‘ื ืชื™ ืฉืœืžืจื•ืช ืฉื”ืกืคืจ ื”ื—ื“ืฉ ืฉืœื™ ื’ื•ืจื ืœื™ ืื•ืฉืจ,
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื”ื•ื ื™ื’ืจื•ื ืื•ืฉืจ ื’ื ืœืืžื ืฉืœื™,
00:44
and I think would make my mother happy,
7
44234
2636
00:46
it's not really about happiness.
8
46894
2458
ื”ื•ื ืœื ื‘ืืžืช ืขื•ืกืง ื‘ืื•ืฉืจ.
00:49
So I decided instead, I would talk about someone
9
49376
3600
ืื– ื‘ืžืงื•ื ืœื“ื‘ืจ ืขืœ ื”ืกืคืจ, ื”ื—ืœื˜ืชื™ ืœื“ื‘ืจ ืขืœ ืื“ื
00:53
who I think has done as much to make Americans happy
10
53000
3679
ืฉืื ื™ ื—ื•ืฉื‘ ืฉืขืฉื” ืœืžืขืŸ ื”ืื•ืฉืจ ืฉืœ ื”ืืžืจื™ืงืื™ื
00:56
as perhaps anyone over the last 20 years,
11
56703
3273
ืื•ืœื™ ื™ื•ืชืจ ืžื›ืœ ืื“ื ืื—ืจ ื‘-20 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
01:00
a man who is a great personal hero of mine:
12
60000
2976
ืื“ื, ืฉืžื‘ื—ื™ื ืชื™ ื”ืื™ืฉื™ืช, ื”ื•ื ื’ื™ื‘ื•ืจ ื’ื“ื•ืœ.
01:03
someone by the name of Howard Moskowitz,
13
63000
2976
ืื“ื ืฉืฉืžื• ื”ื•ื•ืืจื“ ืžื•ืกืงื•ื‘ื™ืฅ',
01:06
who is most famous for reinventing spaghetti sauce.
14
66000
3100
ืฉื™ื“ื•ืข ื‘ืชื•ืจ ื”ืื“ื ืฉื”ืžืฆื™ื ืžื—ื“ืฉ ืืช ืจื•ื˜ื‘ ื”ืกืคื’ื˜ื™.
01:10
Howard's about this high, and he's round,
15
70323
4653
ื–ื”ื• ื‘ืขืจืš ื”ื’ื•ื‘ื” ืฉืœ ื”ื•ื•ืืจื“, ื•ื”ื•ื ืขื’ืœื’ืœ,
01:15
and he's in his 60s, and he has big huge glasses
16
75000
5089
ื•ื”ื•ื ื‘ืขืฉื•ืจ ื”ืฉื™ืฉื™ ืœื—ื™ื™ื•, ื•ื™ืฉ ืœื• ืžืฉืงืคื™ื™ื ืขืฆื•ืžื•ืช
ื•ืฉื™ืขืจ ืืคื•ืจ ื•ืžื“ื•ืœื“ืœ, ื•ื™ืฉ ืœื• ืื™ื–ื” ืกื•ื’ ืฉืœ ื—ื™ื•ื ื™ื•ืช ื•ื•ื™ื˜ืœื™ื•ืช,
01:20
and thinning gray hair,
17
80113
1793
01:21
and he has a kind of wonderful exuberance and vitality,
18
81930
3824
01:25
and he has a parrot, and he loves the opera,
19
85778
3008
ื•ื™ืฉ ืœื• ืชื•ื›ื™, ื•ื”ื•ื ืื•ื”ื‘ ืื•ืคืจื”,
01:28
and he's a great aficionado of medieval history.
20
88810
4091
ื•ื”ื•ื ืžืขืจื™ืฅ ืžื•ืฉื‘ืข ืฉืœ ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื™ืžื™ ื”ื‘ื™ื ื™ื™ื.
01:33
And by profession, he's a psychophysicist.
21
93203
2604
ื•ื‘ืžืงืฆื•ืขื• ื”ื•ื ืคืกื™ื›ื•ืคื™ืกื™ืงืื™.
01:35
Now, I should tell you that I have no idea what psychophysics is,
22
95831
4637
ื›ืžื•ื‘ืŸ ืฉืขืœื™ ืœืฆื™ื™ืŸ ืฉืื™ืŸ ืœื™ ืžื•ืฉื’ ืžื” ื–ื” ืคืกื™ื›ื•ืคื™ืกื™ืงื”,
01:40
although at some point in my life,
23
100492
1690
ืœืžืจื•ืช ืฉื‘ืฉืœื‘ ื›ืœืฉื”ื• ื‘ื—ื™ื™ ื™ืฆืืชื™ ื‘ืžืฉืš ืฉื ืชื™ื™ื ืขื ื‘ื—ื•ืจื” ืฉืœืžื“ื”
01:42
I dated a girl for two years
24
102206
1446
01:43
who was getting her doctorate in psychophysics.
25
103676
2240
ืœืงืจืืช ืชื•ืืจ ื“ื•ืงื˜ื•ืจ ื‘ืคืกื™ื›ื•ืคื™ืกื™ืงื”.
01:45
Which should tell you something about that relationship.
26
105940
3544
ื“ื‘ืจ ืฉืื•ืžืจ ืžืฉื”ื• ืขืœ ืžืขืจื›ืช ื”ื™ื—ืกื™ื ื”ื–ื•. (ืฆื—ื•ืง)
01:49
(Laughter)
27
109508
2297
01:51
As far as I know, psychophysics is about measuring things.
28
111829
3147
ื›ื›ืœ ืฉืื ื™ ื™ื•ื“ืข, ืคืกื™ื›ื•ืคื™ืกื™ืงื” ืขื•ืกืงืช ื‘ืžื“ื™ื“ื” ืฉืœ ื“ื‘ืจื™ื,
01:55
And Howard is very interested in measuring things.
29
115000
2631
ื•ื”ื•ื•ืืจื“ ืžืชืขื ื™ื™ืŸ ืžืื•ื“ ื‘ืžื“ื™ื“ืช ื“ื‘ืจื™ื.
01:57
And he graduated with his doctorate from Harvard,
30
117655
2373
ื”ื•ื ืกื™ื™ื ืืช ืœื™ืžื•ื“ื™ ื”ื“ื•ืงื˜ื•ืจื˜ ืฉืœื• ื‘ื”ืจื•ื•ืืจื“,
ื•ื”ืงื™ื ื—ื‘ืจืช ื™ื™ืขื•ืฅ ืงื˜ื ื” ื‘ื•ื™ื™ื˜ ืคืœื™ื™ื ืก, ื ื™ื•-ื™ื•ืจืง.
02:00
and he set up a little consulting shop in White Plains, New York.
31
120052
3248
ืื—ืช ืžืœืงื•ื—ื•ืชื™ื• ื”ืจืืฉื•ื ื™ื ื‘ืชื—ื™ืœืช ืฉื ื•ืช ื”ืฉื‘ืขื™ื
02:04
And one of his first clients was Pepsi.
32
124055
2358
02:06
This is many years ago, back in the early 70s.
33
126437
3078
ื”ื™ื™ืชื” ืคืคืกื™.
02:10
And Pepsi came to Howard and they said,
34
130444
1912
ืคืคืกื™ ื‘ืื• ืœื”ื•ื•ืืจื“ ื•ืืžืจื• ืœื•,
02:12
"You know, there's this new thing called aspartame,
35
132380
2398
"ืืชื” ื™ื•ื“ืข, ื™ืฉ ื“ื‘ืจ ื—ื“ืฉ ืฉื ืงืจื ืืกืคืจื˜ื™ื™ื,
02:14
and we would like to make Diet Pepsi.
36
134802
1884
ื•ืื ื—ื ื• ืจื•ืฆื™ื ืœื™ื™ืฆืจ ื“ื™ืื˜ ืคืคืกื™.
02:16
We'd like you to figure out
37
136710
1977
ืื ื—ื ื• ืจื•ืฆื™ื ืฉืชื‘ืจืจ ื›ืžื” ืืคืกืจื˜ื™ื™ื ื›ื“ืื™ ืœื ื• ืœืฉื™ื ื‘ืชื•ืš
02:18
how much aspartame we should put in each can of Diet Pepsi
38
138711
3506
ื›ืœ ืคื—ื™ืช ืฉืœ ื“ื™ืื˜ ืคืคืกื™, ื›ื“ื™ ืœืงื‘ืœ ืืช ื”ืžืฉืงื” ื”ืžื•ืฉืœื."
02:22
in order to have the perfect drink."
39
142241
1757
02:24
Now that sounds like an incredibly straightforward question to answer,
40
144721
4255
ืœื›ืื•ืจื”, ื–ื• ื ืฉืžืขืช ื›ืžื• ืฉืืœื” ืžืื•ื“ ืคืฉื•ื˜ื”
02:29
and that's what Howard thought.
41
149000
1477
ื•ื–ื” ื’ื ืžื” ืฉื”ื•ื•ืืจื“ ื—ืฉื‘. ื›ื™ ืคืคืกื™ ืืžืจื• ืœื•,
02:30
Because Pepsi told him,
42
150501
1301
02:31
"We're working with a band between eight and 12 percent.
43
151826
2683
"ืชืจืื”, ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขืœ ื˜ื•ื•ื— ืฉื‘ื™ืŸ 8 ื•-12 ืื—ื•ื–ื™ื.
02:34
Anything below eight percent sweetness is not sweet enough;
44
154533
2919
ื›ืœ ื”ืืคืฉืจื•ื™ื•ืช ืžืชื—ืช ืœ-8 ืื—ื•ื–ื™ ืžืชื™ืงื•ืช ืœื ืžืกืคื™ืง ืžืชื•ืงื•ืช,
02:37
anything above 12 percent sweetness is too sweet.
45
157476
3239
ื›ืœ ื”ืืคืฉืจื•ื™ื•ืช ืžืขืœ ืœ-12 ืื—ื•ื–ื™ ืžืชื™ืงื•ืช ืžืชื•ืงื•ืช ืžื“ื™.
02:40
We want to know: what's the sweet spot between 8 and 12?"
46
160739
3083
ืื ื—ื ื• ืจื•ืฆื™ื ืœื“ืขืช, ืžื”ื™ 'ื”ื ืงื•ื“ื” ื”ืžืชื•ืงื”' ื‘ื™ืŸ 8 ืœ-12?"
02:44
Now, if I gave you this problem to do, you would all say, it's very simple.
47
164372
3961
ืื ื”ื™ื™ืชื™ ื ื•ืชืŸ ืœื›ื ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื” ื”ื–ืืช, ื›ื•ืœื›ื ื”ื™ื™ืชื ืื•ืžืจื™ื, ื–ื” ืžืื•ื“ ืคืฉื•ื˜.
02:48
What we do is you make up a big experimental batch of Pepsi,
48
168357
3619
ื ืขืจื•ืš ื ื™ืกื•ื™ ืขื ืžืงื‘ืฅ ืขื ืง ืฉืœ ืžืฉืงืื•ืช ืคืคืกื™
02:52
at every degree of sweetness -- eight percent, 8.1, 8.2, 8.3,
49
172000
4486
ื‘ื›ืœ ื“ืจื’ืช ืžืชื™ืงื•ืช - 8 ืื—ื•ื–ื™ื, 8.1, 8.2, 8.3,
02:56
all the way up to 12 --
50
176510
1281
ืขื“ ืœ-12. ื ื‘ื—ืŸ ื›ืœ ืืคืฉืจื•ืช ืขืœ ืืœืคื™ ืื ืฉื™ื,
02:57
and we try this out with thousands of people,
51
177815
2489
03:00
and we plot the results on a curve,
52
180328
2206
ื ืฉืจื˜ื˜ ืืช ื”ืชื•ืฆืื•ืช ืขืœ ืขืงื•ืžื”,
03:02
and we take the most popular concentration, right?
