The world needs all kinds of minds | Temple Grandin

1,307,465 views ใƒป 2010-02-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Shlomo Adam ืขืจื™ื›ื”: Shahar Kaiser
00:15
I think I'll start out and just talk a little bit
0
15704
2446
ื—ื•ืฉื‘ื ื™ ืฉืงื•ื“ื ื›ืœ ืืกืคืจ ืžืขื˜
ืžื”ื• ื‘ื“ื™ื•ืง ืื•ื˜ื™ื–ื.
00:18
about what exactly autism is.
1
18174
1491
00:19
Autism is a very big continuum
2
19689
2635
ื”ืื•ื˜ื™ื–ื ื”ื•ื ืจืฆืฃ ื’ื“ื•ืœ ืžืื“,
00:22
that goes from very severe -- the child remains nonverbal --
3
22348
3174
ื”ื—ืœ ืžื”ื“ืจื’ื” ื”ื—ืžื•ืจื” ื‘ื™ื•ืชืจ, ื”ื™ืœื“ ืฉื ื•ืชืจ ืœื-ืžื™ืœื•ืœื™,
00:25
all the way up to brilliant scientists and engineers.
4
25546
2690
ื•ืขื“ ืœืžื“ืขื ื™ื ื•ืœืžื”ื ื“ืกื™ื ื”ืžื‘ืจื™ืงื™ื.
00:28
And I actually feel at home here,
5
28260
1977
ื•ืื ื™ ืœืžืขืฉื” ืžืจื’ื™ืฉื” ื›ืืŸ ื‘ื‘ื™ืช.
00:30
because there's a lot of autism genetics here.
6
30261
2546
ื›ื™ ื™ืฉ ื›ืืŸ ื”ืžื•ืŸ ื’ื ื˜ื™ืงื” ืื•ื˜ื™ืกื˜ื™ืช.
00:32
(Laughter)
7
32831
1032
(ืฆื—ื•ืง)
00:33
You wouldn't have any --
8
33887
1158
ืœื ื™ื”ื™ื• ืœื›ื...
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
00:35
(Applause)
9
35069
2969
00:38
It's a continuum of traits.
10
38062
2036
ืžื“ื•ื‘ืจ ื‘ืงืฆืฃ ืฉืœ ืชื›ื•ื ื•ืช.
00:40
When does a nerd turn into Asperger, which is just mild autism?
11
40122
5657
ืžืชื™ 'ื—ื ื•ืŸ' ื ื—ืฉื‘
ืœื‘ืขืœ ืชืกืžื•ื ืช ืืกืคืจื’ืจ, ืฉื”ื™ื ืื•ื˜ื™ื–ื ืงืœ ื‘ื™ื•ืชืจ?
00:45
I mean, Einstein and Mozart and Tesla would all be probably diagnosed
12
45803
5158
ื”ืจื™ ืื™ื™ื ืฉื˜ื™ื™ืŸ ื•ืžื•ืฆืจื˜ ื•ื˜ืกืœื”, ื”ื™ื• ื›ื ืจืื” ื›ื•ืœื ืžืื•ื‘ื—ื ื™ื
00:50
as autistic spectrum today.
13
50985
1892
ื›ื™ื•ื ืขืœ ื”ืกืคืงื˜ืจื•ื ื”ืื•ื˜ื™ืกื˜ื™.
00:52
And one of the things that is really going to concern me
14
52901
3291
ื•ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื‘ืืžืช ื™ืขืกื™ืงื• ืื•ืชื™ ื”ื•ื
00:56
is getting these kids to be the ones
15
56216
2235
ืœื”ืคื•ืš ืืช ื”ื™ืœื“ื™ื ื”ืืœื” ืœืžืžืฆื™ืื™ื ื”ื‘ืื™ื ื‘ืชื—ื•ื ื”ืื ืจื’ื™ื”.
00:58
that are going to invent the next energy things
16
58475
2822
01:01
that Bill Gates talked about this morning.
17
61321
2250
ื‘ื™ืœ ื’ื™ื™ื˜ืก ื“ื™ื‘ืจ ืขืœ ื›ืš ื”ื‘ื•ืงืจ.
[ื›ื“ื™ ืœื”ื‘ื™ืŸ ืื•ื˜ื™ื–ื, ื‘ืขืœื™-ื—ื™ื™ื ื•ืืžื ื•ืช ื™ืฉ ืœื”ืชืจื—ืง ืžื”ืžื™ืœื” ื”ืžื“ื•ื‘ืจืช]
01:04
OK, now, if you want to understand autism: animals.
18
64058
3913
ืื ื‘ืจืฆื•ื ื›ื ืœื”ื‘ื™ืŸ ืื•ื˜ื™ื–ื ื•ื‘ืขืœื™ ื—ื™ื™ื
01:07
I want to talk to you now about different ways of thinking.
19
67995
2890
ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืขืœ ื“ืจื›ื™ ื—ืฉื™ื‘ื” ืื—ืจื•ืช.
01:10
You have to get away from verbal language.
20
70909
2850
ืฆืจื™ืš ืœื”ืชืจื—ืง ืžืŸ ื”ืฉืคื” ื”ืžื™ืœื•ืœื™ืช.
01:13
I think in pictures. I don't think in language.
21
73783
3601
ืื ื™ ื—ื•ืฉื‘ืช ื‘ืชืžื•ื ื•ืช.
ืื™ื ื ื™ ื—ื•ืฉื‘ืช ื‘ืขื–ืจืช ื”ืฉืคื”.
01:18
Now, the thing about the autistic mind is it attends to details.
22
78082
5270
ื”ืขื ื™ื™ืŸ ืขื ื”ืžื•ื— ื”ืื•ื˜ื™ืกื˜ื™ ื”ื•ื
ืฉื”ื•ื ืžืชื™ื™ื—ืก ืœืคืจื˜ื™ื.
01:23
This is a test where you either have to pick out the big letters
23
83376
3055
ื”ื ื” ืžื‘ื—ืŸ ืฉื‘ื• ื™ืฉ ืœื–ื”ื•ืช ืืช ื”ืื•ืชื™ื•ืช ื”ื’ื“ื•ืœื•ืช ืื• ืืช ื”ืงื˜ื ื•ืช.
01:26
or the little letters,
24
86455
1223
01:27
and the autistic mind picks out the little letters more quickly.
