Ben Goldacre: Battling Bad Science

793,016 views ใƒป 2011-09-30

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Sigal Tifferet ืžื‘ืงืจ: Ido Dekkers
00:15
So I'm a doctor, but I kind of slipped sideways into research,
0
15402
3064
ืื ื™ ืจื•ืคื, ืื‘ืœ ืื™ืš ืฉื”ื•ื ื’ืœืฉืชื™ ืœืžื—ืงืจ,
00:18
and now I'm an epidemiologist.
1
18490
1698
ื•ืขื›ืฉื™ื• ืื ื™ ืืคื™ื“ืžื™ื•ืœื•ื’.
00:20
And nobody really knows what epidemiology is.
2
20212
2144
ื•ืืฃ ืื—ื“ ืœื ื™ื•ื“ืข ืžื” ื–ื” ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื”.
00:22
Epidemiology is the science of how we know in the real world
3
22380
3153
ืืคื™ื“ืžื™ื•ืœื•ื’ื™ื” ื”ื™ื ื”ืžื“ืข ืฉืœ ืื™ืš ื™ื•ื“ืขื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™
00:25
if something is good for you or bad for you.
4
25557
2110
ืื ืžืฉื”ื• ื˜ื•ื‘ ืื• ืจืข ืขื‘ื•ืจื›ื.
00:27
And it's best understood through example
5
27691
1960
ื•ื”ื›ื™ ืงืœ ืœื”ื‘ื™ืŸ ืื•ืชื•
00:29
as the science of those crazy, wacky newspaper headlines.
6
29675
4651
ื‘ืชื•ืจ ื”ืžื“ืข ืฉืœ ื”ื›ื•ืชืจื•ืช ื”ืžื•ื–ืจื•ืช ื‘ืขื™ืชื•ืŸ.
00:34
And these are just some of the examples.
7
34350
2333
ื•ื”ื ื” ืจืง ื›ืžื” ื“ื•ื’ืžืื•ืช.
00:36
These are from the Daily Mail.
8
36707
1450
ืืœื” ื›ื•ืœืŸ ืžื”ื“ื™ื™ืœื™ ืžื™ื™ืœ. ืœื›ืœ ืžื“ื™ื ื” ื™ืฉ ืขื™ืชื•ืŸ ื›ื–ื”.
00:38
Every country in the world has a newspaper like this.
9
38181
2519
ื™ืฉ ืœื”ื ืคืจื•ื™ื™ืงื˜ ืžื•ื–ืจ ื•ืžืชืžืฉืš
00:40
It has this bizarre, ongoing philosophical project
10
40724
2350
ื‘ื• ื”ื ืžื—ืœืงื™ื ืืช ื›ืœ ื”ื—ืคืฆื™ื ื‘ืขื•ืœื
00:43
of dividing all the inanimate objects in the world
11
43098
2355
ืœื›ืืœื” ืฉื’ื•ืจืžื™ื ืกืจื˜ืŸ ืื• ืžื•ื ืขื™ื ืื•ืชื•.
00:45
into the ones that either cause or prevent cancer.
12
45477
2353
00:47
Here are some of the things they said cause cancer:
13
47854
2508
ืื– ื”ื ื” ื›ืžื” ืžื”ื“ื‘ืจื™ื ืฉืœื˜ืขื ืชื ื’ื•ืจืžื™ื ืœืกืจื˜ืŸ:
ื’ื™ืจื•ืฉื™ืŸ, Wi-Fi, ืงื•ืกืžื˜ื™ืงื” ื•ืงืคื”.
00:50
divorce, Wi-Fi, toiletries and coffee.
14
50386
1981
ื•ืืœื” ืœื˜ืขื ืชื ืžื•ื ืขื™ื ืกืจื˜ืŸ:
00:52
Some things they say prevent cancer:
15
52391
1764
ืคืœืคืœ ืื“ื•ื, ืœื™ืงืจื™ืฅ, ืงืคื” ื•ื”ืงืฉื” ืฉืœ ื”ืœื—ื.
00:54
crusts, red pepper, licorice and coffee.
16
54179
1922
ืื– ื›ื‘ืจ ืืคืฉืจ ืœืจืื•ืช ื›ืžื” ืกืชื™ืจื•ืช.
00:56
So you can see there are contradictions.
17
56125
1906
ืงืคื” ื’ื ื’ื•ืจื ื•ื’ื ืžื•ื ืข ืกืจื˜ืŸ.
00:58
Coffee both causes and prevents cancer.
18
58055
2000
ื•ื›ืฉืชืงืจืื• ืชืจืื• ืฉืื•ืœื™
01:00
As you start to read on, you can see
19
60079
1724
01:01
that maybe there's some political valence behind some of this.
20
61827
2939
ื™ืฉ ืœื›ืš ืžื™ืŸ ืจืงืข ืคื•ืœื™ื˜ื™.
01:04
For women, housework prevents breast cancer,
21
64790
2061
ื›ื™ ืœื ืฉื™ื, ืขื‘ื•ื“ื•ืช ื‘ื™ืช ืžื•ื ืขื•ืช ืกืจื˜ืŸ,
01:06
but for men, shopping could make you impotent.
22
66875
3045
ืื‘ืœ ืœื’ื‘ืจื™ื, ืงื ื™ื•ืช ื™ื›ื•ืœื•ืช ืœื’ืจื•ื ืœืื™ืžืคื•ื˜ื ืฆื™ื”.
01:09
(Laughter)
23
69944
1009
ืื– ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉืฆืจื™ืš ืœื”ืชื—ื™ืœ
01:10
So we know that we need to start unpicking the science behind this.
24
70977
4504
ืœื”ืชื™ืจ ืืช ื”ืžื“ืข ืฉืžืื—ื•ืจื™ ื–ื”.
01:15
And what I hope to show is that unpicking the evidence behind dodgy claims
25
75505
5533
ื•ืžื” ืฉืื ื™ ืžืงื•ื•ื” ืœื”ืจืื•ืช
ื”ื•ื ืฉื”ืชืจื” ืฉืœ ื˜ืขื ื•ืช ื‘ืขื™ืชื™ื•ืช
ื”ืชืจื” ืฉืœ ื”ืจืื™ื•ืช ื”ืขื•ืžื“ื•ืช ืžืื—ื•ืจื™ ื”ื˜ืขื ื•ืช ื”ื‘ืขื™ืชื™ื•ืช,
01:21
isn't a kind of nasty, carping activity;
26
81062
3720
ื”ื™ื ืœื ืคืขื™ืœื•ืช ืงื ื˜ืจื ื™ืช,
01:24
it's socially useful.
27
84806
1361
ืืœื ื‘ืขืœืช ืขืจืš ื—ื‘ืจืชื™ ืฉื™ืžื•ืฉื™,
01:26
But it's also an extremely valuable explanatory tool,
28
86191
4558
ืื‘ืœ ื’ื ื‘ืขืœืช ืขืจืš ืจื‘
ื›ื›ืœื™ ืžืกื‘ื™ืจ.
01:30
because real science is about critically appraising the evidence
29
90773
3035
ื›ื™ ืžื“ืข ืืžื™ืชื™ ืขื•ืกืง
ื‘ื”ืขืจื›ื” ื‘ื™ืงื•ืจืชื™ืช ืฉืœ ื”ื”ื•ื›ื—ื•ืช ืœื˜ืขื ืชื• ืฉืœ ืื“ื ืื—ืจ.
01:33
for somebody else's position.
30
93832
1393
ื–ื” ืžื” ืฉืงื•ืจื” ื‘ื›ืชื‘ื™ ืขืช ืืงื“ืžื™ื™ื.
01:35
That's what happens in academic journals,
31
95249
1959
ื–ื” ืžื” ืฉืงื•ืจื” ื‘ื›ื ืกื™ื ืืงื“ืžื™ื™ื.
01:37
it's what happens at academic conferences --
32
97232
2064
ื–ืžืŸ ื”ืฉืืœื•ืช ืื—ืจื™ ืฉืžื™ืฉื”ื• ืžืฆื™ื’ ื ืชื•ื ื™ื,
01:39
the Q&A session after a postdoc presents data is often a bloodbath.
33
99320
3309
ื“ื•ืžื” ืœืžืจื—ืฅ ื“ืžื™ื.
01:42
And nobody minds that; we actively welcome it.
34
102653
2158
ื•ืœืืฃ ืื—ื“ ืœื ืื›ืคืช. ืื ื—ื ื• ืžื‘ืจื›ื™ื ืขืœ ื–ื”.
01:44
It's like a consenting intellectual S&M activity.
35
104835
3038
ื–ื” ื›ืžื• ืคืขื™ืœื•ืช ืกืื“ื•-ืžืื–ื• ืื™ื ื˜ืœืงื˜ื•ืืœื™ืช ืžืชื•ืš ื‘ื—ื™ืจื”.
01:47
(Laughter)
36
107897
1155
ืื– ืžื” ืฉืื ื™ ืืจืื” ืœื›ื
01:49
So what I'm going to show you is all of the main things,
37
109076
2994
ื–ื” ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืขื™ืงืจื™ื™ื,
ื›ืœ ื”ืžืืคื™ื™ื ื™ื ื”ืžืจื›ื–ื™ื™ื ืฉืœ ื”ืชื—ื•ื ืฉืœื™ -
01:52
all of the main features of my discipline, evidence-based medicine.
38
112094
3190
ืจืคื•ืื” ืžื‘ื•ืกืกืช ืจืื™ื•ืช.
01:55
And I will talk you through all of these and demonstrate how they work,
39
115308
3883
ื•ืื ื™ ืืขื‘ื•ืจ ืื™ืชื›ื ืขืœื™ื”ื
ื•ืื“ื’ื™ื ืœื›ื ืื™ืš ื”ื ืคื•ืขืœื™ื,
01:59
exclusively using examples of people getting stuff wrong.
40
119215
3342
ื‘ืขื–ืจืช ื“ื•ื’ืžืื•ืช ื‘ื”ืŸ ืื ืฉื™ื ื˜ื•ืขื™ื.