53
182558
2981
ื•ื ื™ืงื— ืืช ื”ืจื™ื›ื•ื– ื”ืคื•ืคืœืืจื™ ื‘ื™ื•ืชืจ. ื ื›ื•ืŸ? ืคืฉื•ื˜ ื‘ื™ื•ืชืจ.
03:05
Really simple.
54
185563
1255
03:06
Howard does the experiment, and he gets the data back,
55
186842
2540
ื”ื•ื•ืืจื“ ืขื•ืจืš ืืช ื”ื ื™ืกื•ื™, ืžืงื‘ืœ ืืช ื”ืžื™ื“ืข ื‘ื—ื–ืจื” ื•ืžืฉืจื˜ื˜ ืืช ื”ืขืงื•ืžื”.
03:09
and he plots it on a curve,
56
189406
1341
03:10
and all of a sudden he realizes it's not a nice bell curve.
57
190771
2864
ืœืคืชืข ื”ื•ื ืžื’ืœื” ืฉืœื ืžื“ื•ื‘ืจ ื‘ืขืงื•ืžืช ืคืขืžื•ืŸ ื™ืคื”.
03:13
In fact, the data doesn't make any sense.
58
193659
1954
ืœืžืขืฉื”, ื”ืžื™ื“ืข ื ืจืื” ืœื ื”ื’ื™ื•ื ื™.
03:15
It's a mess. It's all over the place.
59
195637
1782
ื–ื” ื‘ืœืื’ืŸ. ื–ื” ื‘ื›ืœ ืžืงื•ื.
03:18
Now, most people in that business, in the world of testing food and such,
60
198000
4613
ืจื•ื‘ ื”ืื ืฉื™ื ื‘ืขืกืง ื”ื–ื”, ื‘ืขื•ืœื ืกืงืจื™ ื”ืžื–ื•ืŸ ื•ื›ื•',
03:22
are not dismayed when the data comes back a mess.
61
202637
2817
ืœื ืžืžืฉ ืžื•ื˜ืจื“ื™ื ืฉื”ืžื™ื“ืข ื—ื•ื–ืจ ื•ืœื ืžืกืชื“ืจ.
03:25
They think, "Well, you know,
62
205478
1492
03:26
figuring out what people think about cola's not that easy."
63
206994
2834
ื”ื ื—ื•ืฉื‘ื™ื, ื˜ื•ื‘, ืœื ืงืœ ืœื”ื‘ื™ืŸ ืžื” ืื ืฉื™ื ื—ื•ืฉื‘ื™ื ืขืœ ืžืฉืงืื•ืช ืงื•ืœื”.
03:29
"You know, maybe we made an error somewhere along the way."
64
209852
2825
ืื•ืœื™ ื˜ืขื™ื ื• ื”ื™ื›ืŸ ืฉื”ื•ื ืœืื•ืจืš ื”ื“ืจืš.
03:32
"You know, let's just make an educated guess,"
65
212701
2197
ื‘ื•ืื• ื ื ื—ืฉ ื ื™ื—ื•ืฉ ืžืœื•ืžื“,
03:34
and they simply point and they go for 10 percent,
66
214922
2385
ื•ื”ื ืคืฉื•ื˜ ืžืฆื‘ื™ืขื™ื ื•ื”ื•ืœื›ื™ื ืขืœ 10 ืื—ื•ื–ื™ื, ื‘ื“ื™ื•ืง ื‘ืืžืฆืข.
03:37
right in the middle.
67
217331
1075
03:39
Howard is not so easily placated.
68
219000
1976
ืืช ื”ื•ื•ืืจื“ ืื™ ืืคืฉืจ ืœืจืฆื•ืช ื›ืœ ื›ืš ื‘ืงืœื•ืช.
03:41
Howard is a man of a certain degree of intellectual standards.
69
221000
2912
ื”ื•ื•ืืจื“ ื”ื•ื ืื“ื ืขื ืจืžื” ื›ืœืฉื”ื™ ืฉืœ ืกื˜ื ื“ืจื˜ื™ื ืื™ื ื˜ืงืœื˜ื•ืืœื™ื.
03:43
And this was not good enough for him,
70
223936
2040
ื•ื–ื” ืคืฉื•ื˜ ืœื ื”ื™ื” ืžืกืคื™ืง ื˜ื•ื‘ ื‘ืฉื‘ื™ืœื•,
03:46
and this question bedeviled him for years.
71
226000
2282
ื•ื”ืฉืืœื” ื”ื–ื• ื™ื™ืกืจื” ืื•ืชื• ื‘ืžืฉืš ืฉื ื™ื.
03:48
And he would think it through and say, "What was wrong?
72
228306
2670
ื•ื”ื•ื ื—ืฉื‘ ืขืœ ื–ื” ืœืขื•ืžืง ื•ืฉืืœ, ืžื” ืœื ืขื‘ื“?
03:51
Why could we not make sense of this experiment with Diet Pepsi?"
73
231000
3685
ืœืžื” ื”ื ื™ืกื•ื™ ืขื ื“ื™ืื˜ ืคืคืกื™ ื ืชืŸ ืชื•ืฆืื•ืช ืœื ื”ื’ื™ื•ื ื™ื•ืช?
03:55
And one day, he was sitting in a diner in White Plains,
74
235360
2616
ื•ื™ื•ื ืื—ื“, ื”ื•ื ื™ืฉื‘ ืœืื›ื•ืœ ืืจื•ื—ืช ืขืจื‘ ื‘ื•ื™ื™ื˜ ืคืœื™ื™ื ืก,
03:58
about to go trying to dream up some work for Nescafรฉ.
75
238000
2976
ื•ื ื™ืกื” ืœื”ืžืฆื™ื ืื™ื–ื• ืขื‘ื•ื“ื” ืขื‘ื•ืจ ื ืกืงืคื”.
04:01
And suddenly, like a bolt of lightning, the answer came to him.
76
241336
3484
ืœืคืชืข, ื›ืžื• ืžื›ืช ื‘ืจืง, ื”ืชืฉื•ื‘ื” ื”ื‘ืจื™ืงื” ื‘ืžื•ื—ื•.
04:05
And that is, that when they analyzed the Diet Pepsi data,
77
245153
2674
ื•ื”ืชืฉื•ื‘ื” ื”ื™ื, ืฉื›ืืฉืจ ื ื™ืชื—ื• ืืช ื”ื ืชื•ื ื™ื ืฉืœ ื“ื™ืื˜ ืคืคืกื™,
04:07
they were asking the wrong question.
78
247851
1722
ืฉืืœื• ืืช ื”ืฉืืœื” ื”ืœื ื ื›ื•ื ื”.
04:09
They were looking for the perfect Pepsi,
79
249597
2130
ื”ื ื—ื™ืคืฉื• ืืช ืžืฉืงื” ื”ืคืคืกื™ ื”ืžืฉื•ืœื,
04:11
and they should have been looking for the perfect Pepsis.
80
251751
2963
ื›ืืฉืจ ื”ื™ื• ืฆืจื™ื›ื™ื ืœื—ืคืฉ ืืช ืžืฉืงืื•ืช ื”ืคืคืกื™ ื”ืžื•ืฉืœืžื™ื.
04:15
Trust me.
81
255814
1011
04:16
This was an enormous revelation.
82
256849
2127
ืชืืžื™ื ื• ืœื™, ื–ื• ื”ื™ื™ืชื” ืชื’ืœื™ืช ืขื ืงื™ืช.
04:19
This was one of the most brilliant breakthroughs in all of food science.
83
259000
3675
ื–ื• ื”ื™ื™ืชื” ืื—ืช ืžืคืจื™ืฆื•ืช ื”ื“ืจืš ื”ืžื‘ืจื™ืงื•ืช ื‘ื™ื•ืชืจ ื‘ื›ืœ ืžื“ืข ื”ืžื–ื•ืŸ.
04:22
Howard immediately went on the road,
84
262699
1718
ื•ื”ื•ื•ืืจื“ ื™ืฆื ืžื™ื™ื“ ืœื“ืจืš.
04:24
and he would go to conferences around the country,
85
264441
2358
ื”ื•ื ื”ืœืš ืœื›ื ืกื™ื ื‘ื›ืœ ืจื—ื‘ื™ ื”ืžื“ื™ื ื”,
04:26
and he would stand up and say,
86
266823
1558
ืขืžื“ ืขืœ ื”ื‘ืžื” ื•ืืžืจ,
04:28
"You had been looking for the perfect Pepsi.
87
268405
2063
"ื—ื™ืคืฉืชื ืืช ืžืฉืงื” ื”ืคืคืกื™ ื”ืžืฉื•ืœื. ื˜ืขื™ืชื.
04:30
You're wrong.
88
270492
1230
04:31
You should be looking for the perfect Pepsis."
89
271746
2508
ื”ื™ื™ืชื ืฆืจื™ื›ื™ื ืœื—ืคืฉ ืืช ืžืฉืงืื•ืช ื”ืคืคืกื™ ื”ืžื•ืฉืœืžื™ื."
04:34
And people would look at him blankly and say,
90
274857
2436
ื•ืื ืฉื™ื ื”ื‘ื™ื˜ื• ื‘ื• ื‘ืžื‘ื˜ ื—ืกืจ ื”ื‘ืขื” ื•ืืžืจื• ืœื•,
04:37
"What are you talking about? Craziness."
91
277317
2063
"ืขืœ ืžื” ืืชื” ืžื“ื‘ืจ? ื–ื” ื˜ื™ืจื•ืฃ."
04:39
And they would say, "Move! Next!"
92
279404
1572
ื•ื”ื ื”ื™ื• ืื•ืžืจื™ื, "ื–ื•ื–! ื”ื‘ื ื‘ืชื•ืจ!"
04:41
Tried to get business, nobody would hire him --
93
281000
2214
ื”ื•ื ื ื™ืกื” ืœืขืฉื•ืช ืขืกืงื™ื, ืื‘ืœ ืืฃ ืื—ื“ ืœื ืจืฆื” ืœื”ืขืกื™ืง ืื•ืชื• -- ืื‘ืœ ื–ื” ื”ื˜ืจื™ื“ ืื•ืชื• ื™ื•ืžื ื•ืœื™ืœ,
04:43
he was obsessed, though,
94
283238
1384
04:44
and he talked about it and talked about it.
95
284646
2007
ื•ื”ื•ื ื“ื™ื‘ืจ ืขืœ ื–ื” ื•ื“ื™ื‘ืจ ืขืœ ื–ื” ื•ื“ื™ื‘ืจ ืขืœ ื–ื”.
04:46
Howard loves the Yiddish expression
96
286677
1793
ื”ื•ื•ืืจื“ ืื•ื”ื‘ ืืช ื”ื‘ื™ื˜ื•ื™ ื”ื™ื™ื“ื™
04:48
"To a worm in horseradish, the world is horseradish."
97
288494
2482
"ืขื‘ื•ืจ ืชื•ืœืขืช ื‘ื—ื–ืจืช, ื”ืขื•ืœื ื”ื•ื ื—ื–ืจืช."