25
87702
3893
ื•ื”ืžื•ื— ื”ืื•ื˜ื™ืกื˜ื™ ื‘ื•ื—ืจ ืžื”ืจ ื™ื•ืชืจ ืืช ื”ืื•ืชื™ื•ืช ื”ืงื˜ื ื•ืช.
01:31
And the thing is, the normal brain ignores the details.
26
91947
3751
ื”ืขื ื™ื™ืŸ ื”ื•ื ืฉื”ืžื•ื— ื”ืจื’ื™ืœ ืžืชืขืœื ืžื”ืคืจื˜ื™ื.
01:35
Well, if you're building a bridge, details are pretty important
27
95722
3010
ืืš ื›ืฉื‘ื•ื ื™ื ื’ืฉืจ, ื”ืคืจื˜ื™ื ื—ืฉื•ื‘ื™ื ืœืžื“ื™,
01:38
because it'll fall down if you ignore the details.
28
98756
2398
ื›ื™ ืื ืžืชืขืœืžื™ื ืžื”ืคืจื˜ื™ื ื”ื•ื ื™ืชืžื•ื˜ื˜.
ื•ืื—ืช ืžื“ืื’ื•ืชื™ ื”ื’ื“ื•ืœื•ืช ื›ื™ื•ื ืœื’ื‘ื™ ืขื ื™ื™ื ื™ ืžื“ื™ื ื™ื•ืช ืจื‘ื™ื
01:41
And one of my big concerns with a lot of policy things today
29
101178
2867
ื”ื™ื ืฉื”ื“ื‘ืจื™ื ื ืขืฉื™ื ืžื•ืคืฉื˜ื™ื ืžื“ื™.
01:44
is things are getting too abstract.
30
104069
1678
01:45
People are getting away from doing hands-on stuff.
31
105771
3227
ืื ืฉื™ื ื”ื•ืœื›ื™ื ื•ืžืชืจื—ืงื™ื ืžืขืฉื™ื™ืช ื“ื‘ืจื™ื ื‘ืžื•-ื™ื“ื™ื”ื.
01:49
I'm really concerned that a lot of the schools
32
109022
2160
ืžื“ืื™ื’ ืื•ืชื™ ืžืื“ ืฉื‘ืชื™-ืกืคืจ ืจื‘ื™ื ื‘ื™ื˜ืœื• ืืช ื”ืฉื™ืขื•ืจื™ื ื”ืžืขืฉื™ื™ื,
01:51
have taken out the hands-on classes, because art, and classes like that --
33
111206
3968
ื›ื™ ืืžื ื•ืช ื•ืชื—ื•ืžื™ื ื“ื•ืžื™ื ื”ื ืืœื” ื‘ื”ื ื”ืฆื˜ื™ื™ื ืชื™.
01:55
those are the classes where I excelled.
34
115198
2313
01:57
In my work with cattle,
35
117535
2154
ืื– ื‘ืขื‘ื•ื“ืชื™ ืขื ื‘ืงืจ,
01:59
I noticed a lot of little things that most people don't notice
36
119713
2978
ื–ื™ื”ื™ืชื™ ื”ืจื‘ื” ื“ื‘ืจื™ื ืงื˜ื ื™ื ืฉืจื•ื‘ ื”ืื ืฉื™ื ืœื ืจื•ืื™ื
02:02
would make the cattle balk.
37
122715
1288
ื•ืืฉืจ ื’ื•ืจืžื™ื ืœื‘ืงืจ ืœื”ื™ืจืชืข, ืœื“ื•ื’ืžื”,
02:04
For example, this flag waving right in front of the veterinary facility.
38
124027
3547
ื”ื“ื’ืœ ื”ื–ื”, ืฉืžืชื ื•ืคืฃ ืžืžืฉ ืžื•ืœ ื”ืžืชืงืŸ ื”ื•ื•ื˜ืจื™ื ืจื™.
02:07
This feed yard was going to tear down their whole veterinary facility;
39
127598
3327
ื—ืฆืจ ื”ื”ืื›ืœื” ื”ื–ื• ื›ืžืขื˜ ื”ืคื™ืœื” ืืช ื›ืœ ื”ืžืชืงืŸ ื”ื•ื˜ืจื™ื ืจื™,
02:10
all they needed to do was move the flag.
40
130949
1914
ื•ื”ื™ื” ืฆืจื™ืš ืจืง ืœืกืœืง ืืช ื”ื“ื’ืœ.
02:12
Rapid movement, contrast.
41
132887
2068
ืชื ื•ืขื” ืžื”ื™ืจื”, ื ื™ื’ื•ื“ื™ื•ืช.
02:14
In the early '70s when I started, I got right down in the chutes
42
134979
3034
ื‘ืชื—ื™ืœืช ืฉื ื•ืช ื”-70, ื›ืฉื”ืชื—ืœืชื™, ื ื›ื ืกืชื™ ืžืžืฉ ืœืชื•ืš ื”ืžืฉืคื›ื™ื,
ื›ื“ื™ ืœืจืื•ืช ืžื” ืจื•ืื•ืช ื”ืคืจื•ืช.
02:18
to see what cattle were seeing.
43
138037
1499
02:19
People thought that was crazy.
44
139560
1462
ื—ืฉื‘ื• ืฉืื ื™ ืžื˜ื•ืจืคืช. ืžืขื™ืœ ืขืœ ื”ื’ื“ืจ ื’ืจื ืœื”ืŸ ืœื”ื™ืจืชืข.
02:21
A coat on a fence would make them balk, shadows would make them balk,
45
141046
3282
ืฆืœืœื™ื ื’ืจืžื• ืœื”ืŸ ืœื”ื™ืจืชืข, ืฆื™ื ื•ืจ ืขืœ ื”ืจื™ืฆืคื”.
02:24
a hose on the floor -- people weren't noticing these things.
46
144352
3064
ืื ืฉื™ื ืœื ืฉืžื• ืœื‘ ืœื“ื‘ืจื™ื ื”ืืœื”,
02:27
A chain hanging down ...
47
147440
1516
ืฉืจืฉืจืช ืชืœื•ื™ื”,
02:28
And that's shown very, very nicely in the movie.
48
148980
2256
ื•ื‘ืกืจื˜ ืจื•ืื™ื ืืช ื–ื” ื˜ื•ื‘ ืžืื“.
02:31
In fact, I loved the movie, how they duplicated all my projects.