02:02
We'll start with the absolute weakest form of evidence known to man,
41
122581
3754
ืื– ื ืชื—ื™ืœ ืขื ื”ื”ื•ื›ื—ื” ื”ื—ืœืฉื” ื‘ื™ื•ืชืจ,
ื•ื–ืืช ื”ืกืžื›ื•ืช.
02:06
and that is authority.
42
126359
1626
ื‘ืžื“ืข ืœื ืื›ืคืช ืœื ื• ื›ืžื” ืชืืจื™ื ื™ืฉ ืœื›ื.
02:08
In science, we don't care how many letters you have after your name --
43
128009
3440
ื‘ืžื“ืข ืื ื—ื ื• ืจื•ืฆื™ื ืœื“ืขืช ืœืžื” ืืชื ืžืืžื™ื ื™ื ื‘ืžืฉื”ื•.
02:11
we want to know what your reasons are for believing something.
44
131473
3012
ืื™ืš ืืชื ื™ื•ื“ืขื™ื ืฉืžืฉื”ื• ื˜ื•ื‘ ืขื‘ื•ืจื ื•
02:14
How do you know that something is good for us or bad for us?
45
134509
2996
ืื• ืจืข ืขื‘ื•ืจื ื•?
02:17
But we're also unimpressed by authority because it's so easy to contrive.
46
137529
4181
ืื‘ืœ ืื ื—ื ื• ืœื ืžืชืจืฉืžื™ื ืžืกืžื›ื•ืช,
ื›ื™ ื›"ื› ืงืœ ืœื–ื™ื™ืฃ ืื•ืชื”.
02:21
This is somebody called Dr. Gillian McKeith, PhD,
47
141734
2382
ื”ื ื” ืžื™ืฉื”ื™ ืฉื ืงืจืืช ื“"ืจ ื’'ื™ืœื™ืืŸ ืžืง'ืงื™ืช Ph.D (ื“ื•ืงื˜ื•ืจื˜)
ืื• ื‘ืชื•ืืจื” ื”ืจืคื•ืื™ ื”ืžืœื: ื’ื™'ืœื™ืืŸ ืžืง'ืงื™ืช.
02:24
or, to give her full medical title, Gillian McKeith.
48
144140
3169
(ืฆื—ื•ืง)
02:27
(Laughter)
49
147333
2660
ื‘ื›ืœ ืžื“ื™ื ื” ื™ืฉ ืžื™ืฉื”ื• ื›ืžื•ื”.
02:30
Again, every country has somebody like this.
50
150017
2156
ื”ื™ื ื’ื•ืจื• ื”ื“ื™ืื˜ื•ืช ืืฆืœื ื• ื‘ื˜ืœื•ื•ื™ื–ื™ื”.
02:32
She is our TV diet guru.
51
152197
1644
02:33
She has five series of prime-time television,
52
153865
2907
ื™ืฉ ืœื” ื—ืžืฉ ืกื“ืจื•ืช ื‘ืคืจื™ื™ื-ื˜ื™ื™ื ื‘ื˜ืœื•ื•ื™ื–ื™ื”,
02:36
giving out very lavish and exotic health advice.
53
156796
2318
ื‘ื”ืŸ ื”ื™ื ื ื•ืชื ืช ืขืฆื•ืช ืจืคื•ืื™ื•ืช ืืงื–ื•ื˜ื™ื•ืช ื•ืฉื•ืคืขื•ืช.
02:39
She, it turns out, has a non-accredited correspondence course PhD
54
159138
3855
ืžืชื‘ืจืจ ืฉืืช ืชื•ืืจ ื” Ph.D ื”ื™ื ืงื™ื‘ืœื” ืžืงื•ืจืก ื‘ื”ืชื›ืชื‘ื•ืช
ืฉืขืฉืชื” ื‘ืžื›ืœืœื” ืœืœื ื”ื›ืจื” ืคื•ืจืžืœื™ืช ื‘ืืจื”"ื‘.
02:43
from somewhere in America.
55
163017
1280
02:44
She also boasts that she's a certified professional member
56
164321
2765
ื”ื™ื ื’ื ืžืชืคืืจืช ื‘ื›ืš ืฉื”ื™ื ื—ื‘ืจื” ืจืฉื•ืžื”
ื‘ืื™ื’ื•ื“ ื”ืืžืจื™ืงืื™ ืฉืœ ื™ื•ืขืฆื™ื ืชื–ื•ื ืชื™ื™ื,
02:47
of the American Association of Nutritional Consultants,
57
167110
2592
ืฉื ืฉืžืข ืžืจื’ืฉ ื•ื–ื•ื”ืจ.
02:49
which sounds very glamorous; you get a certificate.
58
169726
2399
ืžืงื‘ืœื™ื ืชืขื•ื“ื” ื•ื”ื›ืœ.
02:52
This one belongs to my dead cat, Hettie. She was a horrible cat.
59
172149
3017
ื”ืชืขื•ื“ื” ื”ื–ื• ืฉื™ื™ื›ืช ืœื—ืชื•ืœื” ืฉืœื™ ื”ื˜ื™, ื–"ืœ. ื”ื™ื ื”ื™ืชื” ื—ืชื•ืœื” ื ื•ืจืื™ืช.
ืจืง ืฆืจื™ืš ืœื”ื™ื›ื ืก ืœืืชืจ, ืœืžืœื ื˜ื•ืคืก,
02:55
You go to the website, fill out the form,
60
175190
1964
ืœืฉืœื 60$, ื•ื”ื™ื ืžื’ื™ืขื” ื‘ื“ื•ืืจ.
02:57
give them $60, it arrives in the post.
61
177178
1821
ืขื›ืฉื™ื•, ื–ื• ืœื ื”ืกื™ื‘ื” ื”ื™ื—ื™ื“ื” ืฉื‘ื’ืœืœื” ืื ื™ ื—ื•ืฉื‘ ืฉื”ื™ื ืื™ื“ื™ื•ื˜ื™ืช.
02:59
That's not the only reason we think this person is an idiot.
62
179023
2833
ื”ื™ื ื’ื ืื•ืžืจืช ื“ื‘ืจื™ื ื›ืžื•
03:01
She also says things like eat lots of dark green leaves,
63
181880
2649
ืืชื ืฆืจื™ื›ื™ื ืœืื›ื•ืœ ื”ืจื‘ื” ืขืœื™ื ื™ืจื•ืงื™ื ื›ื”ื™ื,
03:04
they contain chlorophyll and really oxygenate your blood.
64
184553
2857
ื›ื™ ื™ืฉ ื‘ื”ื ื”ืจื‘ื” ื›ืœื•ืจื•ืคื™ืœ ืฉื™ื—ืžืฆืŸ ืืช ื”ื“ื ืฉืœื›ื.
ื•ื›ืœ ืžื™ ืฉืœืžื“ ืงืฆืช ื‘ื™ื•ืœื•ื’ื™ื” ื‘ื‘ื™"ืก ื–ื•ื›ืจ
03:07
And anybody who's done school biology remembers
65
187434
2199
ืฉื›ืœื•ืจื•ืคื™ืœ ื•ื›ืœื•ืจื•ืคืœืกื˜ื™ื
03:09
that chlorophyll and chloroplasts only make oxygen in sunlight,
66
189657
3212
ื™ื›ื•ืœื™ื ืœื™ื™ืฆืจ ื—ืžืฆืŸ ืจืง ื‘ืื•ืจ,
03:12
and it's quite dark in your bowels after you've eaten spinach.
67
192893
3130
ื•ื“ื™ ื—ืฉื•ืš ื‘ืžืขื™ื™ื ืฉืœื›ื ืื—ืจื™ ืฉืื›ืœืชื ืชืจื“.
ื”ืœืื”. ืื ื—ื ื• ื–ืงื•ืงื™ื ืœืžื“ืข ื˜ื•ื‘, ื”ื•ื›ื—ื•ืช ื˜ื•ื‘ื•ืช.
03:16
Next, we need proper science, proper evidence.
68
196047
2499
03:18
So: "Red wine can help prevent breast cancer."
69
198570
2442
ืื– "ื™ื™ืŸ ืื“ื•ื ื™ื›ื•ืœ ืœืกื™ื™ืข ื‘ืžื ื™ืขืช ืกืจื˜ืŸ ื”ืฉื“."
ื–ื•ื”ื™ ื›ื•ืชืจืช ืžื”ื“ื™ื™ืœื™ ื˜ืœื’ืจืฃ ื”ื‘ืจื™ื˜ื™,
03:21
This is a headline from The Daily Telegraph in the UK.
70
201036
2563
"ื›ื•ืก ื™ื™ืŸ ืื“ื•ื ื‘ื™ื•ื ื™ื›ื•ืœื” ืœืกื™ื™ืข ื‘ืžื ื™ืขืช ืกืจื˜ืŸ ื”ืฉื“."
03:23
"A glass of red wine a day could help prevent breast cancer."
71
203623
2918
ืื– ืืชื ืžื—ืคืฉื™ื ืืช ื”ืžืืžืจ ื•ืžื” ืฉืžื•ืฆืื™ื
03:26
So you find this paper, and find that it is a real piece of science.
72
206565
3236
ื–ื” ืฉื–ื” ืžื“ืข ืจืฆื™ื ื™.
03:29
It's a description of the changes in the behavior of one enzyme
73
209825
2997
ื–ื” ืชื™ืื•ืจ ืฉืœ ื”ืฉื™ื ื•ื™ื™ื ื‘ืื ื–ื™ื ืื—ื“
03:32
when you drip a chemical extracted from some red grape skin
74
212846
3169
ืฉืžืชืจื—ืฉื™ื ื›ืฉืฉืžื™ื ื›ื™ืžื™ืงืœ ืฉืžื•ืฆื” ืžืงืœื™ืคืช ืขื™ื ื‘ ืื“ื•ื
ืขืœ ืชืื™ื ืกืจื˜ื ื™ื™ื
03:36
onto some cancer cells
75
216039
1575
03:37
in a dish on a bench in a laboratory somewhere.
76
217638
3200
ื‘ืฆืœื—ืช, ืขืœ ืฉื•ืœื—ืŸ ืขื‘ื•ื“ื”, ื‘ืžืขื‘ื“ื” ื›ืœืฉื”ื™.
03:40
And that's a really useful thing to describe in a scientific paper.