04:51
This was his horseradish.
98
291541
1600
ื–ื• ื”ื™ื™ืชื” ื”ื—ื–ืจืช ืฉืœื•. (ืฆื—ื•ืง). ื–ื” ื”ื˜ืจื™ื“ ืื•ืชื• ื™ื•ืžื ื•ืœื™ืœ!
04:53
(Laughter)
99
293165
1662
04:54
He was obsessed with it!
100
294851
1439
04:57
And finally, he had a breakthrough.
101
297000
2811
ื•ืœื‘ืกื•ืฃ, ื”ื’ื™ืขื” ืคืจื™ืฆืช ื”ื“ืจืš. ื—ืžื•ืฆื™ ื•ืœืืกื™ืง ืคื ื• ืืœื™ื•,
04:59
Vlasic Pickles came to him,
102
299835
2141
05:02
and they said, "Doctor Moskowitz, we want to make the perfect pickle."
103
302000
4649
ื•ืืžืจื• ืœื•, "ืžืจ ืžื•ืกืงื•ื‘ื™ืฅ', -- ื“"ืจ ืžื•ืกืงื•ื‘ื™ืฅ' --
ืื ื—ื ื• ืจื•ืฆื™ื ืœื™ื™ืฆืจ ืืช ื”ืžืœืคืคื•ืŸ ื”ื—ืžื•ืฅ ื”ืžื•ืฉืœื." ื•ื”ื•ื ืืžืจ,
05:06
And he said,
104
306673
1024
05:07
"There is no perfect pickle; there are only perfect pickles."
105
307721
2929
"ืื™ืŸ ื›ื–ื” ื“ื‘ืจ ืžืœืคืคื•ืŸ ื—ืžื•ืฅ ืžื•ืฉืœื, ื™ืฉ ืจืง ืžืœืคืคื•ื ื™ื ื—ืžื•ืฆื™ื ืžื•ืฉืœืžื™ื."
05:11
And he came back to them and he said,
106
311331
1770
ื•ื”ื•ื ื—ื–ืจ ืืœื™ื”ื ื•ืืžืจ, "ืืชื ื’ื ืฆืจื™ื›ื™ื ืœืฉืคืจ ืืช ื”ืจื’ื™ืœื™ื ืฉืœื›ื,
05:13
"You don't just need to improve your regular;
107
313125
2210
05:15
you need to create zesty."
108
315359
1493
ื•ื’ื ืœื™ื™ืฆืจ ืคื™ืงื ื˜ื™ื™ื."
05:16
And that's where we got zesty pickles.
109
316876
1825
ื•ื›ืš ื ื•ืฆืจื• ื”ืžืœืคืคื•ื ื™ื ื”ืคื™ืงื ื˜ื™ื™ื.
05:19
Then the next person came to him: Campbell's Soup.
110
319516
2460
ื”ืคื•ื ื™ื ื”ื‘ืื™ื ืืœื™ื• ื”ื™ื• ืžืจืงื™ ืงืžืคื‘ืœ.
05:22
And this was even more important.
111
322000
2000
ื•ื–ื” ื”ื™ื” ืขื•ื“ ื™ื•ืชืจ ื—ืฉื•ื‘.
05:24
In fact, Campbell's Soup is where Howard made his reputation.
112
324024
3046
ืœืžืขืฉื”, ื”ื•ื•ืืจื“ ื‘ื ื” ืืช ื”ืžื•ื ื™ื˜ื™ืŸ ืฉืœื• ื‘ืžืจืงื™ ืงืžืคื‘ืœ.
05:27
Campbell's made Prego,
113
327420
1393
05:28
and Prego, in the early 80s, was struggling next to Ragรน,
114
328837
3868
ืงืžืคื‘ืœ ื™ื™ืฆืจื• ืืช ืคืจื’ื• ื•ืคืจื’ื•, ื‘ืชื—ื™ืœืช ืฉื ื•ืช ื”-80, ื”ืชืงืฉืชื” ืœื”ืชื—ืจื•ืช ื‘ืจืื’ื•,
05:32
which was the dominant spaghetti sauce of the 70s and 80s.
115
332729
3365
ืฉื”ื™ื” ืจื•ื˜ื‘ ื”ืคืกื˜ื” ื”ื“ื•ืžื™ื ื ื˜ื™ ืฉืœ ืฉื ื•ืช ื”-70 ื•ื”-80.
05:36
In the industry -- I don't know whether you care about this,
116
336546
2843
ืื ื™ ืœื ื™ื•ื“ืข ื›ืžื” ื–ื” ืžื˜ืจื™ื“ ืืชื›ื,
05:39
or how much time I have to go into this.
117
339413
2000
ืื• ื›ืžื” ื–ืžืŸ ื™ืฉ ืœื™ ืœื”ื›ื ืก ืœื–ื”.
ืื‘ืœ, ื‘ืจืžื” ื”ื˜ื›ื ื™ืช -- ื‘ืžืืžืจ ืžื•ืกื’ืจ --
05:41
But it was, technically speaking -- this is an aside --
118
341437
2630
ืคืจื’ื• ื”ื•ื ืจื•ื˜ื‘ ืขื’ื‘ื ื™ื•ืช ื˜ื•ื‘ ื™ื•ืชืจ ืžืจืื’ื•.
05:44
Prego is a better tomato sauce than Ragรน.
119
344091
2060
05:46
The quality of the tomato paste is much better;
120
346175
2281
ื”ืื™ื›ื•ืช ืฉืœ ืจืกืง ื”ืขื’ื‘ื ื™ื•ืช ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ื”, ืฉื™ืœื•ื‘ ื”ืชื‘ืœื™ื ื™ื ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘,
05:48
the spice mix is far superior;
121
348480
1820
05:50
it adheres to the pasta in a much more pleasing way.
122
350324
2486
ื•ื”ื”ืฆืžื“ื•ืช ืฉืœ ื”ืจื•ื˜ื‘ ืœืคืกื˜ื” ื”ืจื‘ื” ื™ื•ืชืจ ืžืฉื‘ื™ืขืช ืจืฆื•ืŸ.
05:52
In fact, they would do the famous bowl test
123
352834
2077
ืœืžืขืฉื”, ื‘ืฉื ื•ืช ื”-70 ื”ื ื ื”ื’ื• ืœืขืจื•ืš ืืช ืžื‘ื—ืŸ ื”ืงืขืจื” ื”ืžืคื•ืจืกื ืขื ืจืื’ื• ื•ืคืจื’ื•.
05:54
back in the 70s with Ragรน and Prego.
124
354935
2645
05:57
You'd have a plate of spaghetti, and you would pour it on, right?
125
357604
3492
ื”ื™ื• ืœื•ืงื—ื™ื ืฆืœื—ืช ืกืคื’ื˜ื™, ื•ืฉื•ืคื›ื™ื ืขืœื™ื” ืืช ื”ืจื•ื˜ื‘.
06:01
And the Ragรน would all go to the bottom, and the Prego would sit on top.
126
361460
4645
ื”ืจื•ื˜ื‘ ืฉืœ ืจืื’ื• ื”ื™ื” ื ื•ื–ืœ ืœืชื—ืชื™ืช, ื•ื”ืจื•ื˜ื‘ ืฉืœ ืคืจื’ื• ื”ื™ื” ื ืฉืืจ ืœืžืขืœื”.
06:06
That's called "adherence."
127
366129
1531
ื–ื” ื ืงืจื "ื“ื‘ืงื•ืช".
06:07
And, anyway, despite the fact that they were far superior in adherence,
128
367684
4540
ื•ื‘ื›ืœ ืžืงืจื”, ืœืžืจื•ืช ืฉื”ื ื”ื™ื• ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ื™ื ืžื‘ื—ื™ื ืช ื“ื‘ืงื•ืช,
06:12
and the quality of their tomato paste,
129
372248
2771
ื•ืžื‘ื—ื™ื ืช ืื™ื›ื•ืช ืจืกืง ื”ืขื’ื‘ื ื™ื•ืช, ืคืจื’ื• ื”ืชืงืฉื• ืœื”ืชื—ืจื•ืช.
06:15
Prego was struggling.
130
375043
1369
06:16
So they came to Howard, and they said, fix us.
131
376436
3002
ืื– ื”ื ื‘ืื• ืœื”ื•ื•ืืจื“, ื•ืืžืจื•, ืชืงืŸ ืื•ืชื ื•.
06:19
And Howard looked at their product line, and he said,
132
379811
2499
ื•ื”ื•ื•ืืจื“ ื”ืกืชื›ืœ ืขืœ ืงื• ื”ืžื•ืฆืจื™ื ืฉืœื”ื ื•ืืžืจ,
06:22
what you have is a dead tomato society.
133
382334
3103
ืžื” ืฉื™ืฉ ืœื›ื ื–ื• "ื—ื‘ืจืช ืขื’ื‘ื ื™ื•ืช ืžืชื”".
06:26
So he said, this is what I want to do.
134
386183
2182
ื•ืื– ื”ื•ื ืืžืจ, ื–ื” ืžื” ืฉืื ื™ ืจื•ืฆื” ืœืขืฉื•ืช.
06:28
And he got together with the Campbell's soup kitchen,
135
388389
2556
ื”ื•ื ื—ื‘ืจ ืœืžื˜ื‘ื— ืฉืœ ืžืจืงื™ ืงืžืคื‘ืœ,
06:30
and he made 45 varieties of spaghetti sauce.
136
390969
3461
ื•ื”ื›ื™ืŸ ืžื’ื•ื•ืŸ ืฉืœ 45 ืกื•ื’ื™ ืจื•ื˜ื‘ ืกืคื’ื˜ื™
06:34
And he varied them according to every conceivable way
137
394454
2853
ื‘ื›ืœ ื“ืจืš ื’ื™ื•ื•ืŸ ืืคืฉืจื™ืช.
06:37
that you can vary tomato sauce:
138
397331
1645
06:39
by sweetness, by level of garlic,
139
399000
1858
ืœืคื™ ืžืชื™ืงื•ืช, ืœืคื™ ืจืžืช ื”ืฉื•ื, ืœืคื™ ื—ืจื™ืคื•ืช, ืœืคื™ ืžืจื™ืจื•ืช, ืœืคื™ ืขื’ื‘ื ื™ืชื™ื•ืช,
06:40
by tomatoey-ness, by tartness, by sourness,
140
400882
3215
ืœืคื™ ืจืžืช ื”ืžื•ืฆืงื™ื ื”ื ืจืื™ื -- ื”ืžื•ืฉื’ ื”ืื”ื•ื‘ ืขืœื™ื™ ื‘ืชืขืฉื™ื™ืช ืจื•ื˜ื‘ ื”ืกืคื’ื˜ื™. (ืฆื—ื•ืง)
06:44
by visible solids --
141
404121
1340
06:45
my favorite term in the spaghetti sauce business.
142
405485
3261
06:48
(Laughter)
143
408770
1001
06:49
Every conceivable way you can vary spaghetti sauce,
144
409795
3538
ื‘ื›ืœ ื“ืจืš ืืคืฉืจื™ืช ืฉื‘ื” ืืคืฉืจ ืœื’ื•ื•ืŸ ืจื•ื˜ื‘ ืกืคื’ื˜ื™.
06:53
he varied spaghetti sauce.