49
151260
3455
ืœืžืขืฉื”, ืื”ื‘ืชื™ ืื™ืš ืฉื‘ืกืจื˜ ืฉื™ื—ื–ืจื• ืืช ื›ืœ ื”ืคืจื•ื™ื™ืงื˜ื™ื ืฉืœื™.
02:34
That's the geek side.
50
154739
1341
ื–ื”ื• ื”ื”ื™ื‘ื˜ ื”ื—ื ื•ื ื™.
02:36
My drawings got to star in the movie, too.
51
156104
2420
ื’ื ื”ืฆื™ื•ืจื™ื ืฉืœื™ ื–ื›ื• ืœื›ื›ื‘ ื‘ืกืจื˜.
02:38
And, actually, it's called "Temple Grandin,"
52
158548
2110
ื•ืฉืžื• ื”ื•ื ื‘ืืžืช "ื˜ืžืคืœ ื’ืจื ื“ื™ืŸ" ื•ืœื "ื—ืฉื™ื‘ื” ื‘ืชืžื•ื ื•ืช".
02:40
not "Thinking in Pictures."
53
160682
1324
02:42
So what is thinking in pictures?
54
162030
1565
ืื– ืžื”ื™ ื—ืฉื™ื‘ื” ื‘ืชืžื•ื ื•ืช? ืืœื• ืžืžืฉ ืกืจื˜ื™ื ื‘ืชื•ืš ื”ืจืืฉ.
02:43
It's literally movies in your head.
55
163619
2679
02:46
My mind works like Google for images.
56
166322
2882
ื”ืžื•ื— ืฉืœื™ ืคื•ืขืœ ื›ืžื• ืฉ"ื’ื•ื’ืœ" ืžื—ืคืฉ ืชืžื•ื ื•ืช.
02:49
When I was a young kid, I didn't know my thinking was different.
57
169228
3044
ื›ืฉื”ื™ื™ืชื™ ืงื˜ื ื” ืœื ื™ื“ืขืชื™ ืฉื”ื—ืฉื™ื‘ื” ืฉืœื™ ืฉื•ื ื”.
ื—ืฉื‘ืชื™ ืฉื›ื•ืœื ื—ื•ืฉื‘ื™ื ื‘ืชืžื•ื ื•ืช.
02:52
I thought everybody thought in pictures.
58
172296
1919
ื•ื›ืฉื›ืชื‘ืชื™ ืืช ืกืคืจื™, "ื—ืฉื™ื‘ื” ื‘ืชืžื•ื ื•ืช",
02:54
Then when I did my book, "Thinking in Pictures,"
59
174239
2255
ื”ืชื—ืœืชื™ ืœืจืื™ื™ืŸ ืื ืฉื™ื ื‘ื ื•ื’ืข ืœื“ืจืš ื—ืฉื™ื‘ืชื,
02:56
I started interviewing people about how they think.
60
176518
2412
02:58
And I was shocked to find out that my thinking was quite different.
61
178954
3155
ื•ื”ื–ื“ืขื–ืขืชื™ ืœื’ืœื•ืช ืฉืื•ืคืŸ ื”ื—ืฉื™ื‘ื” ืฉืœื™ ื›ืœ-ื›ืš ืฉื•ื ื”.
ืœืžืฉืœ, ืื ืื•ืžืจ, "ื—ื™ืฉื‘ื• ืขืœ ืฆืจื™ื— ื›ื ืกื™ื”",
03:02
Like if I say, "Think about a church steeple,"
62
182133
2176
03:04
most people get this sort of generalized generic one.
63
184333
2513
ืžืจื‘ื™ืช ื”ืื ืฉื™ื ื™ืจืื• ืžืขื™ืŸ ืฆืจื™ื— ื›ืœืœื™ ืฉื›ื–ื”.
03:06
Now, maybe that's not true in this room,
64
186870
1912
ืื•ืœื™ ื–ื” ืœื ื ื›ื•ืŸ ืœื™ื•ืฉื‘ื™ื ื›ืืŸ
03:08
but it's going to be true in a lot of different places.
65
188806
3266
ืื‘ืœ ื–ื” ื™ืงืจื” ื‘ื”ืžื•ืŸ ืžืงื•ืžื•ืช.
03:12
I see only specific pictures.
66
192096
2503
ืื ื™ ืจื•ืื” ืจืง ืชืžื•ื ื•ืช ืกืคืฆื™ืคื™ื•ืช
03:14
They flash up into my memory, just like Google for pictures.
67
194623
3809
ื”ื ืžื‘ื–ื™ืงื•ืช ื‘ื–ื›ืจื•ื ื™,
ืžืžืฉ ื›ืžื• ืชืžื•ื ื•ืช ื‘"ื’ื•ื’ืœ".
03:18
And in the movie, they've got a great scene in there,
68
198456
2543
ื•ื‘ืกืจื˜ ืฉืœื™ ื™ืฉ ืกืฆื™ื ื” ื ื”ื“ืจืช,
ืฉื‘ื” ื ืืžืจืช ื”ืžื™ืœื” "ื ืขืœ",
03:21
where the word "shoe" is said, and a whole bunch of '50s and '60s shoes
69
201023
3800
ื•ื”ืžื•ืŸ ื ืขืœื™ื™ื ืžืฉื ื•ืช ื”-50 ื•ื”-60 ืงื•ืคืฆื•ืช ื•ืžื•ืคื™ืขื•ืช ื‘ื“ืžื™ื•ื ื™.
03:24
pop into my imagination.
70
204847
1666
03:26
OK, there's my childhood church; that's specific.
71
206908
2511
ืื•ืงื™ื™. ื–ืืช ื›ื ืกื™ื™ืช ื™ืœื“ื•ืชื™. ื‘ื“ื™ื•ืง ื–ื•. ื•ื”ื ื” ืขื•ื“. ืคื•ืจื˜ ืงื•ืœื™ื ืก.
03:29
There's some more, Fort Collins.
72
209807
1868
03:31
OK, how about famous ones?
73
211699
2047
ืžื” ืขื ื›ื ืกื™ื•ืช ืžืคื•ืจืกืžื•ืช?
03:33
And they just kind of come up, kind of like this.
74
213770
2677
ื•ื”ืŸ ื›ืื™ืœื• ืžื•ืคื™ืขื•ืช, ื‘ืขืจืš ื›ื›ื”.
03:36
Just really quickly, like Google for pictures.
75
216471
2911
ืžื”ืจ ืžืื“. ื›ืžื• ืชืžื•ื ื•ืช ื‘"ื’ื•ื’ืœ".