77
220862
4092
ื•ื–ื” ืชื™ืื•ืจ ืžืื•ื“ ืฉื™ืžื•ืฉื™
ื‘ื›ืชื‘ ืขืช ืžื“ืขื™,
03:44
But on the question of your own personal risk of getting breast cancer
78
224978
3358
ืื‘ืœ ื–ื” ืœื ืื•ืžืจ ืœื›ื ื›ืœื•ื
ืขืœ ื”ืกื™ื›ื•ืŸ ื”ืื™ืฉื™ ืฉืœื›ื ืœืœืงื•ืช ื‘ืกืจื˜ืŸ ื”ืฉื“
03:48
if you drink red wine,
79
228360
1151
ืื ืชืฉืชื• ื™ื™ืŸ ืื“ื•ื.
03:49
it tells you absolutely bugger all.
80
229535
1681
ืœืžืขืฉื”, ืžืชื‘ืจืจ ืฉื”ืกื™ื›ื•ืŸ ืœืกืจื˜ืŸ ื”ืฉื“
03:51
Actually, it turns out that your risk of breast cancer
81
231240
2537
ืขื•ืœื” ืžืขื˜
03:53
increases slightly with every amount of alcohol you drink.
82
233801
2963
ืขื ื›ืœ ืžื ืช ืืœื›ื•ื”ื•ืœ ืฉืชืฉืชื•.
03:56
So what we want are studies in real human people.
83
236788
3848
ืื– ืื ื—ื ื• ืžื—ืคืฉื™ื ืžื—ืงืจื™ื ื‘ื‘ื ื™ ืื“ื ืืžื™ืชื™ื™ื.
04:00
And here's another example.
84
240660
1576
ื”ื ื” ืขื•ื“ ื“ื•ื’ืžื.
04:02
This is from Britain's "leading" diet nutritionist in the Daily Mirror,
85
242260
4161
ื”ื™ื ืžื’ื™ืขื” ืžื”ืชื–ื•ื ืื™ืช ื”ืžื•ื‘ื™ืœื” ืฉืœ ื‘ืจื™ื˜ื ื™ื” ื‘ื“ื™ื™ืœื™ ืžื™ืจื•ืจ,
ื”ืขื™ืชื•ืŸ ื”ืฉื ื™ ื‘ื’ื•ื“ืœื•.
04:06
our second-biggest selling newspaper.
86
246445
1774
"ืžื—ืงืจ ืื•ืกื˜ืจืœื™ ื‘2001
04:08
"An Australian study in 2001 found that olive oil,
87
248243
2358
ืžืฆื ืฉืฉืžืŸ ื–ื™ืช ื‘ืฉื™ืœื•ื‘ ืขื ืคื™ืจื•ืช ื•ื™ืจืงื•ืช
04:10
in combination with fruits, vegetables and pulses,
88
250625
2342
ืžื’ืŸ ื ื’ื“ ืงืžื˜ื™ื ื‘ืขื•ืจ."
04:12
offers measurable protection against skin wrinklings,"
89
252991
2548
ื•ื”ื ืžืฆื™ืขื™ื:
04:15
and give the advice:
90
255563
1151
ืื ืชืื›ืœื• ืฉืžืŸ ื–ื™ืช ื•ื™ืจืงื•ืช, ื™ื”ื™ื• ืœื›ื ืคื—ื•ืช ืงืžื˜ื™ื."
04:16
"If you eat olive oil and vegetables, you'll have fewer wrinkles."
91
256738
3130
ื•ื™ืืžืจ ืœื–ื›ื•ืชื ืฉื”ื ืžืคื ื™ื ืืชื›ื ืœืžืืžืจ.
04:19
They helpfully tell you how to find the paper,
92
259892
2158
ืื– ืืชื ืžื•ืฆืื™ื ืืช ื”ืžืืžืจ ื•ืžื’ืœื™ื ืฉื–ื” ืžื—ืงืจ ืชืฆืคื™ืชื™.
04:22
and what you find is an observational study.
93
262074
2087
ื‘ืจื•ืจ ืฉืืฃ ืื—ื“ ืœื
04:24
Obviously, nobody has been able to go back to 1930,
94
264185
2921
ื—ื–ืจ ื‘ื–ืžืŸ ืœ 1930,
ืืกืฃ ืืช ื›ืœ ืžื™ ืฉื ื•ืœื“ ื‘ื‘ื™ืช ื”ื™ื•ืœื“ื•ืช,
04:27
get all the people born in one maternity unit,
95
267130
2493
04:29
and half of them eat lots of fruit and veg and olive oil,
96
269647
2696
ื ืชืŸ ืœื—ืฆื™ ืœืื›ื•ืœ ื”ืจื‘ื” ื™ืจืงื•ืช, ืคื™ืจื•ืช ื•ืฉืžืŸ ื–ื™ืช,
ื•ืœื—ืฆื™ ื”ืฉื ื™ ื ืชืŸ ืœืื›ื•ืœ ืžืงื“ื•ื ืœื“ืก,
04:32
half of them eat McDonald's,
97
272367
1346
04:33
and then we see how many wrinkles you've got later.
98
273737
2403
ื•ืื– ืจืื” ื›ืžื” ืงืžื˜ื™ื ื”ื™ื• ืœื”ื ืื—"ื›.
ื—ื™ื™ื‘ื™ื ืœืฆืœื ืชืžื•ื ืช ืžืฆื‘ ืฉืœ ื”ืื ืฉื™ื ื”ื™ื•ื.
04:36
You have to take a snapshot of how people are now.
99
276164
2413
ื•ืžื” ืฉืžื•ืฆืื™ื, ื›ืžื•ื‘ืŸ,
04:38
And what you find is, of course:
100
278601
1564
ื–ื” ืฉื™ืฉ ืคื—ื•ืช ืงืžื˜ื™ื ืœืžื™ ืฉืื•ื›ืœ ื™ืจืงื•ืช ื•ืฉืžืŸ ื–ื™ืช.
04:40
people who eat veg and olive oil have fewer wrinkles.
101
280189
2501
04:42
But that's because people who eat fruit and veg and olive oil are freaks --
102
282714
3741
ืื‘ืœ ื–ื” ืžืฉื•ื ืฉืžื™ ืฉืื•ื›ืœ ื™ืจืงื•ืช, ืคื™ืจื•ืช ื•ืฉืžืŸ ื–ื™ืช,
ื”ื•ื ืคืจื™ืง, ืœื ื ื•ืจืžืœื™, ื”ื ื›ืžื•ื›ื,
04:46
they're not normal, they're like you; they come to events like this.
103
286479
3824
ื”ื ื‘ืื™ื ืœืืจื•ืขื™ื ื›ืืœื”.
04:50
(Laughter)
104
290327
1059
ื”ื ืขืฉื™ืจื™ื, ืื•ืคื ืชื™ื™ื, ืขื•ื‘ื“ื™ื ืคื—ื•ืช ื‘ื—ื•ืฅ,
04:51
They're posh, they're wealthy, less likely to have outdoor jobs,
105
291410
3019
ืขื•ื‘ื“ื™ื ืคื—ื•ืช ื‘ืขื‘ื•ื“ื•ืช ืคื™ื–ื™ื•ืช,
04:54
less likely to do manual labor,
106
294453
1516
04:55
they have better social support, are less likely to smoke;
107
295993
2740
ื™ืฉ ืœื”ื ืชืžื™ื›ื” ื—ื‘ืจืชื™ืช ื˜ื•ื‘ื” ื™ื•ืชืจ, ื”ื ืžืขืฉื ื™ื ืคื—ื•ืช -
ืื– ืžืžื’ื•ื•ืŸ ืขืฉื™ืจ ืฉืœ ืกื™ื‘ื•ืช ืžืจืชืงื•ืช, ื—ื‘ืจืชื™ื•ืช,
04:58
for a host of fascinating, interlocking
108
298757
1874
ืคื•ืœื™ื˜ื™ื•ืช, ืชืจื‘ื•ืชื™ื•ืช, ื”ืงืฉื•ืจื•ืช ื–ื• ืœื–ื•,
05:00
social, political and cultural reasons,
109
300655
1869
ื™ืฉ ืœื”ื ืคื—ื•ืช ืกื™ื›ื•ื™ ืœืงืžื˜ื™ื ื‘ืขื•ืจ.
05:02
they're less likely to have wrinkles.
110
302548
1772
ื–ื” ืœื ืื•ืžืจ ืฉื–ื” ื‘ื’ืœืœ ื”ื™ืจืงื•ืช ืื• ืฉืžืŸ ื”ื–ื™ืช.
05:04
That doesn't mean it's the vegetables or olive oil.
111
304344
2402
(ืฆื—ื•ืง)
05:06
(Laughter)
112
306770
1246
ืื– ืื™ื“ื™ืืœื™ืช, ื”ื™ื™ื ื• ืจื•ืฆื™ื ืœืขืจื•ืš ื ื™ืกื•ื™.
05:08
So ideally, what you want to do is a trial.
113
308040
2493
05:10
People think they're familiar with the idea of a trial.
114
310557
2580
ื•ื›ื•ืœื ื—ื•ืฉื‘ื™ื ืฉื”ื ืžื›ื™ืจื™ื ื”ื™ื˜ื‘ ืืช ื”ื ื™ืกื•ื™.
ื ื™ืกื•ื™ื™ื ื”ื ืžืื•ื“ ื•ืชื™ืงื™ื. ื”ื ื™ืกื•ื™ ื”ืจืืฉื•ืŸ ื”ื™ื” ื‘ืชื "ืš, ื“ื ื™ืืœ ื', ื™"ื‘.
05:13
Trials are old; the first one was in the Bible, Daniel 1:12.
115
313161
2816
ืคืฉื•ื˜ ืžืื•ื“ - ืงื—ื• ื—ื‘ื•ืจื” ืฉืœ ืื ืฉื™ื, ื—ืœืงื• ืื•ืชื ืœืฉื ื™ื™ื,
05:16
It's straightforward: take a bunch of people, split them in half,
116
316001
3075
ืชืชื™ื™ื—ืกื• ืœื›ืœ ืงื‘ื•ืฆื” ืื—ืจืช,
05:19
treat one group one way, the other group, the other way.