145
413357
1779
06:55
And then he took this whole raft of 45 spaghetti sauces,
146
415160
3733
ื•ืื– ื”ื•ื ืœืงื— ืืช ื›ืœ ืžื‘ื—ืจ 45 ืจื˜ื‘ื™ ื”ืกืคื’ื˜ื™, ื•ื™ืฆื ืœื“ืจืš.
06:58
and he went on the road.
147
418917
1157
07:00
He went to New York, to Chicago,
148
420098
1879
ื”ื•ื ื ืกืข ืœื ื™ื•-ื™ื•ืจืง, ื”ื•ื ื ืกืข ืœืฉื™ืงื’ื•, ื”ื•ื ื ืกืข ืœื’'ืงืกื•ื ื•ื•ื™ืœ,
07:02
he went to Jacksonville, to Los Angeles.
149
422001
1929
ื”ื•ื ื ืกืข ืœืœื•ืก-ืื ื’'ืœืก. ื•ื”ื•ื ื”ื‘ื™ื ื›ืžื•ื™ื•ืช ืื“ื™ืจื•ืช ืฉืœ ืื ืฉื™ื ืœืชื•ืš ืื•ืœืžื•ืช ืขื ืง.
07:03
And he brought in people by the truckload into big halls.
150
423954
3762
07:07
And he sat them down for two hours,
151
427740
1725
ื”ื•ื ื”ื•ืฉื™ื‘ ืื•ืชื ื‘ืžืฉืš ืฉืขืชื™ื™ื ื•ื ืชืŸ ืœื”ื,
07:09
and over the course of that two hours, he gave them ten bowls.
152
429489
3327
ื‘ืžืฉืš ืฉืขืชื™ื™ื, ืขืฉืจ ืงืขืจื•ืช.
07:12
Ten small bowls of pasta,
153
432840
1258
ืขืฉืจ ืงืขืจื•ืช ืงื˜ื ื•ืช ืฉืœ ืคืกื˜ื”, ื•ืขืœ ื›ืœ ืื—ืช ืžื”ืŸ ืจื•ื˜ื‘ ืคืกื˜ื” ืฉื•ื ื”.
07:14
with a different spaghetti sauce on each one.
154
434122
2458
07:17
And after they ate each bowl, they had to rate, from 0 to 100,
155
437185
4146
ื•ื›ืืฉืจ ื”ื ืกื™ื™ืžื• ื›ืœ ืงืขืจื”, ื”ื ื”ื™ื• ืฆืจื™ื›ื™ื ืœื“ืจื’ ืž-0 ืขื“ 100
07:21
how good they thought the spaghetti sauce was.
156
441355
2621
ืืช ืื™ื›ื•ืช ืจื•ื˜ื‘ ื”ืกืคื’ื˜ื™.
07:24
At the end of that process, after doing it for months and months,
157
444490
3071
ื‘ืกื•ืฃ ื”ืชื”ืœื™ืš ื”ื–ื”, ืœืื—ืจ ื—ื•ื“ืฉื™ื ืขืœ ื’ื‘ื™ ื—ื•ื“ืฉื™ื,
07:27
he had a mountain of data
158
447585
1543
ื”ื™ื” ืœื• ื”ืจ ืฉืœ ื ืชื•ื ื™ื
07:29
about how the American people feel about spaghetti sauce.
159
449152
3824
ืฉืชื™ืืจื• ืืช ื”ืจื’ืฉื•ืช ืฉืœ ื”ืฆื™ื‘ื•ืจ ื”ืืžืจื™ืงืื™ ื›ืœืคื™ ืจื•ื˜ื‘ ืกืคื’ื˜ื™.
07:33
And then he analyzed the data.
160
453000
1467
ื”ื•ื ื ื™ืชื— ืืช ื”ื ืชื•ื ื™ื.
07:34
Did he look for the most popular variety of spaghetti sauce?
161
454491
3977
ื”ืื ื”ื•ื ื—ื™ืคืฉ ืืช ื”ืกื•ื’ ื”ืคื•ืคื•ืœืืจื™ ื‘ื™ื•ืชืจ ืฉืœ ืจื•ื˜ื‘ ืกืคื’ื˜ื™? ืœื!
07:38
No! Howard doesn't believe that there is such a thing.
162
458492
2754
ื”ื•ื•ืืจื“ ืœื ืžืืžื™ืŸ ืฉื™ืฉ ื›ื–ื” ื“ื‘ืจ.
07:41
Instead, he looked at the data, and he said,
163
461270
2063
ื”ื•ื ื”ืกืชื›ืœ ืขืœ ื”ื ืชื•ื ื™ื ื•ืืžืจ,
07:43
let's see if we can group all these different data points into clusters.
164
463357
5619
ื‘ื•ืื• ื ืจืื” ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื‘ืฅ ืืช ื”ื ืชื•ื ื™ื ืœืžืงื‘ืฆื™ื.
07:49
Let's see if they congregate around certain ideas.
165
469000
2452
ื‘ื•ืื• ื ืจืื” ืื ื”ื ืžืชื›ื ืกื™ื ืกื‘ื™ื‘ ืจืขื™ื•ื ื•ืช ืžืกื•ื™ื™ืžื™ื.
07:52
And sure enough, if you sit down,
166
472000
2205
ื•ื›ืฆืคื•ื™, ืื ืžื ืชื—ื™ื ืืช ื›ืœ ื”ื ืชื•ื ื™ื ืขืœ ืจื•ื˜ื‘ ื”ืกืคื’ื˜ื™,
07:54
and you analyze all this data on spaghetti sauce,
167
474229
3565
07:57
you realize that all Americans fall into one of three groups.
168
477818
3110
ืžื‘ื™ื ื™ื ืฉื”ืฆื™ื‘ื•ืจ ื”ืืžืจื™ืงืื™ ืžืชื—ืœืง ืœืฉืœื•ืฉ ืงื‘ื•ืฆื•ืช.
08:01
There are people who like their spaghetti sauce plain;
169
481340
2913
ื™ืฉ ืื ืฉื™ื ืฉืื•ื”ื‘ื™ื ืืช ืจื•ื˜ื‘ ื”ืกืคื’ื˜ื™ ืฉืœื”ื ืคืฉื•ื˜,
08:04
there are people who like their spaghetti sauce spicy;
170
484277
2699
ื™ืฉ ืื ืฉื™ื ืฉืื•ื”ื‘ื™ื ืืช ืจื•ื˜ื‘ ื”ืกืคื’ื˜ื™ ืฉืœื”ื ืคื™ืงื ื˜ื™,
08:07
and there are people who like it extra chunky.
171
487000
2244
ื•ื™ืฉ ืื ืฉื™ื ืฉืื•ื”ื‘ื™ื ืื•ืชื• ื’ื•ืฉื™ ื‘ืžื™ื•ื—ื“.
08:09
And of those three facts, the third one was the most significant,
172
489929
4047
ื•ื‘ื™ืŸ ืฉืœื•ืฉ ื”ืขื•ื‘ื“ื•ืช ื”ืœืœื•, ื”ืขื•ื‘ื“ื” ื”ืฉืœื™ืฉื™ืช ื”ื™ื ื”ื›ื™ ืžืฉืžืขื•ืชื™ืช.
08:14
because at the time, in the early 1980s,
173
494000
2654
ืžื›ื™ื•ื•ืŸ ืฉื‘ืื•ืชื• ื”ื–ืžืŸ, ื‘ืชื—ื™ืœืช ืฉื ื•ืช ื”-80,
08:16
if you went to a supermarket,
174
496678
1500
ืื ื”ื™ื™ืช ื”ื•ืœืš ืœืกื•ืคืจืžืจืงื˜,
08:18
you would not find extra-chunky spaghetti sauce.
175
498202
3315
ืœื ื”ื™ื™ืช ืžื•ืฆื ืจื•ื˜ื‘ ืกืคื’ื˜ื™ ื’ื•ืฉื™ ื‘ืžื™ื•ื—ื“.
08:21
And Prego turned to Howard, and they said,
176
501987
2013
ื•ืคืจื’ื• ืคื ื• ืœื”ื•ื•ืืจื“, ื•ืืžืจื•,
08:24
"You're telling me that one third of Americans
177
504024
2697
"ืืชื” ืื•ืžืจ ืœื ื• ืฉืื—ื“ ืžื›ืœ ืฉืœื•ืฉื” ืืžืจื™ืงืื™ื ืžืฉืชื•ืงืง ืœืจื•ื˜ื‘ ืกืคื’ื˜ื™ ื’ื•ืฉื™ ื‘ืžื™ื•ื—ื“,
08:26
crave extra-chunky spaghetti sauce
178
506745
3231
08:30
and yet no one is servicing their needs?"
179
510000
2499
ื•ืœืžืจื•ืช ื–ืืช ืื™ืŸ ืืฃ ืื—ื“ ืฉืžืกืคืง ืืช ื”ืฆื•ืจืš ื”ื–ื”?" ื•ื”ื•ื ืืžืจ "ื›ืŸ!"
08:32
And he said "Yes!"
180
512523
1024
08:33
(Laughter)
181
513571
1292
08:34
And Prego then went back,
182
514887
1342
ืื– ืคืจื’ื• ืฉื™ื ื• ืœื—ืœื•ื˜ื™ืŸ
08:36
and completely reformulated their spaghetti sauce,
183
516253
2372
ืืช ื ื•ืกื—ืช ืจื•ื˜ื‘ ื”ืกืคื’ื˜ื™ ืฉืœื”ื,
08:38
and came out with a line of extra chunky that immediately and completely
184
518649
3654
ื•ื™ืฆืื• ืœืฉื•ืง ืขื ืงื• ืฉืœ ืžื•ืฆืจื™ื ื’ื•ืฉื™ื™ื ื‘ืžื™ื•ื—ื“ ืฉื‘ืฆื•ืจื” ืžื•ื—ืœื˜ืช ื•ืžื™ื™ื“ื™ืช
08:42
took over the spaghetti sauce business in this country.
185
522327
2984
ื”ืฉืชืœื˜ ืขืœ ื›ืœ ืชืขืฉื™ื™ืช ื”ืกืคื’ื˜ื™ ื‘ืžื“ื™ื ื” ื”ื–ื•.
08:45
And over the next 10 years, they made 600 million dollars
186
525335
4403
ื•ืœืื•ืจืš 10 ื”ืฉื ื™ื ื”ื‘ืื•ืช, ื”ื ื”ืจื•ื•ื™ื—ื• 600 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ
08:49
off their line of extra-chunky sauces.
187
529762
2397
ืžืงื• ืžื•ืฆืจื™ ืจื•ื˜ื‘ ื”ืคืกื˜ื” ื”ื’ื•ืฉื™ื™ื ื‘ืžื™ื•ื—ื“.
08:53
Everyone else in the industry looked at what Howard had done, and they said,
188
533000
3490
ื•ื›ืœ ืื ืฉื™ ื”ืชืขืฉื™ื™ื” ื”ืกืชื›ืœื• ืขืœ ืžื” ืฉืขืฉื” ื”ื•ื•ืืจื“ ื•ืืžืจื•,
08:56
"Oh my god! We've been thinking all wrong!"
189
536514
2407
"ืืœื•ื”ื™ื ื™ืฉืžื•ืจ! ื›ืœ ื”ื–ืžืŸ ื”ื–ื” ื˜ืขื™ื ื• ื‘ื“ืจืš ื”ื—ืฉื™ื‘ื” ืฉืœื ื•!"