03:39
And they come up one at a time,
76
219406
1559
ื•ื”ืŸ ืžื•ืคื™ืขื•ืช ืื—ืช ืื—ืช.
03:40
and then I think, "OK, well, maybe we can have it snow,
77
220989
2951
ื•ืื ื™ ื—ื•ืฉื‘ืช, ืื•ืœื™ ืืขืฉื” ืฉื™ื™ืจื“ ืฉืœื’,
03:43
or we can have a thunderstorm,"
78
223964
1624
ืื• ืฉืชื”ื™ื” ืกื•ืคืช ืจืขืžื™ื,
03:45
and I can hold it there and turn them into videos.
79
225612
2624
ื•ืื ื™ ื™ื›ื•ืœื” ืœื”ื—ื–ื™ืง ื‘ื”ื ื•ืœื”ืคื•ืš ืื•ืชืŸ ืœืกืจื˜ื™ื.
03:48
Now, visual thinking was a tremendous asset
80
228260
3213
ืœื—ืฉื™ื‘ื” ื•ื™ื–ื•ืืœื™ืช ื”ื™ื” ืขืจืš ืขืฆื•ื
03:51
in my work designing cattle-handling facilities.
81
231497
2802
ื‘ืขื‘ื•ื“ืชื™ ื‘ืชื›ื ื•ืŸ ืžืชืงื ื™ื ืœื˜ื™ืคื•ืœ ื‘ื‘ืงืจ.
03:54
And I've worked really hard on improving how cattle are treated
82
234799
3200
ื•ืขื‘ื“ืชื™ ืงืฉื” ืžืื“ ื›ื“ื™ ืœืฉืคืจ
ืืช ื”ื™ื—ืก ืœื‘ืงืจ ื‘ืžืคืขืœื™ ื”ืฉื—ื™ื˜ื”.
03:58
at the slaughter plant.
83
238023
1152
ืœื ืืฆื™ื’ ืืช ื”ืฉื™ืงื•ืคื™ื•ืช ื”ืžื‘ื—ื™ืœื•ืช ืฉืœ ื”ืฉื—ื™ื˜ื”.
03:59
I'm not going to go into any gucky slaughter slides.
84
239199
2496
04:01
I've got that stuff up on YouTube, if you want to look at it.
85
241719
2888
ื”ืขืœื™ืชื™ ื›ืืœื” ืœ"ื™ื•-ื˜ื™ื•ื‘", ืื ืชืจืฆื• ืœืจืื•ืช.
04:04
(Laughter)
86
244631
1041
ืืš ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื™ื›ื•ืœืชื™ ืœืขืฉื•ืช ื‘ืขื‘ื•ื“ืช ื”ืชื›ื ื•ืŸ ืฉืœื™,
04:05
But one of the things that I was able to do in my design work
87
245696
2893
ื”ื•ื ืœื‘ืฆืข ื”ืจืฆืช-ืžื‘ื—ืŸ ื‘ืžื•ื—ื™ ืœืคืจื™ื˜ ืฆื™ื•ื“ ื›ืœืฉื”ื•,
04:08
is I could test-run a piece of equipment in my mind,
88
248613
2623
04:11
just like a virtual reality computer system.
89
251260
2432
ืžืžืฉ ื›ืžื• ืžืขืจื›ืช ืžืžื•ื—ืฉื‘ืช ืฉืœ ืžืฆื™ืื•ืช ืžื“ื•ืžื”.
04:14
And this is an aerial view of a recreation of one of my projects
90
254708
3641
ื•ื–ื”ื• ืžืจืื” ืžื”ืื•ื•ื™ืจ ืฉืœ ืฉื™ื—ื–ื•ืจ ืื—ื“ ื”ืคืจื•ื™ื™ืงื˜ื™ื ืฉืœื™ ืœืฆื•ืจืš ื”ืกืจื˜.
04:18
that was used in the movie.
91
258373
1362
04:19
That was like just so super cool.
92
259759
2011
ื–ื” ื”ื™ื” ื›ื–ื” ืžืขื•ืœื”.
04:21
And there were a lot of, kind of, Asperger types and autism types
93
261794
3478
ื•ื”ื™ื• ื”ืจื‘ื” ื˜ื™ืคื•ืกื™ ืืกืคืจื’ืจ ื•ืื•ื˜ื™ืกื˜ื™ื ืฉืขื‘ื“ื• ื’ื ื”ื ื‘ืืชืจ ื”ื”ืกืจื˜ื”.
04:25
working out there on the movie set, too.
94
265296
1948
(ืฆื—ื•ืง)
04:27
(Laughter)
95
267268
1176
04:28
But one of the things that really worries me is:
96
268468
2791
ืืš ืžืฉื”ื• ืฉื‘ืืžืช ืžื“ืื™ื’ ืื•ืชื™ ื”ื•ื ื”ืฉืืœื”,
04:31
Where's the younger version of those kids going today?
97
271283
3004
ืœืืŸ ืคื•ื ื•ืช ื›ื™ื•ื ื”ื’ืจืกืื•ืช ื”ืฆืขื™ืจื•ืช ื™ื•ืชืจ ืฉืœ ื”ื ืขืจื™ื ื”ืืœื”.
04:34
They're not ending up in Silicon Valley,
98
274820
2455
ื”ื ืœื ืžื’ื™ืขื™ื ืœืขืžืง ื”ืกื™ืœื™ืงื•ืŸ, ืฉืฉื ืžืงื•ืžื.
04:37
where they belong.
99
277299
1240
(ืฆื—ื•ืง)
04:38
(Laughter)
100
278563
1820
04:40
(Applause)
101
280407
4908
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
04:45
One of the things I learned very early on because I wasn't that social,
102
285339
3581
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืœืžื“ืชื™ ืžื•ืงื“ื ืžืื“, ื›ื™ ืœื ื”ื™ื™ืชื™ ื—ื‘ืจื•ืชื™ืช,
04:48
is I had to sell my work, and not myself.
103
288944
3411
ื”ื•ื ืฉืขืœื™ ืœืžื›ื•ืจ ืืช ืขื‘ื•ื“ืชื™, ื•ืœื ืืช ืขืฆืžื™.