117
319100
2626
ืชืขืงื‘ื• ืื—ืจื™ื”ื
05:21
A while later, you see what happened to each of them.
118
321750
2523
ื•ืชืจืื• ืžื” ืงื•ืจื” ืœื›ืœ ืงื‘ื•ืฆื”.
ืื– ืื ื™ ืืกืคืจ ืœื›ื ืขืœ ื ื™ืกื•ื™ ืื—ื“,
05:24
I'm going to tell you about one trial,
119
324297
1834
ืื•ืœื™ ื”ื ื™ืกื•ื™ ื”ื›ื™ ืžืคื•ืจืกื
05:26
which is probably the most well-reported trial
120
326155
2166
ื‘ืชืงืฉื•ืจืช ื‘ื‘ืจื™ื˜ื ื™ื” ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ.
05:28
in the UK news media over the past decade.
121
328345
2005
ื•ื–ื” ื”ื ื™ืกื•ื™ ืฉืœ ื›ืžื•ืกื•ืช ืฉืžืŸ ื“ื’ื™ื.
05:30
This is the trial of fish oil pills.
122
330374
1736
ืฉื˜ืขืŸ ืฉืฉืžืŸ ื“ื’ื™ื ืžืฉืคืจ ื‘ื™ืฆื•ืขื™ื ื‘ื‘ื™ื”"ืก ื•ื”ืชื ื”ื’ื•ืช
05:32
The claim: fish oil pills improve school performance and behavior
123
332134
3153
ื‘ื™ืœื“ื™ื ืจื’ื™ืœื™ื.
05:35
in mainstream children.
124
335311
1151
ื•ื”ื ืืžืจื• "ืขืจื›ื ื• ื ื™ืกื•ื™.
05:36
They said, "We did a trial.
125
336486
1294
05:37
All the previous ones were positive, this one will be too."
126
337804
2772
ื›ืœ ื”ื ื™ืกื•ื™ื™ื ื”ืงื•ื“ืžื™ื ื”ืฆืœื™ื—ื•, ื•ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื’ื ื–ื” ื™ืฆืœื™ื—."
ื–ื” ืฆืจื™ืš ืœื”ืคืขื™ืœ ืคืขืžื•ืŸ ืื–ื”ืจื”.
05:40
That should ring alarm bells:
127
340600
1382
ื›ื™ ืื ืืชื” ื›ื‘ืจ ื™ื•ื“ืข ืžื” ืชื”ื™ื” ืชื•ืฆืืช ื”ื ื™ืกื•ื™, ืืชื” ืœื ืฆืจื™ืš ืœืขืจื•ืš ืื•ืชื•.
05:42
if you know the answer to your trial, you shouldn't be doing one.
128
342006
3060
ืื• ืฉืชื—ืžื ืช ื‘ืชื›ื ื•ืŸ ื”ืžื—ืงืจ,
05:45
Either you've rigged it by design,
129
345090
1628
05:46
or you've got enough data so there's no need to randomize people anymore.
130
346742
3437
ืื• ืฉื™ืฉ ืœืš ืžืกืคื™ืง ืžื™ื“ืข ื•ืืชื” ืœื ืฆืจื™ืš ืœื”ืงืฆื•ืช ื™ื•ืชืจ ืื ืฉื™ื.
ืื– ื–ื” ืžื” ืฉื”ื ืขืžื“ื• ืœืขืฉื•ืช ื‘ื ื™ืกื•ื™ ืฉืœื”ื.
05:50
So this is what they were going to do in their trial:
131
350203
2501
05:52
They were taking 3,000 children,
132
352728
2077
ื”ื ืœืงื—ื• 3,000 ื™ืœื“ื™ื,
05:54
they were going to give them these huge fish oil pills, six of them a day,
133
354829
3654
ื”ืชื›ื•ื•ื ื• ืœืชืช ืœื”ื ื›ืžื•ืกื•ืช ืฉืžืŸ ื“ื’ื™ื ืขื ืงื™ื•ืช,
6 ื›ืžื•ืกื•ืช ื‘ื™ื•ื,
05:58
and then, a year later, measure their school exam performance
134
358507
3113
ื•ืฉื ื” ืœืื—ืจ ืžื›ืŸ ืจืฆื• ืœืžื“ื•ื“ ืืช ื”ื”ืฆืœื—ื” ืฉืœื”ื ื‘ืžื‘ื—ืŸ
06:01
and compare their performance
135
361644
1774
ื•ืœื”ืฉื•ื•ืช ืืช ื”ืฆื™ื•ืŸ ืฉืœื”ื
06:03
against what they predicted their exam performance would have been
136
363442
3156
ืœืขื•ืžืช ืžื” ืฉื”ื ื ื™ื‘ืื• ืฉื”ืฆื™ื•ืŸ ื™ื”ื™ื”
ืื™ืœื•ืœื ืœืงื—ื• ืืช ื”ื›ืžื•ืกื•ืช.
06:06
if they hadn't had the pills.
137
366622
2076
06:08
Now, can anybody spot a flaw in this design?
138
368722
2807
ืžื™ืฉื”ื• ืจื•ืื” ื›ืืŸ ืื™ื–ื• ืฉื”ื™ื ื‘ืขื™ื”?
06:11
(Laughter)
139
371553
1015
ืœืคืจื•ืคืกื•ืจื™ื ืœืฉื™ื˜ื•ืช ืžื—ืงืจ ืงืœื™ื ื™ื•ืช
06:12
And no professors of clinical trial methodology
140
372592
2243
06:14
are allowed to answer this question.
141
374859
1726
ืืกื•ืจ ืœืขื ื•ืช.
06:16
So there's no control group.
142
376609
2001
ืื– ืื™ืŸ ื›ืืŸ ืงื‘ื•ืฆืช ื‘ื™ืงื•ืจืช.
06:18
But that sounds really techie, right? That's a technical term.
143
378634
3335
ื•ื–ื” ื ืฉืžืข ืžืื•ื“ ื˜ื›ื ื™,
ื–ื” ืžื•ืฉื’ ื˜ื›ื ื™.
06:21
The kids got the pills, and their performance improved.
144
381993
2633
ื”ื™ืœื“ื™ื ืงื™ื‘ืœื• ื›ืžื•ืกื•ืช ื•ื”ื‘ื™ืฆื•ืขื™ื ืฉืœื”ื ื”ืฉืชืคืจื•.
06:24
What else could it possibly be if it wasn't the pills?
145
384650
2673
ืžื” ืขื•ื“ ื™ื›ื•ืœ ืœื’ืจื•ื ืœื›ืš ืคืจื˜ ืœื›ืžื•ืกื•ืช?
ื”ื ื”ืชื‘ื’ืจื•. ื›ื•ืœื ื• ืžืชืคืชื—ื™ื ื›ืœ ื”ื–ืžืŸ.
06:28
They got older; we all develop over time.
146
388128
2273
06:30
And of course, there's the placebo effect,
147
390425
2165
ื•ื›ืžื•ื‘ืŸ, ื™ืฉ ื’ื ืืคืงื˜ ืคืœืฆื‘ื•.
06:32
one of the most fascinating things in the whole of medicine.
148
392614
2838
ืืคืงื˜ ื”ืคืœืฆื‘ื• ื”ื•ื ืื—ื“ ื”ื“ื‘ืจื™ื ื”ืžืจืชืงื™ื ื‘ืจืคื•ืื”.
ื–ื” ืœื ืจืง ืฉื›ื“ื•ืจ ื™ื›ื•ืœ ืœืฉืคืจ ื‘ื™ืฆื•ืขื™ื ื•ืœื”ืคื—ื™ืช ื›ืื‘.
06:35
It's not just taking a pill and performance or pain improving;
149
395476
2913
ื–ื” ืงืฉื•ืจ ืœืืžื•ื ื•ืช ืฉืœื ื• ื•ืœืฆื™ืคื™ื•ืช ืฉืœื ื•.
06:38
it's about our beliefs and expectations, the cultural meaning of a treatment.
150
398413
3663
ื–ื” ืงืฉื•ืจ ืœืžืฉืžืขื•ืช ื”ืชืจื‘ื•ืชื™ืช ืฉื™ืฉ ืœื˜ื™ืคื•ืœ.
ื•ื–ื” ื”ื•ื“ื’ื ื‘ืžื’ื•ื•ืŸ ืžื—ืงืจื™ื ืžืจืชืงื™ื
06:42
And this has been demonstrated in a whole raft of fascinating studies
151
402100
3270
ื”ืžืฉื•ื•ื™ื ื‘ื™ืŸ ืกื•ื’ื™ ืคืœืฆื‘ื• ืฉื•ื ื™ื.
06:45
comparing one kind of placebo against another.
152
405394
2217
06:47
So we know, for example,
153
407635
1158
ืื– ืื ื—ื ื• ื™ื•ื“ืขื™ื, ืœืžืฉืœ, ืฉืฉื ื™ ื›ื“ื•ืจื™ ืกื•ื›ืจ ื‘ื™ื•ื
06:48
that two sugar pills a day are a more effective treatment
154
408817
2713
ืืคืงื˜ื™ื‘ื™ื™ื ื™ื•ืชืจ ืœื—ื™ืกื•ืœ ืื•ืœืงื•ืก
06:51
for gastric ulcers
155
411554
1219
ืžืืฉืจ ื›ื“ื•ืจ ืกื•ื›ืจ ืื—ื“.
06:52
than one sugar pill.
156
412797
1240
ืฉื ื™ ื›ื“ื•ืจื™ ืกื•ื›ืจ ื‘ื™ื•ื ืขื“ื™ืคื™ื ืขืœ ื›ื“ื•ืจ ืื—ื“.
06:54
Two sugar pills a day beats one a day.
157
414061
1961
ื•ื–ื” ืžืžืฆื ืžื’ื•ื—ืš, ืื‘ืœ ื ื›ื•ืŸ.
06:56
That's an outrageous and ridiculous finding, but it's true.