08:58
And that's when you started to get seven different kinds of vinegar,
190
538945
3270
ื•ื–ื• ื ืงื•ื“ืช ื”ื–ืžืŸ ืฉื‘ื” ื”ืชื—ืœื ื• ืœืงื‘ืœ ืฉื‘ืขื” ืกื•ื’ื™ ื—ื•ืžืฅ,
09:02
and 14 different kinds of mustard, and 71 different kinds of olive oil.
191
542239
5466
ื•-14 ืกื•ื’ื™ ื—ืจื“ืœ, ื•-71 ืกื•ื’ื™ื ืฉืœ ืฉืžืŸ ื–ื™ืช.
09:07
And then eventually even Ragรน hired Howard,
192
547729
3247
ื•ืœื‘ืกื•ืฃ, ืืคื™ืœื• ืจืื’ื• ืฉื›ืจื• ืืช ื”ื•ื•ืืจื“,
09:11
and Howard did the exact same thing for Ragรน that he did for Prego.
193
551000
3191
ื•ื”ื•ื•ืืจื“ ืขืฉื” ืขื‘ื•ืจื ื‘ื“ื™ื•ืง ืืช ืžื” ืฉื”ื•ื ืขืฉื” ืขื‘ื•ืจ ืคืจื’ื•.
09:14
And today, if you go to a really good supermarket,
194
554215
2351
ื•ื”ื™ื•ื, ืื ืืชื ื”ื•ืœื›ื™ื ืœืกื•ืคืจืžืจืงื˜ ืžืžืฉ ื˜ื•ื‘,
ื•ืืชื ื‘ื•ื“ืงื™ื ื›ืžื” ืžื•ืฆืจื™ ืจืื’ื• ื™ืฉ ืขืœ ื”ืžื“ืฃ --
09:16
do you know how many Ragรนs there are?
195
556590
2143
09:18
36!
196
558757
1000
ืืชื ื™ื•ื“ืขื™ื ื›ืžื” ื™ืฉ? 36!
09:20
In six varieties:
197
560967
1570
ื‘ืฉื™ืฉื” ืกื•ื’ื™ื: ื’ื‘ื™ื ื”, ืงืœ, ื—ืกื•ืŸ,
09:22
Cheese, Light,
198
562561
3050
09:25
Robusto, Rich & Hearty,
199
565635
3102
ืขืฉื™ืจ ื•ื—ื–ืง, ืขื•ืœื ื™ืฉืŸ ืžืกื•ืจืชื™, ื’ื•ืฉื™ ื‘ืžื™ื•ื—ื“ - ื’ื™ื ื”. (ืฆื—ื•ืง)
09:28
Old World Traditional --
200
568761
1310
09:32
Extra-Chunky Garden.
201
572483
1717
09:34
(Laughter)
202
574224
1752
09:36
That's Howard's doing.
203
576000
1744
ื•ื”ื›ืœ ืชื•ื“ื•ืช ืœื”ื•ื•ืืจื“. ื–ื• ื”ืžืชื ื” ืฉืœ ื”ื•ื•ืืจื“ ืœืฆื™ื‘ื•ืจ ื”ืืžืจื™ืงืื™.
09:37
That is Howard's gift to the American people.
204
577768
2208
09:40
Now why is that important?
205
580000
1681
ืื– ืœืžื” ื”ืกื™ืคื•ืจ ื”ื–ื” ื—ืฉื•ื‘?
09:41
(Laughter)
206
581705
2271
09:44
It is, in fact, enormously important.
207
584000
2081
ืœืกื™ืคื•ืจ ื”ื–ื”, ืœืžืขืฉื”, ื™ืฉ ื—ืฉื™ื‘ื•ืช ืื“ื™ืจื”. ื•ืื ื™ ืืกื‘ื™ืจ ืœื›ื ืžื“ื•ืข.
09:46
I'll explain to you why.
208
586105
1370
09:47
What Howard did is he fundamentally changed the way the food industry thinks
209
587499
4121
ื”ื•ื•ืืจื“ ืฉื™ื ื” ื‘ืฆื•ืจื” ื™ืกื•ื“ื™ืช ืืช ื”ื“ืจืš ื‘ื” ืชืขืฉื™ื™ืช ื”ืžื–ื•ืŸ
09:51
about making you happy.
210
591644
1421
ืžื ืกื” ืœืฉืžื— ืืชื›ื.
09:54
Assumption number one in the food industry used to be
211
594000
2976
ื”ื”ื ื—ื” ื”ืจืืฉื•ื ื” ื‘ืžืขืœื” ืฉืœ ืชืขืฉื™ื™ืช ื”ืžื–ื•ืŸ ืชืžื™ื“ ื”ื™ื™ืชื”
09:57
that the way to find out what people want to eat,
212
597000
2700
ืฉื”ื“ืจืš ืœื’ืœื•ืช ืžื” ืื ืฉื™ื ืจื•ืฆื™ื ืœืื›ื•ืœ --
09:59
what will make people happy, is to ask them.
213
599724
2337
ืžื” ื™ื’ืจื•ื ืœืื ืฉื™ื ืื•ืฉืจ -- ื”ื™ื ืœืฉืื•ืœ ืื•ืชื.
10:02
And for years and years and years,
214
602628
1658
ื‘ืžืฉืš ืฉื ื™ื ืขืœ ื’ื‘ื™ ืฉื ื™ื, ืจืื’ื• ื•ืคืจื’ื• ื”ื™ื•
10:04
Ragรน and Prego would have focus groups,
215
604310
2238
ื‘ื•ื ื™ื ืงื‘ื•ืฆื•ืช ืžื™ืงื•ื“. ื”ื ื”ื™ื• ืžื•ืฉื™ื‘ื™ื ืืชื›ื ื•ืฉื•ืืœื™ื,
10:06
and they would sit you down, and they would say,
216
606572
2460
10:09
"What do you want in a spaghetti sauce?
217
609056
1873
"ืžื” ืืชื” ืจื•ืฆื” ืžืจื•ื˜ื‘ ืกืคื’ื˜ื™? ืชื’ื™ื“ ืœื ื• ืžื” ืืชื” ืจื•ืฆื” ืžืจื•ื˜ื‘ ืกืคื’ื˜ื™."
10:10
Tell us what you want in a spaghetti sauce."
218
610953
2075
10:13
And for all those years -- 20, 30 years --
219
613052
2924
ื•ื›ืœ ื”ืฉื ื™ื ื”ืœืœื• -- 20, 30 ืฉื ื” --
10:16
through all those focus group sessions,
220
616000
1976
ื‘ื›ืœ ืงื‘ื•ืฆื•ืช ื”ืžื™ืงื•ื“ ื”ืœืœื•,
10:18
no one ever said they wanted extra-chunky.
221
618000
3021
ืืฃ ืคืขื ืืฃ ืื—ื“ ืœื ืืžืจ ืฉื”ื•ื ืจื•ืฆื” ืจื•ื˜ื‘ ื’ื•ืฉื™ ื‘ืžื™ื•ื—ื“.
10:21
Even though at least a third of them, deep in their hearts, actually did.
222
621754
3451
ืœืžืจื•ืช ืฉืขืžื•ืง ื‘ืœื‘, ืฉืœื™ืฉ ืžื›ืœ ื”ื ืฉืืœื™ื, ืœืžืขืฉื”, ืจืฆื” ืจื•ื˜ื‘ ื’ื•ืฉื™ ื‘ืžื™ื•ื—ื“.
10:25
(Laughter)
223
625229
1793
(ืฆื—ื•ืง)
10:27
People don't know what they want!
224
627696
2012
ืื ืฉื™ื ืœื ื™ื•ื“ืขื™ื ืžื” ื”ื ืจื•ืฆื™ื! ื ื›ื•ืŸ?
10:29
As Howard loves to say,
225
629732
1446
ื›ืžื• ืฉื”ื•ื•ืืจื“ ืื•ื”ื‘ ืœื•ืžืจ, "ื”ืžื•ื— ืœื ื™ื•ื“ืข ืžื” ื”ืœืฉื•ืŸ ืจื•ืฆื”."
10:31
"The mind knows not what the tongue wants."
226
631202
2752
10:33
It's a mystery!
227
633978
1152
ื–ื• ืชืขืœื•ืžื”!
10:35
(Laughter)
228
635154
1004
10:36
And a critically important step
229
636182
2406
ื•ืฉืœื‘ ื—ืฉื•ื‘ ื•ืงืจื™ื˜ื™ ื‘ื”ื‘ื ื” ืฉืœ ื”ืจืฆื•ื ื•ืช ืฉืœื ื•
10:38
in understanding our own desires and tastes
230
638612
3331
10:41
is to realize that we cannot always explain what we want, deep down.
231
641967
3632
ื”ื•ื ื”ื”ื‘ื ื” ืฉืื ื—ื ื• ืœื ืชืžื™ื“ ื™ื›ื•ืœื™ื ืœื”ืกื‘ื™ืจ ืžื” ืื ื—ื ื• ืจื•ืฆื™ื ืขืžื•ืง ื‘ืคื ื™ื.
10:46
If I asked all of you, for example, in this room, what you want in a coffee,
232
646242
4036
ืื, ืจืง ืœืฉื ื”ื“ื•ื’ืžื, ื”ื™ื™ืชื™ ืฉื•ืืœ ืืช ื›ืœ ืžื™ ืฉื™ื•ืฉื‘ ื‘ื—ื“ืจ ื”ื–ื”, ืžื” ืืชื ืจื•ืฆื™ื ืžืงืคื”,
10:50
you know what you'd say?
233
650302
1328
ืืชื ื™ื•ื“ืขื™ื ืžื” ื”ื™ื™ืชื ืขื•ื ื™ื? ื›ืœ ืื—ื“ ืžื›ื ื”ื™ื” ืื•ืžืจ: "ืื ื™ ืจื•ืฆื” ืงืœื™ื™ื” ื›ื”ื”, ืขืฉื™ืจื” ื•ื—ื–ืงื”."
10:51
Every one of you would say, "I want a dark, rich, hearty roast."
234
651654
4239
10:56
It's what people always say when you ask them.
235
656555
2158
ื–ื” ืžื” ืฉืื ืฉื™ื ืชืžื™ื“ ืื•ืžืจื™ื ื›ืฉืฉื•ืืœื™ื ืื•ืชื ืžื” ื”ื ืจื•ืฆื™ื ืžืงืคื”.
10:58
"What do you like?" "Dark, rich, hearty roast!"
236
658737
2532
ืžื” ืืชื” ืื•ื”ื‘? ืงืœื™ื™ื” ื›ื”ื”, ืขืฉื™ืจื” ื•ื—ื–ืงื”!
11:01
What percentage of you actually like a dark, rich, hearty roast?
237
661293
3513
ืื™ื–ื” ืื—ื•ื– ืžื›ื ื‘ืืžืช ืื•ื”ื‘ ืงืœื™ื™ื” ื›ื”ื”, ืขืฉื™ืจื” ื•ื—ื–ืงื”?
11:04
According to Howard, somewhere between 25 and 27 percent of you.
238
664830
3048
ืœืคื™ ื”ื•ื•ืืจื“, ื”ื™ื›ืŸ ืฉื”ื•ื ื‘ื™ืŸ 25 ื•-27 ืื—ื•ื– ืžื‘ื™ื ื™ื›ื.
11:08
Most of you like milky, weak coffee.