04:52
And the way I sold livestock jobs is I showed off my drawings,
104
292706
2960
ื•ื”ื“ืจืš ื‘ื” ืื ื™ ืžื•ื›ืจืช ืขื‘ื•ื“ื•ืช ืฉืงืฉื•ืจื•ืช ื‘ื‘ืขืœื™ ื—ื™ื™ื
ื”ื™ื ืฉืื ื™ ืžืฆื™ื’ื” ืืช ืฉืจื˜ื•ื˜ื™, ืชืžื•ื ื•ืช ืฉืœ ื“ื‘ืจื™ื.
04:55
I showed off pictures of things.
105
295690
1732
04:57
Another thing that helped me as a little kid
106
297446
2239
ืžื” ืฉืขื•ื“ ืขื–ืจ ืœื™, ื›ื™ืœื“ื” ืงื˜ื ื”,
04:59
is, boy, in the '50s, you were taught manners.
107
299709
2229
ื”ื•ื ืฉื‘ืฉื ื•ืช ื”-50 ืœื™ืžื“ื• ืื•ืชื ื• ื ื™ืžื•ืกื™ื.
05:01
You were taught you can't pull the merchandise off the shelves
108
301962
3039
ืœื™ืžื“ื• ืื•ืชื ื• ืฉืืกื•ืจ ืœื’ื ื•ื‘ ืกื—ื•ืจื” ืžื”ืžื“ืคื™ื ื‘ื—ื ื•ืช ื•ืœืคื–ืจ ืื•ืชื” ืกื‘ื™ื‘.
05:05
in the store and throw it around.
109
305025
1634
ื›ืฉื™ืœื“ื™ื ืžื’ื™ืขื™ื ืœื›ื™ืชื” ื“' ืื• ื”',
05:06
When kids get to be in third or fourth grade,
110
306683
2152
05:08
you might see that this kid's going to be a visual thinker,
111
308859
2828
ืืคืฉืจ ืœืจืื•ืช ืฉื”ื™ืœื“ ื”ื–ื” ืขืชื™ื“ ืœื—ืฉื•ื‘ ื•ื™ื–ื•ืืœื™ืช,
05:11
drawing in perspective.
112
311711
1265
ื”ื•ื ืžืฆื™ื™ืจ ื‘ืคืจืกืคืงื˜ื™ื‘ื”.
05:13
Now, I want to emphasize
113
313000
1198
ืื ื™ ืจื•ืฆื” ืœื”ื“ื’ื™ืฉ ืฉืœื ื›ืœ ื™ืœื“ ืื•ื˜ื™ืกื˜ื™
05:14
that not every autistic kid is going to be a visual thinker.
114
314222
2923
ืขืชื™ื“ ืœื”ื™ื•ืช ื—ื•ืฉื‘ ื•ื™ื–ื•ืืœื™.
05:17
Now, I had this brain scan done several years ago,
115
317712
3978
ืืช ืกืจื™ืงืช ื”ืžื•ื— ื”ื–ื• ืขืฉื• ืœื™ ืœืคื ื™ ื›ืžื” ืฉื ื™ื,
05:21
and I used to joke around about having a gigantic Internet trunk line
116
321714
3933
ื•ื ื”ื’ืชื™ ืœื”ืชืœื•ืฆืฅ ืฉื™ืฉ ืœื™ ืฉื“ื™ืจืช ืื™ื ื˜ืจื ื˜ ืขื ืงื™ืช
05:25
going deep into my visual cortex.
117
325671
1927
ืฉืžื’ื™ืขื” ืขื“ ืœืžืจื›ื– ื”ืจืื™ื™ื” ื‘ืงืœื™ืคืช ื”ืžื•ื— ืฉืœื™.
05:27
This is tensor imaging.
118
327622
1875
ื–ื•ื”ื™ ื”ื“ืžื™ื” ืฉืœ ืžืกื™ืœื•ืช ื”ืขืฆื‘ื™ื ื‘ืžื•ื—.
05:29
And my great big Internet trunk line is twice as big as the control's.
119
329521
3852
ื•ืฉื“ื™ืจืช ื”ืื™ื ื˜ืจื ื˜ ื”ืจื—ื‘ื” ืฉืœื™ ื›ืคื•ืœื” ื‘ื’ื•ื“ืœื” ื™ื—ืกื™ืช ืœืงื‘ื•ืฆืช ื”ื‘ื™ืงื•ืจืช.
05:33
The red lines there are me,
120
333397
1604
ื”ืงื•ื•ื™ื ื”ืื“ื•ืžื™ื ืžื™ื™ืฆื’ื™ื ืื•ืชื™,
05:35
and the blue lines are the sex and age-matched control.
121
335025
3909
ื•ื”ื›ื—ื•ืœื™ื - ืฉืœ ืงื‘ื•ืฆืช ื”ื‘ื™ืงื•ืจืช ื”ืžืงื‘ื™ืœื” ืžื‘ื—ื™ื ืช ืžื™ืŸ ื•ื’ื™ืœ.
05:39
And there I got a gigantic one,
122
339850
2022
ื•ื›ืืŸ ื™ืฉ ืœื™ ืงื• ืขื ืง.
05:41
and the control over there, the blue one, has got a really small one.
123
341896
4008
ื•ื‘ืงื‘ื•ืฆืช ื”ื‘ื™ืงื•ืจืช, ื‘ื›ื—ื•ืœ, ื–ื” ืžืžืฉ ืงื˜ืŸ.
05:47
And some of the research now is showing
124
347101
2135
ื•ื—ืœืง ืžื”ืžื—ืงืจื™ื ืžื•ื›ื™ื—ื™ื ื›ืขืช
05:49
that people on the spectrum actually think with the primary visual cortex.
125
349260
4031
ืฉืจื•ื‘ ื”ื—ืฉื™ื‘ื” ืฉืœ ืžื™ ืฉื‘ืกืคืงื˜ืจื•ื ื”ื–ื” ื ืขืฉื™ืช ื‘ืžืจื›ื– ื”ืจืื™ื” ื”ืจืืฉื•ื ื™.
05:53
Now, the thing is, the visual thinker is just one kind of mind.
126
353315
3041
ื”ืขื ื™ื™ืŸ ื”ื•ื ืฉื—ืฉื™ื‘ื” ื•ื™ื–ื•ืืœื™ืช ื”ื™ื ืจืง ืกื•ื’ ืžื•ื— ืื—ื“.