158
416046
2775
06:58
We know from three different studies on three different types of pain
159
418845
3297
ืž3 ืžื—ืงืจื™ื ืขืœ 3 ืกื•ื’ื™ ื›ืื‘ ืขื•ืœื”
ืฉื”ื–ืจืงืช ืžื™ ืžืœื— ืžืคื—ื™ืชื” ื›ืื‘
07:02
that a saltwater injection is a more effective treatment
160
422166
2645
ื™ื•ืชืจ ืžืืฉืจ ื›ื“ื•ืจ ืกื•ื›ืจ, ื›ื“ื•ืจ ืกืจืง ืœืœื ืชืจื•ืคื”,
07:04
than a sugar pill, a dummy pill with no medicine in it,
161
424835
2605
07:07
not because the injection or pills do anything physically to the body,
162
427464
3344
ืœื ืžืฉื•ื ืฉื”ื–ืจื™ืงื” ืื• ื”ื›ื“ื•ืจ ืขื•ืฉื™ื ืžืฉื”ื• ืคื™ื–ื™ ืœื’ื•ืฃ,
07:10
but because an injection feels like a much more dramatic intervention.
163
430832
3356
ืืœื ืžืฉื•ื ืฉื”ื–ืจื™ืงื” ื ืชืคืกืช ื›ื˜ื™ืคื•ืœ ื™ื•ืชืจ ื“ืจืžื˜ื™.
ืื– ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื”ืืžื•ื ื•ืช ื•ื”ืฆื™ืคื™ื•ืช ืฉืœื ื•
07:14
So we know that our beliefs and expectations can be manipulated,
164
434212
3062
ื ื™ืชื ื•ืช ืœืžื ื™ืคื•ืœืฆื™ื”,
07:17
which is why we do trials where we control against a placebo,
165
437298
4048
ื•ืœื›ืŸ ืื ื—ื ื• ืขื•ืจื›ื™ื ื ื™ืกื•ื™ื™ื
ื‘ื”ื ืžืฉื•ื•ื™ื ืืช ื”ื˜ื™ืคื•ืœ ืœืคืœืฆื‘ื•,
07:21
where one half of the people get the real treatment,
166
441370
2538
ื‘ื”ื ื—ืฆื™ ืžืงื‘ืœื™ื ืืช ื”ื˜ื™ืคื•ืœ ื”ืืžื™ืชื™
07:23
and the other half get placebo.
167
443932
1677
ื•ื—ืฆื™ ืžืงื‘ืœื™ื ืคืœืฆื‘ื•.
07:25
But that's not enough.
168
445633
1849
ืื‘ืœ ื–ื” ืœื ืžืกืคื™ืง.
07:28
What I've just shown you are examples
169
448496
1776
ื”ืจืื™ืชื™ ืœื›ื ืืช ื”ื“ืจื›ื™ื ื”ืคืฉื•ื˜ื•ืช
07:30
of the very simple and straightforward ways
170
450296
2172
ื“ืจื›ืŸ ื™ื›ื•ืœื™ื ืขื™ืชื•ื ืื™ื, ืžื•ื›ืจื™ ืชื•ืกืคื™ ืžื–ื•ืŸ
07:32
that journalists and food supplement pill peddlers and naturopaths
171
452492
3263
ื•ื ืชื•ืจื•ืคื˜ื™ื
07:35
can distort evidence for their own purposes.
172
455779
2457
ืœืขื•ื•ืช ืืช ื”ื ืชื•ื ื™ื ืœืžื˜ืจืชื.
07:38
What I find really fascinating
173
458260
2180
ืžื” ืฉืžืจืชืง ื‘ืขื™ื ื™
07:40
is that the pharmaceutical industry uses exactly the same kinds
174
460464
3157
ื–ื” ืฉืชืขืฉื™ื™ืช ื”ืชืจื•ืคื•ืช
ืžืฉืชืžืฉืช ื‘ื“ื™ื•ืง ื‘ืื•ืชื ื˜ืจื™ืงื™ื,
07:43
of tricks and devices,
175
463645
1528
ืื‘ืœ ื‘ื’ืจืกืื•ืช ืžืขื˜ ื™ื•ืชืจ ืžืชื•ื—ื›ืžื•ืช,
07:45
but slightly more sophisticated versions of them,
176
465197
2767
07:47
in order to distort the evidence they give to doctors and patients,
177
467988
3178
ืขืœ ืžื ืช ืœืขื•ื•ืช ืืช ื”ื ืชื•ื ื™ื ืฉื”ื ื ื•ืชื ื™ื ืœืจื•ืคืื™ื ื•ืœืคืฆื™ื™ื ื˜ื™ื,
ื‘ื”ื ืื ื• ืžืฉืชืžืฉื™ื ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช.
07:51
and which we use to make vitally important decisions.
178
471190
2562
07:53
So firstly, trials against placebo:
179
473776
2533
ืื– ืจืืฉื™ืช, ื ื™ืกื•ื™ ืžื•ืœ ืคืœืฆื‘ื•:
ื›ื•ืœื ื—ื•ืฉื‘ื™ื ืฉื‘ื ื™ืกื•ื™ ืฆืจื™ืš
07:56
everybody thinks a trial should be a comparison
180
476333
2372
ืœื”ืฉื•ื•ืช ืืช ื”ืชืจื•ืคื” ื”ื—ื“ืฉื” ืœืขื•ืžืช ืคืœืฆื‘ื•.
07:58
of your new drug against placebo.
181
478729
1595
ืื‘ืœ ืœืžืขืฉื”, ื‘ื”ืจื‘ื” ืžืฆื‘ื™ื ื–ื• ืฉื’ื™ืื”.
08:00
But in a lot of situations that's wrong;
182
480348
1920
ื›ื™ ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื™ืฉ ืœื ื• ื›ื‘ืจ ื˜ื™ืคื•ืœ ื˜ื•ื‘ ื–ืžื™ืŸ,
08:02
often, we already have a good treatment currently available.
183
482292
2898
ืื– ืื ื—ื ื• ืœื ืจื•ืฆื™ื ืœื“ืขืช ืฉื”ืชืจื•ืคื” ื”ื—ื“ืฉื” ืฉืœื›ื
08:05
So we don't want to know that your alternative new treatment
184
485214
2833
ื˜ื•ื‘ื” ื™ื•ืชืจ ืžื›ืœื•ื.
08:08
is better than nothing,
185
488071
1151
ืื ื—ื ื• ืจื•ืฆื™ื ืœื“ืขืช ืฉื”ื™ื ื˜ื•ื‘ื” ื™ื•ืชืจ ืžื”ื˜ื™ืคื•ืœ ื”ื›ื™ ื˜ื•ื‘ ืฉื™ืฉ ื›ื™ื•ื.
08:09
but that it's better than the best available treatment we have.
186
489246
2968
ื•ืขื“ื™ื™ืŸ, ืฉื•ื‘ ื•ืฉื•ื‘, ืื ืฉื™ื ืขื•ืจื›ื™ื ื ื™ืกื•ื™
08:12
And yet, repeatedly, you consistently see people doing trials
187
492238
2873
ื‘ื”ืฉื•ื•ืื” ืœืคืœืฆื‘ื•.
08:15
still against placebo.
188
495135
1306
08:16
And you can get licensed to bring your drug to market
189
496465
2507
ื•ืืคืฉืจ ืœืงื‘ืœ ืจืฉื™ื•ืŸ ืœื”ื›ื ื™ืก ืืช ื”ืชืจื•ืคื” ืœืฉื•ืง
08:18
with only data showing that it's better than nothing,
190
498996
2499
ืจืง ืขื ืžื™ื“ืข ืฉืžืจืื” ืฉื”ื™ื ื˜ื•ื‘ื” ื™ื•ืชืจ ืžื›ืœื•ื,
ืฉื–ื” ื—ืกืจ ืขืจืš ืœืจื•ืคื ื›ืžื•ื ื™ ืฉืžื ืกื” ืœืงื‘ืœ ื”ื—ืœื˜ื”.
08:21
which is useless for a doctor like me trying to make a decision.
191
501519
3002
ืื‘ืœ ื–ื• ืœื ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ื‘ื” ืืชื ื™ื›ื•ืœื™ื ืœืขื•ื•ืช ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื.
08:24
But that's not the only way you can rig your data.
192
504545
2365
ืืชื ื™ื›ื•ืœื™ื ืœืขื•ื•ืช ืื•ืชื
08:26
You can also rig your data
193
506934
1248
ื’ื ื‘ื›ืš ืฉืชืฉื•ื• ืืช ื”ืชืจื•ืคื” ืฉืœื›ื ืืœ
08:28
by making the thing you compare your new drug against
194
508206
2493
ื–ื‘ืœ.
08:30
really rubbish.
195
510723
1157
08:31
You can give the competing drug in too low a dose,
196
511904
2469
ืืชื ื™ื›ื•ืœื™ื ืœืชืช ืืช ื”ืชืจื•ืคื” ื”ืžืชื—ืจื” ื‘ืžื™ื ื•ืŸ ื ืžื•ืš ืžื“ื™,
ื›ืš ืฉืื ืฉื™ื ืœื ื‘ืืžืช ืžื˜ื•ืคืœื™ื.
08:34
so people aren't properly treated.
197
514397
1633
ืื• ื‘ืžื™ื ื•ืŸ ื’ื‘ื•ื” ืžื“ื™,
08:36
You can give the competing drug in too high a dose,
198
516054
2397
ื›ืš ืฉืื ืฉื™ื ื™ืงื‘ืœื• ืชื•ืคืขื•ืช ืœื•ื•ืื™.
08:38
so people get side effects.
199
518475
1296
08:39
And this is exactly what happened
200
519795
1680
ื•ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืงืจื”
08:41
with antipsychotic medication for schizophrenia.
201
521499
2465
ืขื ืชืจื•ืคื•ืช ืื ื˜ื™-ืคืกื™ื›ื•ื˜ื™ื•ืช ืœืกื›ื™ื–ื•ืคืจื ื™ื”.
08:43
Twenty years ago, a new generation of antipsychotic drugs were brought in;
202
523988
3532
ืœืคื ื™ 20 ืฉื ื”, ื“ื•ืจ ื—ื“ืฉ ืฉืœ ืชืจื•ืคื•ืช ืื ื˜ื™-ืคืกื™ื›ื•ื˜ื™ื•ืช ื”ื•ื›ื ืก
ืขื ื”ื‘ื˜ื—ื” ืœืคื—ื•ืช ืชื•ืคืขื•ืช ืœื•ื•ืื™.