239
668567
2195
ืจื•ื‘ื›ื ืื•ื”ื‘ื™ื ืงืคื” ื—ืœืฉ ื•ื—ืœื‘ื™.
11:10
(Laughter)
240
670786
1001
11:11
But you will never, ever say to someone who asks you what you want
241
671811
3332
ืื‘ืœ ืืชื ืœืขื•ืœื, ืœืขื•ืœืžื™ ืขื•ืœืžื™ื, ืœื ืชื’ื™ื“ื• ืœืžื™ืฉื”ื• ืฉืฉื•ืืœ ืืชื›ื ืžื” ืืชื ืจื•ืฆื™ื --
11:15
that "I want a milky, weak coffee."
242
675167
2191
"ืื ื™ ืจื•ืฆื” ืงืคื” ื—ืœืฉ ื•ื—ืœื‘ื™." (ืฆื—ื•ืง)
11:17
So that's number one thing that Howard did.
243
677382
2899
ืื– ื–ื” ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉื”ื•ื•ืืจื“ ืขืฉื”.
11:21
Number two thing that Howard did is he made us realize --
244
681528
3448
ื”ื“ื‘ืจ ื”ืฉื ื™ ืฉื”ื•ื ืขืฉื” - ื–ื” ืฉื”ื•ื ื’ืจื ืœื ื• ืœื”ื‘ื™ืŸ,
11:25
it's another very critical point --
245
685000
1976
ื•ื’ื ื–ื• ื ืงื•ื“ื” ืžืื•ื“ ืงืจื™ื˜ื™ืช,
11:27
he made us realize the importance
246
687000
2174
ื”ื•ื ื’ืจื ืœื ื• ืœื”ื‘ื™ืŸ ืืช ื”ื—ืฉื™ื‘ื•ืช ืฉืœ ืžื” ืฉื”ื•ื ืื•ื”ื‘ ืœื›ื ื•ืช ืคื™ืœื•ื— ืื•ืคืงื™.
11:29
of what he likes to call "horizontal segmentation."
247
689198
2999
11:33
Why is this critical?
248
693000
1015
ืœืžื” ื–ื” ืงืจื™ื˜ื™? ื–ื” ืงืจื™ื˜ื™ ื‘ื’ืœืœ
11:34
Because this is the way the food industry thought before Howard.
249
694039
3698
ืฉื–ื• ื”ื™ืชื” ื“ืจืš ื”ื—ืฉื™ื‘ื” ืฉืœ ืชืขืฉื™ื™ืช ื”ืžื–ื•ืŸ ืœืคื ื™ ื”ื•ื•ืืจื“.
11:37
What were they obsessed with in the early 80s?
250
697761
2310
ืžื” ื”ืขืกื™ืง ืื•ืชื ื™ื•ืžื ื•ืœื™ืœ ื‘ืชื—ื™ืœืช ืฉื ื•ืช ื”-80? ื”ื ื”ืชืขืกืงื• ื™ื•ืžื ื•ืœื™ืœ ื‘ื—ืจื“ืœ.
11:40
They were obsessed with mustard.
251
700095
1540
11:41
In particular, they were obsessed with the story of Grey Poupon.
252
701659
3317
ืื ืœื“ื™ื™ืง, ื”ื ื”ืชืขืกืงื• ื™ื•ืžื ื•ืœื™ืœ ื‘ืกื™ืคื•ืจ ืฉืœ ื’ืจื™ื™ ืคื•ืคื•ืŸ.
11:45
Used to be, there were two mustards: French's and Gulden's.
253
705000
3201
ืคืขื, ื”ื™ื• ืฉื ื™ ืกื•ื’ื™ ื—ืจื“ืœ. ืคืจื ืฅ ื•ื’ื•ืœื“ืŸ.
11:48
What were they? Yellow mustard.
254
708225
1493
ืžื” ื”ื ื”ื™ื•? ื—ืจื“ืœ ืฆื”ื•ื‘. ืžื” ื™ืฉ ื‘ื—ืจื“ืœ ืฆื”ื•ื‘?
11:49
What's in it?
255
709742
1015
11:50
Yellow mustard seeds, turmeric, and paprika.
256
710781
2054
ื’ืจื’ื™ืจื™ ื—ืจื“ืœ ืฆื”ื•ื‘, ื›ื•ืจื›ื•ื ื•ืคืคืจื™ืงื”. ื–ื” ื”ื—ืจื“ืœ ืฉื”ื™ื”.
11:52
That was mustard.
257
712859
1074
11:53
Grey Poupon came along, with a Dijon.
258
713957
2525
ื’ืจื™ื™ ืคื•ืคื•ืŸ ื”ื’ื™ืขื• ืœืคืชืข ืขื ื“'ื™ื–ื•ืŸ. ื ื›ื•ืŸ?
11:56
Right?
259
716506
1188
11:57
Much more volatile brown mustard seed, some white wine, a nose hit,
260
717718
5663
ื’ืจื’ืจื™ ื—ืจื“ืœ ื—ื•ืžื™ื ื”ืจื‘ื” ื™ื•ืชืจ ื ื“ื™ืคื™ื, ืงืฆืช ื™ื™ืŸ ืœื‘ืŸ, ืžืขื•ืจืจ ืœืš ืืช ื”ืืฃ,
12:03
much more delicate aromatics.
261
723405
1938
ืืจื•ืžื” ื”ืจื‘ื” ื™ื•ืชืจ ืขื“ื™ื ื”. ื•ืžื” ื”ื ืขืฉื•?
12:05
And what do they do?
262
725367
1015
12:06
They put it in a little tiny glass jar, with a wonderful enameled label on it,
263
726406
4799
ื”ื ืฉืžื• ืืช ื”ื—ืจื“ืœ ื‘ืฆื ืฆื ืช ื–ื›ื•ื›ื™ืช ืงื˜ื ื”, ืขื ืชื•ื•ื™ืช ืžื–ื•ื’ื’ืช ื ื”ื“ืจืช,
12:11
made it look French,
264
731229
1074
ื•ื“ืื’ื• ืฉื”ื•ื ื™ืจืื” ืฆืจืคืชื™, ืœืžืจื•ืช ืฉื”ื•ื ืœืžืขืฉื” ื™ื•ืฆืจ ื‘ืื•ืงืกื ืืจื“, ืงืœื™ืคื•ืจื ื™ื”.
12:12
even though it's made in Oxnard, California.
265
732327
2101
12:14
(Laughter)
266
734452
1001
12:15
And instead of charging a dollar fifty for the eight-ounce bottle,
267
735477
4499
ื•ื‘ืžืงื•ื ืœื“ืจื•ืฉ ื“ื•ืœืจ ื•ื—ืฆื™ ืขื‘ื•ืจ ื‘ืงื‘ื•ืง ืฉืœ 250 ืž"ืœ,
12:20
the way that French's and Gulden's did,
268
740000
1973
ื›ืžื• ืฉืคืจื ืฅ' ื•ื’ื•ืœื“ืŸ ืขืฉื•, ื”ื ื”ื—ืœื™ื˜ื• ืœื“ืจื•ืฉ ืืจื‘ืขื” ื“ื•ืœืจื™ื.
12:21
they decided to charge four dollars.
269
741997
1727
12:23
And they had those ads.
270
743748
1212
ื•ื”ื™ื• ืœื”ื ื”ืคืจืกื•ืžื•ืช ื”ืืœื”, ื ื›ื•ืŸ? ืขื ื”ื‘ื—ื•ืจ ื‘ืจื•ืœืก ืจื•ื™ืก,
12:24
With the guy in the Rolls Royce, eating the Grey Poupon.
271
744984
2635
ืฉืื•ื›ืœ ื’ืจื™ื™ ืคื•ืคื•ืŸ, ื•ืจื•ืœืก ืจื•ื™ืก ืื—ืจืช ืขื•ืฆืจืช ืœื™ื“ื•
12:27
Another pulls up, and says, "Do you have any Grey Poupon?"
272
747643
2786
ื•ื”ื•ื ืื•ืžืจ, ื™ืฉ ืœื›ื ื’ืจื™ื™ ืคื•ืคื•ืŸ?
12:30
And the whole thing, after they did that, Grey Poupon takes off!
273
750453
3184
ื•ืื—ืจื™ ืฉื”ื ืขืฉื• ื–ืืช, ื’ืจื™ื™ ืคื•ืคื•ืŸ ื”ืžืจื™ืื•!
12:33
Takes over the mustard business!
274
753661
1524
ื”ื ื”ืฉืชืœื˜ื• ืขืœ ืชืขืฉื™ื™ืช ื”ื—ืจื“ืœ!
12:35
And everyone's take-home lesson from that
275
755209
2008
ื•ื”ืœืงื— ืฉื›ื•ืœื ืœืžื“ื• ืžื”ืกื™ืคื•ืจ ื”ื–ื” ื”ื™ื”
12:37
was that the way to make people happy
276
757241
4735
ืฉื”ื“ืจืš ืœืฉืžื— ืื ืฉื™ื
12:42
is to give them something that is more expensive,
277
762000
3394
ื”ื™ื ืœืชืช ืœื”ื ืžืฉื”ื• ืฉื”ื•ื ื™ื•ืชืจ ื™ืงืจ, ืžืฉื”ื• ืœืฉืื•ืฃ ืืœื™ื•.
12:45
something to aspire to.
278
765418
2067
12:47
It's to make them turn their back on what they think they like now,
279
767509
4143
ืœื’ืจื•ื ืœื”ื ืœื ื˜ื•ืฉ ืืช ืžื” ืฉื”ื ื—ื•ืฉื‘ื™ื ืฉื”ื ืื•ื”ื‘ื™ื ืขื›ืฉื™ื•
12:51
and reach out for something higher up the mustard hierarchy.
280
771676
3419
ื•ืœืฉืื•ืฃ ืœืขืœื•ืช ื‘ืžืขืœื” ื”ื™ืจืจื›ื™ืช ื”ื—ืจื“ืœ.
12:55
(Laughter)
281
775119
1001
12:56
A better mustard! A more expensive mustard!
282
776144
2212
ื—ืจื“ืœ ื˜ื•ื‘ ื™ื•ืชืจ! ื—ืจื“ืœ ื™ืงืจ ื™ื•ืชืจ!
12:58
A mustard of more sophistication and culture and meaning.
283
778380
3163
ื—ืจื“ืœ ืžืชื•ื—ื›ื ื™ื•ืชืจ ืขื ืชืจื‘ื•ืช ื•ืžืฉืžืขื•ืช.
13:01
And Howard looked to that and said, "That's wrong!"
284
781567
2409
ื”ื•ื•ืืจื“ ื‘ื—ืŸ ืืช ื”ืขื ื™ื™ืŸ ื”ื–ื” ื•ืืžืจ, ื–ื• ื˜ืขื•ืช!
13:04
Mustard does not exist on a hierarchy.
285
784639
2118
ืื™ืŸ ื”ื™ืจืจื›ื™ื” ืฉืœ ื—ืจื“ืœ.
13:07
Mustard exists, just like tomato sauce, on a horizontal plane.
286
787218
4101
ื—ืจื“ืœ, ื‘ื“ื™ื•ืง ื›ืžื• ืจื•ื˜ื‘ ืขื’ื‘ื ื™ื•ืช, ืžืฆื•ื™ ืขืœ ืžื™ืฉื•ืจ ืื•ืคืงื™.
13:11
There is no good mustard or bad mustard.