05:56
You see, the autistic mind tends to be a specialist mind --
127
356380
3585
ืขืœื™ื›ื ืœื”ื‘ื™ืŸ ืฉื”ืžื•ื— ื”ืื•ื˜ื™ืกื˜ื™ ื ื•ื˜ื” ืœื”ื™ื•ืช ืžื•ื— ืžื•ืžื—ื”.
05:59
good at one thing, bad at something else.
128
359989
2613
ื˜ื•ื‘ ื‘ื“ื‘ืจ ืื—ื“, ื’ืจื•ืข ื‘ื“ื‘ืจ ืื—ืจ.
ื•ืื ื™ ื”ื™ื™ืชื™ ื’ืจื•ืขื” ื‘ืืœื’ื‘ืจื”.
06:03
And where I was bad was algebra.
129
363102
1754
06:04
And I was never allowed to take geometry or trig.
130
364880
2290
ืœื ื”ื™ืจืฉื• ืœื™ ืœืœืžื•ื“ ื”ื ื“ืกื” ืื• ื˜ืจื™ื’ื•ื ื•ืžื˜ืจื™ื”. ื˜ืขื•ืช ืขืฆื•ืžื”.
06:07
Gigantic mistake.
131
367194
1163
06:08
I'm finding a lot of kids who need to skip algebra,
132
368381
2435
ืื ื™ ืžื’ืœื” ื™ืœื“ื™ื ืจื‘ื™ื ืฉืฆืจื™ื›ื™ื ืœื“ืœื’ ืขืœ ืืœื’ื‘ืจื”.
06:10
go right to geometry and trig.
133
370840
1649
ืœื”ืžืฉื™ืš ื™ืฉืจ ืœื”ื ื“ืกื” ื•ื˜ืจื™ื’ื•ื ื•ืžื˜ืจื™ื”.
06:12
Now, another kind of mind is the pattern thinker.
134
372847
2600
ืกื•ื’ ื ื•ืกืฃ ื”ื•ื ื”ืžื•ื— ืฉื—ื•ืฉื‘ ื‘ืชื‘ื ื™ื•ืช.
06:15
More abstract.
135
375471
1239
ืขื•ื“ ื™ื•ืชืจ ืžื•ืคืฉื˜. ืืœื” ื”ืžื”ื ื“ืกื™ื, ืžืชื›ื ืชื™ ื”ืžื—ืฉื‘ื™ื.
06:16
These are your engineers, your computer programmers.
136
376734
2563
06:19
This is pattern thinking.
137
379321
1394
ื”ื ื” ื—ืฉื™ื‘ื” ืชื‘ื ื™ืชื™ืช.
06:20
That praying mantis is made from a single sheet of paper --
138
380739
2885
ื’ืžืœ ืฉืœืžื” ื”ื–ื” ืขืฉื•ื™ ืžื’ืœื™ื•ืŸ-ื ื™ื™ืจ ื™ื—ื™ื“,
06:23
no scotch tape, no cuts.
139
383648
1417
ืœืœื ื ื™ื™ืจ ื“ื‘ืง, ืœืœื ื’ื–ื™ืจื•ืช.
06:25
And there in the background is the pattern for folding it.
140
385089
3535
ื•ื‘ืจืงืข ืจื•ืื™ื ืืช ืชื‘ื ื™ืช ื”ืงื™ืคื•ืœ ืฉืœื•.
06:28
Here are the types of thinking:
141
388648
1645
ื”ื ื” ืกื•ื’ื™ ื”ื—ืฉื™ื‘ื”,
06:30
photo-realistic visual thinkers, like me;
142
390731
2552
ื—ื•ืฉื‘ื™ื ื•ื™ื–ื•ืืœื™ื™ื ื‘ืฆื™ืœื•ืžื™ื ืจื™ืืœื™ืกื˜ื™ื™ื, ื›ืžื•ื ื™.
06:33
pattern thinkers, music and math minds.
143
393856
3380
ื—ื•ืฉื‘ื™ื ืชื‘ื ื™ืชื™ื™ื: ืžื•ื—ื•ืช ืžื•ื–ื™ืงืœื™ื™ื ื•ืžื•ื—ื•ืช ืžืชืžื˜ื™ื™ื.
06:37
Some of these oftentimes have problems with reading.
144
397260
2588
ืœื—ืœืงื ื™ืฉ ืœืคืขืžื™ื ืงืฉื™ื™ ืงืจื™ืื”.
06:39
You also will see these kind of problems with kids that are dyslexic.
145
399872
4481
ืชืžืฆืื• ื‘ืขื™ื•ืช ื›ืืœื” ื’ื ืืฆืœ ื™ืœื“ื™ื ื“ื™ืกืœืงื˜ื™ื™ื.
06:44
You'll see these different kinds of minds.
146
404377
2024
ืชื’ืœื• ืฉื™ืฉ ืกื•ื’ื™ ืžื•ื—ื•ืช ืฉื•ื ื™ื.
06:46
And then there's a verbal mind, they know every fact about everything.
147
406425
3574
ื•ื™ืฉื ื• ื’ื ื”ืžื•ื— ื”ืžื™ืœื•ืœื™. ืืœื” ืžื›ื™ืจื™ื ื›ืœ ืขื•ื‘ื“ื” ืขืœ ื›ืœ ื“ื‘ืจ.
ื“ื‘ืจ ื ื•ืกืฃ ื”ื•ื ื”ื ื•ืฉื ื”ืชื—ื•ืฉืชื™.
06:50
Now, another thing is the sensory issues.
148
410023
1966
ื”ื™ื™ืชื™ ืžื•ื˜ืจื“ืช ืžืื“ ืœื’ื‘ื™ ืขื ื™ื“ืช ื”ืื‘ื™ื–ืจ ื”ื–ื” ืขืœ ืคื ื™.
06:52
I was really concerned about having to wear this gadget on my face.
149
412013
3292
06:55
And I came in half an hour beforehand
150
415692
2154
ื•ืœื›ืŸ ื”ื’ืขืชื™ ื—ืฆื™ ืฉืขื” ืžื•ืงื“ื ื™ื•ืชืจ
06:57
so I could have it put on and kind of get used to it,
151
417870
2983
ื›ื“ื™ ืฉื™ืจื›ื™ื‘ื• ืœื™ ืื•ืชื• ื•ืฉืื•ื›ืœ ืงืฆืช ืœื”ืชืจื’ืœ ืืœื™ื•.
07:00
and they got it bent so it's not hitting my chin.