08:47
the promise was they would have fewer side effects.
203
527544
2557
ืื– ืื ืฉื™ื ื”ืชื—ื™ืœื• ืœืขืจื•ืš ื ื™ืกื•ื™ื™ื ืขืœ ื”ืชืจื•ืคื•ืช ื”ืืœื”
08:50
So people set about doing trials of the new drugs against the old drugs.
204
530125
3454
ื‘ื”ืฉื•ื•ืื” ืœืชืจื•ืคื•ืช ื”ื™ืฉื ื•ืช,
08:53
But they gave the old drugs in ridiculously high doses:
205
533603
2685
ืื‘ืœ ื”ื ื ืชื ื• ืืช ื”ืชืจื•ืคื•ืช ื”ื™ืฉื ื•ืช ื‘ืžื™ื ื•ื ื™ื ื’ื‘ื•ื”ื™ื ื‘ืื•ืคืŸ ืžื’ื•ื—ืš,
20 ืž"ื’ ื”ืœื•ืคืจื™ื“ื•ืœ ืœื™ื•ื.
08:56
20 milligrams a day of haloperidol.
206
536312
1845
ื•ื–ื• ืžืกืงื ื” ื™ื“ื•ืขื”,
08:58
And it's a foregone conclusion if you give a drug at that high a dose,
207
538181
3554
ืฉืื ืชืชื ื• ืชืจื•ืคื” ื‘ืžื™ื ื•ืŸ ื’ื‘ื•ื” ื›ื–ื”,
09:01
it will have more side effects, and your new drug will look better.
208
541759
3280
ื™ื”ื™ื• ืœื” ื™ื•ืชืจ ืชื•ืคืขื•ืช ืœื•ื•ืื™, ื•ื”ืชืจื•ืคื” ื”ื—ื“ืฉื” ืฉืœื›ื ืชื™ืจืื” ื˜ื•ื‘ ื™ื•ืชืจ.
ืœืคื ื™ 10 ืฉื ื™ื, ื”ื”ื™ืกื˜ื•ืจื™ื” ื—ื–ืจื” ืขืœ ืขืฆืžื”,
09:05
Ten years ago, history repeated itself,
209
545063
1988
ื›ืฉืจื™ืกืคืจื™ื“ื•ืŸ, ืชืจื•ืคื” ืื ื˜ื™-ืคืกื™ื›ื•ื˜ื™ืช ืจืืฉื•ื ื” ืžื”ื“ื•ืจ ื”ื—ื“ืฉ,
09:07
when risperidone, the first of the new-generation antipsychotic drugs,
210
547075
3325
ืื™ื‘ื“ื” ืืช ื–ื›ื•ื™ื•ืช ื”ื™ื•ืฆืจื™ื, ื›ืš ืฉื›ืœ ืื—ื“ ื™ื›ื•ืœ ื”ื™ื” ืœื”ื›ื™ืŸ ื”ืขืชืงื™ื ืฉืœื”.
09:10
came off copyright, so anybody could make copies.
211
550424
2342
09:12
Everybody wanted to show their drug was better than risperidone,
212
552790
3032
ื›ื•ืœื ืจืฆื• ืœื”ืจืื•ืช ืฉื”ืชืจื•ืคื” ืฉืœื”ื ื˜ื•ื‘ื” ืžืจื™ืกืคืจื™ื“ื•ืŸ,
ืื– ืจืื™ืชื ืžื—ืงืจื™ื ืฉืžืฉื•ื•ื™ื ืชืจื•ืคื•ืช ืื ื˜ื™-ืคืกื™ื›ื•ื˜ื™ื•ืช ื—ื“ืฉื•ืช
09:15
so you see trials comparing new antipsychotic drugs
213
555846
2401
ืืœ 8 ืž"ื’ ืจื™ืกืคืจื™ื“ื•ืŸ ืœื™ื•ื.
09:18
against risperidone at eight milligrams a day.
214
558271
2167
ืฉื•ื‘, ื–ื” ืœื ืžื™ื ื•ืŸ ืžื•ืคืจืข ืื• ื‘ืœืชื™ ื—ื•ืงื™,
09:20
Again, not an insane dose, not an illegal dose,
215
560462
2214
ืื‘ืœ ื‘ื”ื—ืœื˜ ื‘ืงืฆื” ื”ืขืœื™ื•ืŸ ืฉืœ ื”ื ื•ืจืžื”.
09:22
but very much at the high end of normal.
216
562700
1918
ื•ืื– ื‘ื˜ื•ื— ืฉื”ืชืจื•ืคื” ื”ื—ื“ืฉื” ืฉืœื”ื ืชื™ืจืื” ื˜ื•ื‘ ื™ื•ืชืจ.
09:24
So you're bound to make your new drug look better.
217
564642
2517
ืœื›ืŸ ื–ื” ื›ืœืœ ืœื ืžืคืชื™ืข ืฉื‘ืกื”"ื›,
09:27
And so it's no surprise that overall,
218
567183
2597
09:29
industry-funded trials are four times more likely
219
569804
2769
ื ื™ืกื•ื™ื™ื ื”ืžืžื•ืžื ื™ื ืข"ื™ ื”ืชืขืฉื™ื™ื”
ืžืฆื™ื’ื™ื ืชื•ืฆืื” ื—ื™ื•ื‘ื™ืช ืคื™ 4 ื™ื•ืชืจ
09:32
to give a positive result
220
572597
1329
09:33
than independently sponsored trials.
221
573950
2053
ืžืืฉืจ ืžื—ืงืจื™ื ื‘ืขืœื™ ืžื™ืžื•ืŸ ืขืฆืžืื™.
09:36
But -- and it's a big but --
222
576989
2644
ืื‘ืœ - ื•ื™ืฉ ื›ืืŸ ืื‘ืœ ื’ื“ื•ืœ -
09:39
(Laughter)
223
579657
2521
(ืฆื—ื•ืง)
ืžืชื‘ืจืจ,
09:42
it turns out,
224
582202
1281
09:43
when you look at the methods used by industry-funded trials,
225
583507
3641
ืฉื›ืฉื‘ื•ื—ื ื™ื ืืช ื”ืฉื™ื˜ื•ืช ื‘ื”ื ื ืขืจื›ื™ื ื ื™ืกื•ื™ื™ื ื”ืžืžื•ืžื ื™ื ืข"ื™ ื”ืชืขืฉื™ื”,
ื”ื ื‘ืขืฆื ื™ื•ืชืจ ื˜ื•ื‘ื™ื
09:47
that they're actually better than independently sponsored trials.
226
587172
3686
ืžืืฉืจ ืžื—ืงืจื™ื ืขืฆืžืื™ื™ื.
09:50
And yet, they always manage to get the result that they want.
227
590882
2892
ื•ืขื“ื™ื™ืŸ, ื”ื ืชืžื™ื“ ืžืฆืœื™ื—ื™ื ืœื”ืฉื™ื’ ืืช ื”ืชื•ืฆืื” ืฉื”ื ืจื•ืฆื™ื.
09:53
So how does this work?
228
593798
1150
ืื– ืื™ืš ื–ื” ืขื•ื‘ื“?
09:54
(Laughter)
229
594972
1013
ืื™ืš ืืคืฉืจ ืœื”ืกื‘ื™ืจ ืืช ื”ืชื•ืคืขื” ื”ืžื•ื–ืจื” ื”ื–ื•?
09:56
How can we explain this strange phenomenon?
230
596009
2767
09:58
Well, it turns out that what happens
231
598800
1798
ื•ื‘ื›ืŸ, ืžืชื‘ืจืจ ืฉืžื” ืฉืงื•ืจื”
10:00
is the negative data goes missing in action;
232
600622
2233
ื–ื” ืฉื”ืžื™ื“ืข ื”ืฉืœื™ืœื™ "ื ืขืœื",
10:02
it's withheld from doctors and patients.
233
602879
1937
ื”ื•ื ืžื•ืกืชืจ ืžืจื•ืคืื™ื ื•ืžืคืฆื™ื™ื ื˜ื™ื.
10:04
And this is the most important aspect of the whole story.
234
604840
2698
ื•ื–ื” ื”ืคืŸ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ ื‘ื›ืœ ื”ืกื™ืคื•ืจ.
ื‘ืคืกื’ืช ืคื™ืจืžื™ื“ืช ื”ื”ื•ื›ื—ื•ืช.
10:07
It's at the top of the pyramid of evidence.
235
607562
2034
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืงื‘ืœ ืืช ื›ืœ ื”ื ืชื•ื ื™ื ืขืœ ื˜ื™ืคื•ืœ ืžืกื•ื™ื
10:09
We need to have all of the data on a particular treatment
236
609620
2686
ื›ื“ื™ ืœื“ืขืช ืื ื”ื•ื ื‘ืืžืช ื™ืขื™ืœ.
10:12
to know whether or not it really is effective.
237
612330
2160
ื•ื™ืฉ ืฉืชื™ ื“ืจื›ื™ื ื‘ื”ืŸ ื ื™ืชืŸ ืœื’ืœื•ืช
10:14
There are two different ways you can spot whether some data has gone missing.
238
614514
3667
ืื ื—ืœืง ืžื”ืžื™ื“ืข "ื ืขืœื".
ืกื˜ื˜ื™ืกื˜ื™ืงื” ืื• ืกื™ืคื•ืจื™ื.
10:18
You can use statistics or you can use stories.
239
618205
2199
10:20
I prefer statistics, so that's what I'll do first.
240
620428
2389
ืื™ืฉื™ืช, ืื ื™ ืžืขื“ื™ืฃ ืกื˜ื˜ื™ืกื˜ื™ืงื”, ืื– ืืจืื” ืืช ื–ื” ืงื•ื“ื.
10:22
This is a funnel plot.
241
622841
1322
ื–ื” ืžืฉื”ื• ืฉื ืงืจื funnel plot.
10:24
A funnel plot is a very clever way of spotting
242
624187
2191
ื•ื–ืืช ื“ืจืš ืžืื•ื“ ืžืชื•ื—ื›ืžืช ืœื–ื”ื•ืช
10:26
if small negative trials have disappeared, have gone missing in action.