287
791779
2739
ืื™ืŸ ื—ืจื“ืœ ื˜ื•ื‘ ืื• ื—ืจื“ืœ ืจืข.
13:14
There is no perfect mustard or imperfect mustard.
288
794542
2526
ืื™ืŸ ื—ืจื“ืœ ืžื•ืฉืœื ืื• ื—ืจื“ืœ ืœื-ืžื•ืฉืœื.
13:17
There are only different kinds of mustards that suit different kinds of people.
289
797092
3745
ื™ืฉ ืจืง ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ื—ืจื“ืœ ืฉืชื•ืืžื™ื ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ืื ืฉื™ื.
13:21
He fundamentally democratized the way we think about taste.
290
801358
4835
ืœืžืขืฉื”, ื”ื•ื ื™ืฆืจ ืชื”ืœื™ืš ื‘ืกื™ืกื™ ืฉืœ ื“ืžื•ืจืงืจื˜ื™ื–ืฆื™ื” ืœื“ืจืš ื‘ื” ืื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื˜ืขืžื™ื.
13:26
And for that, as well, we owe Howard Moskowitz a huge vote of thanks.
291
806217
4219
ื•ืขืœ ื›ืš, ื’ื ืขืœ ื›ืš, ืื ื• ื—ื™ื™ื‘ื™ื ืœื”ื•ื“ื•ืช ืœื”ื•ื•ืืจื“ ืžื•ืกืงื•ื‘ื™ืฅ'.
13:31
Third thing that Howard did, and perhaps the most important,
292
811201
3493
ื”ื“ื‘ืจ ื”ืฉืœื™ืฉื™ ืฉื”ื•ื•ืืจื“ ืขืฉื”, ื•ืื•ืœื™ ื”ื›ื™ ื—ืฉื•ื‘,
13:34
is Howard confronted the notion of the Platonic dish.
293
814718
2839
ื”ื•ื ืฉื”ื•ื•ืืจื“ ื”ืชืขืžืช ืขื ื”ืžื•ืฉื’ ืฉืœ ื”ืชื‘ืฉื™ืœ ื”ืื™ื“ื™ืืœื™. (ืฆื—ื•ืง)
13:37
(Laughter)
294
817581
1001
13:38
What do I mean by that?
295
818606
1142
ืœืžื” ืื ื™ ืžืชื›ื•ื•ืŸ?
13:39
(Laughter)
296
819772
1556
13:41
For the longest time in the food industry,
297
821352
2100
ื‘ืžืฉืš ื–ืžืŸ ืจื‘ ืžืื•ื“ ื‘ืชืขืฉื™ื™ืช ื”ืžื–ื•ืŸ
13:43
there was a sense that there was one way,
298
823476
2580
ื”ื™ื™ืชื” ืชื—ื•ืฉื” ืฉื™ืฉ ื“ืจืš ืื—ืช, ื“ืจืš ืžื•ืฉืœืžืช, ืœื™ื™ืฆืจ ื›ืœ ืชื‘ืฉื™ืœ.
13:46
a perfect way, to make a dish.
299
826080
2728
13:49
You go to Chez Panisse,
300
829570
1715
ืืชื” ื”ื•ืœืš ืœืžืกืขื“ืช ืฉื” ืคืื ื™ืก, ื•ื”ื ืžื’ื™ืฉื™ื ืœืš ืกืฉื™ืžื™ ืื“ื•ื ื–ื ื‘
13:51
they give you the red-tail sashimi with roasted pumpkin seeds
301
831309
5283
ืขื ื’ืจืขื™ื ื™ ื“ืœืขืช ืฆืœื•ื™ื™ื ื‘ืจื•ื˜ื‘ ืขื ืฉื ืžืคื•ืฆืฅ.
13:56
in a something something reduction.
302
836616
1853
13:58
They don't give you five options on the reduction.
303
838493
2483
ื”ื ืœื ื ื•ืชื ื™ื ืœืš ื—ืžืฉ ืื•ืคืฆื™ื•ืช ืœืจื•ื˜ื‘, ื ื›ื•ืŸ?
14:01
They don't say, "Do you want the extra-chunky reduction, or ...?"
304
841000
3594
ื”ื ืœื ืฉื•ืืœื™ื: "ื”ืื ืืชื” ืจื•ืฆื” ืจื•ื˜ื‘ ื’ื•ืฉื™ ื‘ืžื™ื•ื—ื“ ืื• ื”ืื ืืชื” ืจื•ืฆื”..." -- ืœื!
14:04
No!
305
844618
1008
14:05
You just get the reduction. Why?
306
845650
1547
ืืชื” ืจืง ืžืงื‘ืœ ืืช ื”ืจื•ื˜ื‘. ืœืžื”? ื‘ื’ืœืœ ืฉืœืฉืฃ ืฉืœ ืžืกืขื“ืช ืฉื” ืคืื ื™ืก
14:07
Because the chef at Chez Panisse
307
847221
1562
14:08
has a Platonic notion about red-tail sashimi.
308
848807
2588
ื™ืฉ ืชืคื™ืฉื” ืœื’ื‘ื™ ื”ืื™ื“ื™ืืœื™ื•ืช ืฉืœ ืกืฉื™ืžื™ ืื“ื•ื ื–ื ื‘.
14:11
"This is the way it ought to be."
309
851419
1882
ื–ื• ื”ื“ืจืš ื‘ื” ืฆืจื™ืš ืœืขืฉื•ืช ื–ืืช.
14:13
And she serves it that way time and time again,
310
853920
4056
ื•ื”ื™ื ืžื’ื™ืฉื” ื‘ืื•ืชื” ื”ื“ืจืš ืฉื•ื‘ ื•ืฉื•ื‘.
14:18
and if you quarrel with her, she will say,
311
858000
2262
ื•ืื ืชืชืขืžืช ืื™ืชื”, ื”ื™ื ืชื’ื™ื“,
14:20
"You know what? You're wrong!
312
860286
1602
"ืืชื” ื˜ื•ืขื”! ื–ื• ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื”ื’ื™ืฉ ืื•ืชื• ื‘ืžืกืขื“ื”."
14:22
This is the best way it ought to be in this restaurant."
313
862468
2720
14:25
Now that same idea fueled the commercial food industry as well.
314
865212
3439
ืื•ืชื• ืจืขื™ื•ืŸ ื”ื ื™ืข ื’ื ืืช ืชืขืฉื™ื™ืช ื”ืžื–ื•ืŸ.
14:29
They had a Platonic notion of what tomato sauce was.
315
869294
3217
ื”ื™ืชื” ืœื”ื ืชืคื™ืฉื”, ืชืคื™ืฉื” ืื™ื“ื™ืืœื™ืช, ืœื’ื‘ื™ ืžื”ื• ืจื•ื˜ื‘ ืขื’ื‘ื ื™ื•ืช.
14:32
And where did that come from? It came from Italy.
316
872535
2441
ื•ืžืื™ืคื” ื”ื’ื™ืขื” ื”ืชืคื™ืฉื” ื”ื–ืืช? ื”ื™ื ื”ื’ื™ืขื” ืžืื™ื˜ืœื™ื”.
14:35
Italian tomato sauce is what?
317
875000
2019
ืื™ืš ืขืฉื•ื™ ืจื•ื˜ื‘ ืขื’ื‘ื ื™ื•ืช ืื™ื˜ืœืงื™? ื”ื•ื ืขืฉื•ื™ ืžืชืขืจื•ื‘ืช ื“ืœื™ืœื”.
14:37
It's blended; it's thin.
318
877375
1600
14:39
The culture of tomato sauce was thin.
319
879531
2309
ื”ืชืจื‘ื•ืช ืฉืœ ืจื•ื˜ื‘ ื”ืขื’ื‘ื ื™ื•ืช ืืžืจื” ืฉื”ื•ื ืืžื•ืจ ืœื”ื™ื•ืช ื“ืœื™ืœ.
14:41
When we talked about "authentic tomato sauce" in the 1970s,
320
881864
2977
ื›ืืฉืจ ื“ื™ื‘ืจื ื• ืขืœ ืจื•ื˜ื‘ ื”ืขื’ื‘ื ื™ื•ืช ื”ืื•ืชื ื˜ื™ ืฉืœ ืฉื ื•ืช ื”-70,
14:44
we talked about Italian tomato sauce,
321
884865
1809
ื“ื™ื‘ืจื ื• ืขืœ ืจื•ื˜ื‘ ืขื’ื‘ื ื™ื•ืช ืื™ื˜ืœืงื™, ืขืœ ื”ืžื”ื“ื•ืจื” ื”ืžื•ืงื“ืžืช ืฉืœ ืจืื’ื•.
14:46
we talked about the earliest Ragรนs,
322
886698
1779
14:48
which had no visible solids, right?
323
888501
2152
ืจื•ื˜ื‘ ืฉืœื ื”ื›ื™ืœ ืžื•ืฆืงื™ื ื ืจืื™ื, ื ื›ื•ืŸ?
14:51
Which were thin, you just put a little bit
324
891000
2117
ืจื•ื˜ื‘ ืฉื”ื™ื” ื“ืœื™ืœ, ื•ืคืฉื•ื˜ ื”ื™ื™ืช ืฉื ืงืฆืช ืžืžื ื• ืขืœ ื”ืคืกื˜ื”
14:53
and it sunk down to the bottom of the pasta.
325
893141
2048
ื•ื”ื•ื ื”ื™ื” ื ื•ื–ืœ ืœืžื˜ื” ืœืชื—ืชื™ืช ื”ืคืกื˜ื”.
14:55
That's what it was.
326
895213
1192
ื•ืœืžื” ื”ื™ื™ื ื• ื›ืœ ื›ืš ืงืฉื•ืจื™ื ืœืจื•ื˜ื‘ ื”ื–ื”?
14:56
And why were we attached to that?
327
896429
1661
ืžื›ื™ื•ื•ืŸ ืฉื—ืฉื‘ื ื• ืฉื›ื“ื™ ืœื’ืจื•ื ืื•ืฉืจ ืœืื ืฉื™ื
14:58
Because we thought that what it took to make people happy
328
898114
2738
15:00
was to provide them with the most culturally authentic tomato sauce, A.
329
900876
4594
ืขืœื™ื ื• ืœืกืคืง ืœื”ื ืจื•ื˜ื‘ ืขื’ื‘ื ื™ื•ืช ืฉื”ื•ื ื”ื›ื™ ืื•ืชื ื˜ื™ ืžื‘ื—ื™ื ื” ืชืจื‘ื•ืชื™ืช,
15:05
And B, we thought that if we gave them the culturally authentic tomato sauce,
330
905494
5084
ื•ื—ืฉื‘ื ื• ืฉืื ื ืกืคืง ืœื”ื ืืช ืจื•ื˜ื‘ ื”ืขื’ื‘ื ื™ื•ืช ื”ื›ื™ ืื•ืชื ื˜ื™ ืžื‘ื—ื™ื ื” ืชืจื‘ื•ืชื™ืช,
15:10
then they would embrace it.
331
910602
1428
ื”ื ื™ืืžืฆื• ืื•ืชื• ืœืœื‘ื,
15:12
And that's what would please the maximum number of people.
332
912054
2734
ื•ื”ืจื•ื˜ื‘ ื”ื–ื” ื™ืจืฆื” ืืช ืžืกืคืจ ื”ืื ืฉื™ื ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ.
15:15
In other words,
333
915288
2286
ื‘ืžื™ืœื™ื ืื—ืจื•ืช,
15:17
people in the cooking world were looking for cooking universals.