152
420877
2738
ื”ื ื›ื•ืคืคื• ืœื™ ืื•ืชื• ื›ื“ื™ ืฉืœื ื™ืคื’ืข ืœื™ ื‘ืกื ื˜ืจ.
07:03
But sensory is an issue.
153
423639
1152
ืืš ืชื—ื•ืฉืชื™ื•ืช ื–ื• ื‘ืขื™ื”. ื™ืฉ ื™ืœื“ื™ื ืฉืจื’ื™ืฉื™ื ืœืื•ืจ ื ื™ืื•ืŸ,
07:04
Some kids are bothered by fluorescent lights;
154
424815
2149
07:06
others have problems with sound sensitivity.
155
426988
2157
ืœืื—ืจื™ื ื™ืฉ ื‘ืขื™ื•ืช ืฉืœ ืจื’ื™ืฉื•ืช ืœืฆืœื™ืœื™ื;
07:09
You know, it's going to be variable.
156
429497
2173
ื–ื” ืžืฉืชื ื”.
07:12
Now, visual thinking gave me a whole lot of insight
157
432652
3420
ื”ื—ืฉื™ื‘ื” ื”ื•ื•ื™ื–ื•ืืœื™ืช ื ืชื ื” ืœื™ ื”ืžื•ืŸ ืชื•ื‘ื ื•ืช
07:16
into the animal mind.
158
436096
2260
ืœื’ื‘ื™ ืžื•ื—ื• ืฉืœ ื‘ืขืœ ื”ื—ื™ื™ื.
07:18
Because think about it: an animal is a sensory-based thinker,
159
438380
3433
ื—ื™ืฉื‘ื• ืขืœ ื›ืš: ื—ื™ื” ื—ื•ืฉื‘ืช ื‘ืชื—ื•ืฉื•ืช,
07:21
not verbal -- thinks in pictures, thinks in sounds, thinks in smells.
160
441837
6197
ืœื ื‘ืฆื•ืจื” ืžื™ืœื•ืœื™ืช. ื”ื™ื ื—ื•ืฉื‘ืช ื‘ืชืžื•ื ื•ืช.
ื”ื™ื ื—ื•ืฉื‘ืช ื‘ืฆืœื™ืœื™ื, ื‘ืจื™ื—ื•ืช.
07:28
Think about how much information there is on the local fire hydrant.
161
448058
3344
ื—ื™ืฉื‘ื• ื›ืžื” ืžื™ื“ืข ืžืฆื•ื™ ืขืœ ื‘ืจื– ื›ื™ื‘ื•ื™-ื”ืืฉ ื‘ืจื—ื•ื‘ื›ื.
07:31
He knows who's been there --
162
451426
1362
ื”ื™ื ื™ื•ื“ืขืช ืžื™ ื”ื™ื” ืฉื, ื•ืžืชื™,
07:32
(Laughter)
163
452812
1031
07:33
When they were there.
164
453867
1157
ื•ืื ื–ื” ื™ื“ื™ื“ ืื• ืื•ื™ื‘, ืื• ืžื™ืฉื”ื• ืฉืืคืฉืจ ืœื”ื–ื“ื•ื•ื’ ืื™ืชื•.
07:35
Are they friend or foe? Is there anybody he can go mate with?
165
455048
2895
07:37
There's a ton of information on that fire hydrant.
166
457967
2882
ื™ืฉ ื˜ื•ื ื•ืช ืฉืœ ืžื™ื“ืข ืขืœ ื‘ืจื– ื”ื›ื™ื‘ื•ื™ ื”ื”ื•ื.
07:40
It's all very detailed information.
167
460873
2786
ื•ื–ื”ื• ืžื™ื“ืข ืžืคื•ืจื˜ ื‘ื™ื•ืชืจ.
07:43
And looking at these kind of details gave me a lot of insight into animals.
168
463996
4239
ื•ื”ื”ืชื‘ื•ื ื ื•ืช ื‘ืกื•ื’ ื–ื” ืฉืœ ืคืจื˜ื™ื ื ืชื ื” ืœื™ ื”ื‘ื ื” ืžืขืžื™ืงื” ื‘ื‘ืขืœื™ ื—ื™ื™ื.
07:48
Now, the animal mind, and also my mind,
169
468688
3548
ืžื•ื— ื”ื—ื™ื”, ื•ื”ืžื•ื— ืฉืœื™
07:52
puts sensory-based information into categories.
170
472260
4569
ืžืกื“ืจื™ื ืžื™ื“ืข ืžื‘ื•ืกืก-ืชื—ื•ืฉื•ืช ืœืคื™ ืงื˜ื’ื•ืจื™ื•ืช.
07:56
Man on a horse,
171
476853
1703
ืื“ื ืขืœ ืกื•ืก ื•ืื“ื ืขืœ ื”ืงืจืงืข
07:58
and a man on the ground --
172
478580
1555
08:00
that is viewed as two totally different things.
173
480159
2785
ื ืชืคืกื™ื ื›ืฉื ื™ ื“ื‘ืจื™ื ืฉื•ื ื™ื ืœื—ืœื•ื˜ื™ืŸ.
08:02
You could have a horse that's been abused by a rider.
174
482968
2499
ื™ื›ื•ืœ ืœื”ื™ื•ืช ืœื›ื ืœื›ื ืกื•ืก ืฉืจื•ื›ื‘ื• ื”ืชืขืœืœ ื‘ื•.
08:05
They'll be absolutely fine with the veterinarian
175
485491
2270
ื”ื•ื•ื˜ืจื™ื ืจ ื™ื—ืฉื•ื‘ ืฉื”ื›ืœ ื‘ืกื“ืจ,
08:07
and with the horseshoer, but you can't ride him.
176
487785
2451
ื•ื›ืš ื’ื ื”ืžืคืจื–ืœ. ืื‘ืœ ืื™-ืืคืฉืจ ืœืจื›ื‘ ืขืœื™ื•.
08:10
You have another horse, where maybe the horseshoer beat him up,
177
490260
3175
ื•ืื™ืœื• ืกื•ืก ืื—ืจ, ืฉื”ืžืคืจื–ืœ ืื•ืœื™ ื”ื™ื›ื” ืื•ืชื•,
08:13
and he'll be terrible for anything on the ground with the veterinarian,
178
493459
3995
ื•ื”ื•ื ื™ืชื ื”ื’ ืื™ื•ื ื•ื ื•ืจื ืœื›ืœ ืžื” ืฉื ืžืฆื ืขืœ ื”ืงืจืงืข,
ืืœ ื”ื•ื•ื˜ืจื™ื ืจ, ืื‘ืœ ื ื™ืชืŸ ืœืจื›ื‘ ืขืœื™ื•.