243
626402
3365
ืื ืžื—ืงืจื™ื ืฉืœื™ืœื™ื™ื ืงื˜ื ื™ื "ื ืขืœืžื•".
10:29
This is a graph of all of the trials done on a particular treatment.
244
629791
3478
ืื– ื”ื ื” ื”ื’ืจืฃ ืฉืœ ื›ืœ ื”ื ื™ืกื•ื™ื™ื
ืฉื ืขืฉื• ืขืœ ื˜ื™ืคื•ืœ ืžืกื•ื™ื™ื.
10:33
As you go up towards the top of the graph,
245
633293
2255
ื•ื›ื›ืœ ืฉืขื•ืœื™ื ื‘ืžืขืœื” ื”ื’ืจืฃ,
10:35
what you see is each dot is a trial.
246
635572
1929
ื›ืœ ื ืงื•ื“ื” ื›ืืŸ ื”ื™ื ื ื™ืกื•ื™.
10:37
As you go up, those are bigger trials, so they've got less error;
247
637525
3126
ื•ื›ื›ืœ ืฉืืชื ืขื•ืœื™ื, ืืœื” ื”ื ื™ืกื•ื™ื™ื ื”ื’ื“ื•ืœื™ื ื™ื•ืชืจ, ืื– ื”ื˜ืขื•ืช ื‘ื”ื ืงื˜ื ื” ื™ื•ืชืจ.
10:40
they're less likely to be randomly false positives or negatives.
248
640675
3146
ื›ืœื•ืžืจ ื”ื ื™ืชื ื• ืคื—ื•ืช ืชื•ืฆืื•ืช ืฉื’ื•ื™ื•ืช.
10:43
So they all cluster together.
249
643845
1392
ืื– ื”ื ืžืฆื˜ื‘ืจื™ื ื™ื—ื“.
10:45
The big trials are closer to the true answer.
250
645261
2507
ื”ื ื™ืกื•ื™ื™ื ื”ื’ื“ื•ืœื™ื ืงืจื•ื‘ื™ื ื™ื•ืชืจ ืœืชืฉื•ื‘ื” ื”ืืžื™ืชื™ืช.
10:47
Then as you go further down at the bottom,
251
647792
2016
ื•ื›ื›ืœ ืฉืชืจื“ื• ืœืžื˜ื”,
10:49
what you can see is, on this side, spurious false negatives,
252
649832
2919
ืืคืฉืจ ืœืจืื•ืช ื‘ืฆื“ ื”ื–ื” ืืช ื”ืชื•ืฆืื•ืช ื”ืฉืœื™ืœื™ื•ืช ื”ืฉื’ื•ื™ื•ืช,
10:52
and over on this side, spurious false positives.
253
652775
2246
ื•ื‘ืฆื“ ื”ื–ื” ืืช ื”ืชื•ืฆืื•ืช ื”ื—ื™ื•ื‘ื™ื•ืช ื”ืฉื’ื•ื™ื•ืช.
ืื ื™ืฉ ื”ื˜ื™ื” ื‘ืคืจืกื•ื ื”ืžื—ืงืจื™ื,
10:55
If there is publication bias,
254
655045
2076
ืื ืžื—ืงืจื™ื ืฉืœื™ืœื™ื™ื ืงื˜ื ื™ื "ื ืขืœืžื•",
10:57
if small negative trials have gone missing in action,
255
657145
2530
10:59
you can see it on one of these graphs.
256
659699
1815
ืืคืฉืจ ื™ื”ื™ื” ืœืจืื•ืช ืืช ื–ื” ื‘ืื—ื“ ื”ื’ืจืคื™ื ื”ืืœื”.
11:01
So you see here that the small negative trials
257
661538
2151
ืื– ืืคืฉืจ ืœืจืื•ืช ืฉื”ืžื—ืงืจื™ื ื”ืฉืœื™ืœื™ื™ื ื”ืงื˜ื ื™ื
11:03
that should be on the bottom left have disappeared.
258
663713
2453
ืฉื”ื™ื• ืืžื•ืจื™ื ืœื”ื™ืžืฆื ืœืžื˜ื” ืžืฉืžืืœ - ื ืขืœืžื•.
ื–ื” ื’ืจืฃ ืฉืžื“ื’ื™ื ื”ื˜ื™ื” ื‘ืคืจืกื•ื ืžื—ืงืจื™ื
11:06
This is a graph demonstrating the presence of publication bias
259
666190
2935
ื‘ืžื—ืงืจื™ื ืขืœ ื”ื˜ื™ื” ื‘ืคืจืกื•ื ืžื—ืงืจื™ื.
11:09
in studies of publication bias.
260
669149
1920
ื•ืœื“ืขืชื™ ื–ื• ื”ื‘ื“ื™ื—ื” ื”ืืคื™ื“ืžื™ื•ืœื•ื’ื™ืช ื”ื›ื™ ืžืฆื—ื™ืงื”
11:11
And I think that's the funniest epidemiology joke you will ever hear.
261
671093
3302
ืฉืื™ ืคืขื ืชืฉืžืขื•.
11:14
(Laughter)
262
674419
1011
ื›ืš ืืคืฉืจ ืœื”ื•ื›ื™ื— ืืช ื–ื” ืกื˜ื˜ื™ืกื˜ื™ืช.
11:15
That's how you can prove it statistically.
263
675454
2024
ืžื” ืœื’ื‘ื™ ืกื™ืคื•ืจื™ื?
11:17
But what about stories?
264
677502
1151
11:18
Well, they're heinous, they really are.
265
678677
1915
ื”ื ืื›ื–ืจื™ื™ื. ื‘ืืžืช.
11:20
This is a drug called reboxetine.
266
680616
1589
ื–ื• ืชืจื•ืคื” ื‘ืฉื ืจื‘ื•ืงืกื˜ื™ืŸ.
11:22
This is a drug which I, myself, have prescribed to patients.
267
682229
2939
ืชืจื•ืคื” ืฉืื ื™ ื‘ืขืฆืžื™ ืจืฉืžืชื™ ืœืคืฆื™ื™ื ื˜ื™ื.
ื•ืื ื™ ืจื•ืคื ื—ื ื•ืŸ.
11:25
And I'm a very nerdy doctor.
268
685192
1336
11:26
I hope I go out of my way
269
686552
1312
ืื ื™ ืžืงื•ื•ื” ืฉืื ื™ ื™ื•ืฆื ืžื’ื“ืจื™ ืœื ืกื•ืช ื•ืœืงืจื•ื ื•ืœื”ื‘ื™ืŸ ืืช ื”ืกืคืจื•ืช.
11:27
to try and read and understand all the literature.
270
687888
2359
ืงืจืืชื™ ืืช ื”ื ื™ืกื•ื™ื™ื ืขืœื™ื”, ื”ื ื›ื•ืœื ื”ื™ื• ื—ื™ื•ื‘ื™ื™ื, ื›ื•ืœื ื ืขืจื›ื• ื ื›ื•ืŸ.
11:30
I read the trials on this.
271
690271
1308
11:31
They were all positive, all well-conducted.
272
691603
2267
ืœื ืžืฆืืชื™ ื‘ืขื™ื”.
11:33
I found no flaw.
273
693894
1151
ืœืจื•ืข ื”ืžื–ืœ, ืžืชื‘ืจืจ,
11:35
Unfortunately, it turned out, that many of these trials were withheld.
274
695069
3581
ืฉื ื™ืกื•ื™ื™ื ืจื‘ื™ื ืขืœ ื”ืชืจื•ืคื” ื”ื•ืกืชืจื•.
11:38
In fact, 76 percent of all of the trials that were done on this drug
275
698674
4545
ืœืžืขืฉื”, 76%
ืžื›ืœ ื”ืžื—ืงืจื™ื ืฉื ืขืฉื• ืขืœ ื”ืชืจื•ืคื” ื”ื–ื•
ื”ื•ืกืชืจื• ืžืจื•ืคืื™ื ื•ืžืคืฆื™ื™ื ื˜ื™ื.
11:43
were withheld from doctors and patients.
276
703243
1951
ืขื›ืฉื™ื•, ืื ืชื—ืฉื‘ื• ืขืœ ื–ื”,
11:45
Now if you think about it,
277
705218
1253
11:46
if I tossed a coin a hundred times,
278
706495
2297
ืื ืื ื™ ืื–ืจื•ืง ืžื˜ื‘ืข 100 ืคืขื,
11:48
and I'm allowed to withhold from you the answers half the times,
279
708816
3536
ื•ืžื•ืชืจ ืœื™ ืœื”ืกืชื™ืจ ืžื›ื
ืืช ื”ืชืฉื•ื‘ื•ืช ืžื—ืฆื™ืช ืžื”ืคืขืžื™ื,
11:52
then I can convince you that I have a coin with two heads.
280
712376
4089
ืื– ืื ื™ ื™ื›ื•ืœ ืœืฉื›ื ืข ืืชื›ื
ืฉื™ืฉ ืœื™ ืžื˜ื‘ืข ืขื ืฉื ื™ ืฆื™ื“ื™ ืคืœื™.
11:56
If we remove half of the data,
281
716489
1913
ืื ื ืกื™ืจ ืžื—ืฆื™ืช ืžื”ื ืชื•ื ื™ื,
11:58
we can never know what the true effect size of these medicines is.
282
718426
3738
ืœืขื•ืœื ืœื ื ื•ื›ืœ ืœื“ืขืช ืžื” ื’ื•ื“ืœ ื”ืืคืงื˜ ื”ืืžื™ืชื™ ืฉืœ ื”ืชืจื•ืคื•ืช ื”ืœืœื•.
ื•ื–ื” ืœื ืžืงืจื” ื‘ื•ื“ื“.
12:02
And this is not an isolated story.
283
722188
2071
ื‘ืขืจืš ืžื—ืฆื™ืช ืžื ืชื•ื ื™ ื”ื ื™ืกื•ื™ื™ื ืขืœ ืชืจื•ืคื•ืช ืื ื˜ื™-ื“ื›ืื•ื ื™ื•ืช ื”ื•ืกืชืจื”,
12:04
Around half of all of the trial data on antidepressants has been withheld,
284
724283
3794
ืื‘ืœ ื–ื” ื™ื•ืชืจ ืžื–ื”.