334
917598
3399
ืื ืฉื™ื ื‘ืขื•ืœื ื”ื‘ื™ืฉื•ืœ ื—ื™ืคืฉื• ื”ื›ืœืœื•ืช ืœื’ื‘ื™ ื‘ื™ืฉื•ืœ.
15:21
They were looking for one way to treat all of us.
335
921336
2438
ื”ื ื—ื™ืคืฉื• ื“ืจืš ืื—ืช ืœื”ืชื™ื™ื—ืก ืœื›ื•ืœื ื•.
15:23
And it's good reason for them to be obsessed
336
923798
2580
ื•ื™ืฉื ื” ืกื™ื‘ื” ื˜ื•ื‘ื” ืœื›ืš ืฉื”ื ื—ืฉื‘ื• ื™ื•ืžื ื•ืœื™ืœ ืขืœ ื”ื›ืœืœื•ืช ืœื’ื‘ื™ ื‘ื™ืฉื•ืœ.
15:26
with the idea of universals,
337
926402
1382
15:27
because all of science,
338
927808
1397
ื›ืœ ืขื•ืœื ื”ืžื“ืข, ื‘ืžืฉืš ื”ืžืื” ื”-19 ื•ืจื•ื‘ ื”ืžืื” ื”-20
15:29
through the 19th century and much of the 20th,
339
929229
2249
15:31
was obsessed with universals.
340
931502
1669
ื”ื™ื” ื˜ืจื•ื“ ื‘ืžืฆื™ืืช ื”ื›ืœืœื•ืช.
15:33
Psychologists, medical scientists, economists
341
933195
3988
ืคืกื™ื›ื•ืœื•ื’ื™ื, ืžื“ืขื ื™ื ืจืคื•ืื™ื™ื, ื›ืœื›ืœื ื™ื, ื›ื•ืœื ื”ืชืขื ื™ื™ื ื•
15:37
were all interested in finding out the rules
342
937207
2088
15:39
that govern the way all of us behave.
343
939319
2190
ื‘ืžืฆื™ืืช ื”ื›ืœืœื™ื ืฉืžืกื‘ื™ืจื™ื ืืช ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ื›ื•ืœื ื•.
15:42
But that changed, right?
344
942259
1398
ืื‘ืœ ื–ื” ื”ืฉืชื ื”, ื ื›ื•ืŸ?
15:43
What is the great revolution in science of the last 10, 15 years?
345
943681
3611
ืžื”ื™ ื”ืžื”ืคื›ื” ื”ื’ื“ื•ืœื” ืฉืœ ื”ืžื“ืข ื‘-10, 15 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช?
15:47
It is the movement from the search for universals
346
947316
3515
ื”ืžืขื‘ืจ ืžื—ื™ืคื•ืฉ ืื—ืจ ื”ื›ืœืœื•ืช ืœื”ื‘ื ืช ื”ืฉื•ื ื•ืช.
15:50
to the understanding of variability.
347
950855
1849
15:53
Now in medical science, we don't want to know, necessarily,
348
953339
3637
ื‘ืžื“ืข ื”ืจืคื•ืื”, ืื ื—ื ื• ืœื ืจื•ืฆื™ื ืœื“ืขืช
15:57
just how cancer works,
349
957000
1701
ืจืง ืื™ืš ืžืชืคืชื— ืกืจื˜ืŸ. ืื ื—ื ื• ืจื•ืฆื™ื ืœื“ืขืช ืื™ืš ื”ืกืจื˜ืŸ ืฉืœื›ื ืฉื•ื ื” ืžื”ืกืจื˜ืŸ ืฉืœื™.
15:58
we want to know how your cancer is different from my cancer.
350
958725
3251
16:02
I guess my cancer different from your cancer.
351
962000
2747
ืื ื™ ืžื ื—ืฉ ืฉื”ืกืจื˜ืŸ ืฉืœื™ ืฉื•ื ื” ืžื”ืกืจื˜ืŸ ืฉืœื›ื.
16:04
Genetics has opened the door to the study of human variability.
352
964771
4088
ื”ื’ื ื˜ื™ืงื” ืคืชื—ื” ืืช ื”ืฉืขืจ ืœื—ืงืจ ื”ืฉื•ื ื•ืช ื”ืื ื•ืฉื™ืช.
16:08
What Howard Moskowitz was doing was saying,
353
968883
2095
ื”ื•ื•ืืจื“ ืžื•ืกืงื•ื‘ื™ืฅ' ืืžืจ ืฉืื•ืชื” ื”ืžื”ืคื™ื›ื”
16:11
"This same revolution needs to happen in the world of tomato sauce."
354
971002
4111
ืฆืจื™ื›ื” ืœื”ืชืจื—ืฉ ื’ื ื‘ืขื•ืœื ืจื•ื˜ื‘ ื”ืขื’ื‘ื ื™ื•ืช.
16:16
And for that, we owe him a great vote of thanks.
355
976000
2572
ื•ืขืœ ื›ืš, ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื•ื“ื•ืช ืœื•.
16:20
I'll give you one last illustration of variability,
356
980201
2842
ืืฆื™ื’ ื‘ืคื ื™ื›ื ื”ื“ื’ืžื” ืื—ืช ืื—ืจื•ื ื” ืฉืœ ืฉื•ื ื•ืช -- ืื•ื•, ืื ื™ ืžืฆื˜ืขืจ.
16:23
and that is -- oh, I'm sorry.
357
983067
1841
16:24
Howard not only believed that, but he took it a second step,
358
984932
3488
ื”ื•ื•ืืจื“ ืœื ืจืง ื”ืืžื™ืŸ ื‘ื›ืš, ืืœื ื”ื•ื ืฆืขื“ ืฆืขื“ ื ื•ืกืฃ ืงื“ื™ืžื”,
16:28
which was to say that when we pursue universal principles in food,
359
988444
5152
ื•ืืžืจ ืฉื›ืืฉืจ ืื ื—ื ื• ืจื•ื“ืคื™ื ืื—ืจ ื”ื ื—ื•ืช ื›ื•ืœืœื ื™ื•ืช ื‘ืงืฉืจ ืœืื•ื›ืœ,
16:33
we aren't just making an error;
360
993620
1620
ืœื ืจืง ืฉืื ื—ื ื• ืขื•ืฉื™ื ื˜ืขื•ืช, ืื ื—ื ื• ืœืžืขืฉื” ืžืขื ื™ืงื™ื ืœืขืฆืžื ื• ืฉื™ืจื•ืช ื“ื‘.
16:35
we are actually doing ourselves a massive disservice.
361
995264
3348
16:39
And the example he used was coffee.
362
999000
1810
ื•ื”ื“ื•ื’ืžื ืฉื”ื•ื ื”ืฉืชืžืฉ ื‘ื” ื”ื™ื™ืชื” ืงืคื”.
16:41
And coffee is something he did a lot of work with, with Nescafรฉ.
363
1001223
4045
ืงืคื” ื”ื•ื ืžืฉื”ื• ืฉื”ื•ื ืขื‘ื“ ืขืœื™ื• ื”ืจื‘ื”, ืขื ื ืกืงืคื”.
16:45
If I were to ask all of you to try and come up with a brand of coffee --
364
1005746
3498
ืื ื”ื™ื™ืชื™ ืžื‘ืงืฉ ืžื›ื•ืœื›ื ืœื ืกื•ืช ืœื”ืžืฆื™ื ื–ืŸ ืฉืœ ืงืคื”
16:49
a type of coffee, a brew -- that made all of you happy,
365
1009268
3022
-- ืกื•ื’ ืฉืœ ืงืคื”, ื—ืœื™ื˜ื” -- ืฉื”ื™ื™ืชื” ื’ื•ืจืžืช ืœื›ื•ืœื ืื•ืฉืจ,
16:52
and then I asked you to rate that coffee,
366
1012314
1953
ื•ืื– ื”ื™ื™ืชื™ ืžื‘ืงืฉ ืžื›ื ืœื“ืจื’ ืืช ื”ืงืคื” ื”ื–ื”,
16:54
the average score in this room for coffee would be about 60 on a scale of 0 to 100.
367
1014291
4057
ื”ืชื•ืฆืื” ื”ืžืžื•ืฆืขืช ื‘ื—ื“ืจ ื”ื–ื” ื”ื™ื™ืชื” ื‘ืขืจืš 60 ื‘ืกื•ืœื ืฉืœ 0 ืขื“ 100.
16:58
If, however, you allowed me to break you into coffee clusters,
368
1018825
3623
ืื‘ืœ, ืื ื”ื™ื™ืชื™ ืžื—ืœืง ืืชื›ื ืœืงื‘ื•ืฆื•ืช ืงืคื”,
17:02
maybe three or four coffee clusters,
369
1022472
1785
ืื•ืœื™ ืฉืœื•ืฉ ืื• ืืจื‘ืข ืงื‘ื•ืฆื•ืช ืงืคื”,
17:04
and I could make coffee just for each of those individual clusters,
370
1024281
4695
ื•ื”ื™ื™ืชื™ ื™ื›ื•ืœ ืœื”ื›ื™ืŸ ืงืคื” ืœื›ืœ ืื—ื“ ืžื”ืžืงื‘ืฆื™ื ื”ืœืœื•,
17:09
your scores would go from 60 to 75 or 78.
371
1029000
3555
ื”ืชื•ืฆืื•ืช ืฉืœื›ื ื”ื™ื• ืขื•ืœื•ืช ืž-60 ืœ-75 ืื• 78.
17:13
The difference between coffee at 60 and coffee at 78
372
1033000
5237
ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ืงืคื” ืฉืœ 60 ืœืงืคื” ืฉืœ 78
17:18
is a difference between coffee that makes you wince,
373
1038261
2715
ื”ื•ื ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ืงืคื” ืฉื’ื•ืจื ืœืš ืœื”ื™ืจืชืข,
17:21
and coffee that makes you deliriously happy.
374
1041000
3004
ืœื‘ื™ืŸ ืงืคื” ืฉื’ื•ืจื ืœืš ืœื”ื™ื•ืช ืžืื•ืฉืจ, ื ืกืขืจ.
17:24
That is the final, and I think most beautiful lesson,
375
1044690
3194
ื–ื”ื• ื”ืœืงื— ื”ืื—ืจื•ืŸ, ื•ืื ื™ ื—ื•ืฉื‘ ืฉื”ื›ื™ ื™ืคื”, ืฉืœื™ืžื“ ืื•ืชื ื• ื”ื•ื•ืืจื“ ืžื•ืกืงื•ื‘ื™ืฅ'.
17:27
of Howard Moskowitz:
376
1047908
1335
17:29
that in embracing the diversity of human beings,
377
1049267
3709
ื›ืืฉืจ ื ืืžืฅ ืœืœื‘ื ื• ืืช ื”ืžื’ื•ื•ืŸ ืฉื”ื•ื ื”ืžื™ืŸ ื”ืื ื•ืฉื™,
17:33
we will find a surer way to true happiness.
378
1053000
2365
ืื ื—ื ื• ื ืžืฆื ื“ืจืš ื‘ื˜ื•ื—ื” ื™ื•ืชืจ ืœืื•ืฉืจ ืืžื™ืชื™.
17:35
Thank you.
379
1055769
1017
17:36
(Applause)
380
1056810
1166
ืชื•ื“ื” ืจื‘ื”.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7