12:08
but it goes way beyond that.
285
728101
1436
12:09
The Nordic Cochrane Group were trying to get ahold of the data on that
286
729561
3346
ืงื‘ื•ืฆืช ืงื•ืงืจื™ื™ืŸ ื”ืกืงื ื“ื™ื ื‘ื™ืช ื ื™ืกืชื” ืœื”ืฉื™ื’ ืืช ื”ื ืชื•ื ื™ื ื”ืืœื”,
ืœื—ื‘ืจ ื”ื›ืœ ื™ื—ื“.
12:12
to bring it all together.
287
732931
1195
ืงื‘ื•ืฆื•ืช ืงื•ืงืจื™ื™ืŸ ื”ืŸ ืฉืช"ืค ื‘ื™ื ืœืื•ืžื™ ืฉืœื ืœืžื˜ืจื•ืช ืจื•ื•ื—
12:14
The Cochrane Groups are an international nonprofit collaboration
288
734150
3019
ืฉืžื™ื™ืฆืจื•ืช ืกืงื™ืจื•ืช ืฉื™ื˜ืชื™ื•ืช ืฉืœ ื›ืœ ื”ื ืชื•ื ื™ื ืฉื”ื•ืฆื’ื•.
12:17
that produce systematic reviews
289
737193
1490
12:18
of all of the data that has ever been shown.
290
738707
2097
ื•ื”ื ืฆืจื™ื›ื™ื ื’ื™ืฉื” ืœื›ืœ ื ืชื•ื ื™ ื”ื ื™ืกื•ื™ื™ื.
12:20
And they need to have access to all of the trial data.
291
740828
2534
ืื‘ืœ ื”ื—ื‘ืจื•ืช ืžื ืขื• ืžื”ื ืืช ื”ืžื™ื“ืข ื”ื–ื”.
12:23
But the companies withheld that data from them.
292
743386
2443
12:25
So did the European Medicines Agency --
293
745853
2195
ื•ื›ืš ื’ื ืกื•ื›ื ื•ืช ื”ืชืจื•ืคื•ืช ื”ืื™ืจื•ืคืื™ืช
ื‘ืžืฉืš 3 ืฉื ื™ื.
12:28
for three years.
294
748072
1586
12:29
This is a problem that is currently lacking a solution.
295
749682
3032
ื–ื• ื‘ืขื™ื” ืฉื›ืจื’ืข ืื™ืŸ ืœื” ืคืชืจื•ืŸ.
12:32
And to show how big it goes, this is a drug called Tamiflu,
296
752738
2899
ื•ื›ื“ื™ ืœื”ืจืื•ืช ืืช ื”ื™ืงืคื”, ื–ื• ืชืจื•ืคื” ื‘ืฉื ืชืžื™ืคืœื•,
12:35
which governments around the world
297
755661
1662
ืฉืžืžืฉืœื•ืช ื‘ื›ืœ ื”ืขื•ืœื
12:37
have spent billions and billions of dollars on.
298
757347
2843
ืจื›ืฉื• ื‘ืžื™ืœื™ืืจื“ื™ ื“ื•ืœืจื™ื.
ื•ื”ื ื”ื•ืฆื™ืื• ืืช ื”ื›ืกืฃ ื”ื–ื” ืขืœ ื”ื”ื‘ื˜ื—ื”
12:40
And they spend that money on the promise that this is a drug
299
760214
2867
ืฉื”ืชืจื•ืคื” ื”ื–ื• ืชื•ืจื™ื“ ืืช ืฉื›ื™ื—ื•ืช
12:43
which will reduce the rate of complications with flu.
300
763105
2972
ืกื™ื‘ื•ื›ื™ ื”ืฉืคืขืช.
ื™ืฉ ืœื ื• ื›ื‘ืจ ืžื™ื“ืข
12:46
We already have the data
301
766101
1151
12:47
showing it reduces the duration of your flu by a few hours.
302
767276
2794
ื”ืžืจืื” ืฉื”ื™ื ืžืคื—ื™ืชื” ืืช ืžืฉืš ื”ืฉืคืขืช ื‘ื›ืžื” ืฉืขื•ืช.
ืื‘ืœ ื–ื” ืœื ืžืขื ื™ื™ืŸ ืื•ืชื™ ืื• ืืช ื”ืžืžืฉืœื•ืช.
12:50
But I don't care about that, governments don't care.
303
770094
2454
ืื ื™ ืžืฆื˜ืขืจ ืื ื™ืฉ ืœื›ื ืฉืคืขืช, ืื ื™ ื™ื•ื“ืข ืฉื–ื” ื ื•ืจื,
12:52
I'm sorry if you have the flu, I know it's horrible,
304
772572
2454
ืื‘ืœ ืœื ื ื•ืฆื™ื ืžื™ืœื™ืืจื“ื™ ื“ื•ืœืจื™ื
12:55
but we're not going to spend billions of dollars
305
775050
2244
ื›ื“ื™ ืœื”ืคื—ื™ืช ืืช ืžืฉืš ื”ืกื™ืžืคื˜ื•ืžื™ื ืฉืœื›ื
12:57
trying to reduce the duration of your flu symptoms by half a day.
306
777318
3162
ื‘ื—ืฆื™ ื™ื•ื.
13:00
We prescribe these drugs.
307
780504
1325
ืื ื—ื ื• ื ื•ืชื ื™ื ืžืจืฉืžื™ื ืœืชืจื•ืคื•ืช ื”ืืœื”, ืื•ื’ืจื™ื ืื•ืชืŸ ืœืžืงืจื™ ื—ื™ืจื•ื
13:01
We stockpile them for emergencies
308
781853
1803
ืžืชื•ืš ื”ื ื—ื” ืฉื”ืŸ ื™ืคื—ื™ืชื• ืืช ืžืกืคืจ ื”ืกื™ื‘ื•ื›ื™ื,
13:03
on the understanding they'll reduce the number of complications,
309
783680
3089
ื›ืœื•ืžืจ ื“ืœืงืช ืจื™ืื•ืช, ื›ืœื•ืžืจ ืžื•ื•ืช.
13:06
which means pneumonia and death.
310
786793
1534
ืงื‘ื•ืฆืช ืงื•ืงืจื™ื™ืŸ ืœืžื—ืœื•ืช ื–ื™ื”ื•ืžื™ื•ืช ื”ื ืžืฆืืช ื‘ืื™ื˜ืœื™ื”,
13:08
The infectious diseases Cochrane Group, which are based in Italy,
311
788351
3459
ืžื ืกื” ืœื”ืฉื™ื’
13:11
has been trying to get the full data in a usable form
312
791834
3177
ืืช ื”ืžื™ื“ืข ื”ืžืœื ื‘ืคื•ืจืžื˜ ืฉื™ืžื•ืฉื™ ืžื—ื‘ืจื•ืช ื”ืชืจื•ืคื•ืช
13:15
out of the drug companies,
313
795035
1268
ื›ืš ืฉื”ื ื™ื•ื›ืœื• ืœืงื‘ืœ ื”ื—ืœื˜ื” ืฉืœืžื”
13:16
so they can make a full decision
314
796327
2091
13:18
about whether this drug is effective or not,
315
798442
2097
ืœื’ื‘ื™ ื”ืืคืงื˜ื™ื‘ื™ื•ืช ืฉืœื”,
13:20
and they've not been able to get that information.
316
800563
2966
ื•ื”ื ืœื ืžืฆืœื™ื—ื™ื ืœื”ืฉื™ื’ ืืช ื”ืžื™ื“ืข ื”ื–ื”.
13:23
This is undoubtedly the single biggest ethical problem
317
803553
5206
ื–ื•ื”ื™ ืœืœื ืกืคืง
ื”ื‘ืขื™ื” ื”ืืชื™ืช ื”ื—ืžื•ืจื” ื‘ื™ื•ืชืจ
13:28
facing medicine today.
318
808783
1976
ื‘ืจืคื•ืื” ื”ื™ื•ื.
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช
13:31
We cannot make decisions in the absence of all of the information.
319
811204
5333
ืœืœื ื”ืžื™ื“ืข ื”ืžืœื.
13:37
So it's a little bit difficult from there
320
817789
2977
ืื– ืงืฉื” ืœื”ื•ืฆื™ื ืžื›ืืŸ
13:40
to spin in some kind of positive conclusion.
321
820790
3446
ืื™ื–ื• ืฉื”ื™ื ืžืกืงื ื” ื—ื™ื•ื‘ื™ืช.
ืื‘ืœ ืื ื™ ื™ื›ื•ืœ ืœื•ืžืจ ื›ืš:
13:45
But I would say this:
322
825196
1631
13:48
I think that sunlight
323
828931
2796
ืื ื™ ื—ื•ืฉื‘ ืฉื”ืฉืžืฉ
13:51
is the best disinfectant.
324
831751
1724
ื”ื™ื ื”ืžื—ื˜ื ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ.
ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื” ืžืชืจื—ืฉื™ื ืœืขื™ื ื™ ื›ืœ,
13:54
All of these things are happening in plain sight,
325
834077
2735
13:56
and they're all protected by a force field of tediousness.
326
836836
4331
ื•ื”ื ืžื•ื’ื ื™ื
ื‘ืฉื“ื” ื›ื•ื— ื˜ืจื—ื ื™.
14:01
And I think, with all of the problems in science,
327
841631
2407
ื•ืขื ื›ืœ ื”ื‘ืขื™ื•ืช ื‘ืžื“ืข,
ืื—ื“ ื”ื“ื‘ืจื™ื ื”ื›ื™ ื˜ื•ื‘ื™ื ืฉื ื™ืชืŸ ืœืขืฉื•ืช
14:04
one of the best things that we can do
328
844062
1820
14:05
is to lift up the lid, finger around at the mechanics
329
845906
2803
ื–ื” ืœื”ืจื™ื ืืช ื”ืžื›ืกื”,
ื•ืœื”ืฆื™ืฅ ืคื ื™ืžื”.
14:08
and peer in.
330
848733
1279
ืชื•ื“ื” ืจื‘ื”.
14:10
Thank you very much.
331
850036
1160
14:11
(Applause)
332
851220
3238
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7