08:17
but a person can ride him.
179
497478
2015
08:19
Cattle are the same way.
180
499517
1307
ื›ืš ื’ื ื”ื‘ืงืจ.
08:20
Man on a horse, a man on foot -- they're two different things.
181
500848
3925
ื’ื‘ืจ ืขืœ ืกื•ืก,
ื’ื‘ืจ ืฉื”ื•ืœืš ื‘ืจื’ืœ - ืฉื ื™ ื“ื‘ืจื™ื ืฉื•ื ื™ื.
08:24
You see, it's a different picture.
182
504797
1956
ื–ื• ื”ืจื™ ื›ื‘ืจ ืชืžื•ื ื” ืื—ืจืช.
08:26
See, I want you to think about just how specific this is.
183
506777
3121
ืื ื™ ืจื•ืฆื” ืฉืชื—ืฉื‘ื• ื›ืžื” ื–ื” ืกืคืฆื™ืคื™.
08:29
Now, this ability to put information into categories,
184
509922
3387
ื•ื”ื™ื›ื•ืœืช ื”ื–ื•, ืœืกื•ื•ื’ ืžื™ื“ืข ืœืคื™ ืงื˜ื’ื•ืจื™ื•ืช,
08:33
I find a lot of people are not very good at this.
185
513333
3352
ืžืฆืืชื™ ืฉื”ืจื‘ื” ืื ืฉื™ื ืœื ืžืื“ ื˜ื•ื‘ื™ื ื‘ื–ื”.
08:36
When I'm out troubleshooting equipment
186
516709
2168
ืœืžืฉืœ, ื›ืฉืื ื™ ื‘ืฉื˜ื—, ืžืชืงื ืช ืฆื™ื•ื“
08:38
or problems with something in a plant,
187
518901
1828
ืื• ืคื•ืชืจืช ื‘ืขื™ื•ืช ื‘ืžืคืขืœ,
08:40
they don't seem to be able to figure out:
188
520753
2005
ื”ื ื›ื ืจืื” ืœื ืžืกื•ื’ืœื™ื ืœืกื•ื•ื’: "ื™ืฉ ืœื™ ื‘ืขื™ื” ื‘ื”ื›ืฉืจืช ืื ืฉื™ื
08:42
"Do I have a training-people issue?
189
522782
1700
08:44
Or do I have something wrong with the equipment?"
190
524506
2435
"ืื• ื™ืฉ ืœื™ ื‘ืขื™ื” ื‘ืฆื™ื•ื“?"
08:46
In other words, categorize equipment problem from a people problem.
191
526965
3694
ื‘ืžืœื™ื ืื—ืจื•ืช, ืœืกื•ื•ื’ ื‘ืขื™ื•ืช ื‘ืฆื™ื•ื“ ืœื”ื‘ื“ื™ืœ ืžื‘ืขื™ื•ืช ื›ื•ื—-ืื“ื.
08:50
I find a lot of people have difficulty doing that.
192
530683
3096
ืื ื™ ืžื•ืฆืืช ืฉืื ืฉื™ื ืจื‘ื™ื ืžืชืงืฉื™ื ื‘ื–ื”.
08:53
Now, let's say I figure out it's an equipment problem.
193
533803
2564
ื ื ื™ื— ืฉืกื™ื•ื•ื’ืชื™ ืืช ื”ื‘ืขื™ื” ื›ื‘ืขื™ื™ืช ืฆื™ื•ื“:
08:56
Is it a minor problem, with something simple I can fix?
194
536391
2776
ื”ืื ื–ื• ื‘ืขื™ื” ืงื˜ื ื”, ืžืฉื”ื• ืคืฉื•ื˜ ืฉืื ื™ ื™ื›ื•ืœื” ืœืชืงืŸ?
08:59
Or is the whole design of the system wrong?
195
539191
2315
ืื• ืฉื›ืœ ืชื›ื ื•ืŸ ื”ืžืขืจื›ืช ืฉื’ื•ื™?
09:01
People have a hard time figuring that out.
196
541530
2706
ืœืื ืฉื™ื ืงืฉื” ืœืขืฉื•ืช ื”ื‘ื—ื ื•ืช ื›ืืœื”.
09:04
Let's just look at something like, you know,
197
544260
2096
ื ื™ืงื— ืžืฉื”ื• ื›ืžื•
09:06
solving problems with making airlines safer.
198
546380
2246
ืคืชืจื•ืŸ ื‘ืขื™ื•ืช ืœืฆื•ืจืš ืฉื™ืคื•ืจ ื‘ื˜ื™ื—ื•ืช ื”ืชืขื‘ื•ืจื” ื”ืื•ื•ื™ืจื™ืช.
09:08
Yeah, I'm a million-mile flier.
199
548650
1586
ื›ืŸ, ืื ื™ ื ื•ืกืขืช ืžืชืžื™ื“ื”. ืื ื™ ื˜ืกื” ื”ืžื•ืŸ,
09:10
I do lots and lots of flying,
200
550260
1826
09:12
and if I was at the FAA,
201
552110
3232
ื•ืื ื”ื™ื™ืชื™ ื—ื‘ืจื” ื‘ืื™ื’ื•ื“ ื”ื˜ื™ืกื•ืช ื”ืคื“ืจืœื™,
09:15
what would I be doing a lot of direct observation of?
202
555366
3522
ืžื” ื”ื™ื™ืชื™ ืžืจื‘ื” ืœื‘ื“ื•ืง ืžืงืจื•ื‘?
09:19
It would be their airplane tails.
203
559457
2304
ืืช ื–ื ื‘ื•ืช ื”ืžื˜ื•ืกื™ื.
09:21
You know, five fatal wrecks in the last 20 years,
204
561785
2550
ื—ืžืฉ ื”ืชืจืกืงื•ื™ื•ืช ืงื˜ืœื ื™ื•ืช ื‘-20 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
09:24
the tail either came off,
205
564359
1775
ืฉื‘ื”ืŸ ื”ื–ื ื‘ ื”ืชืคืจืง ืื• ืฉืžืขืจื›ืช ื”ื”ื™ื’ื•ื™ ืฉื‘ื–ื ื‘ ื”ืชืงืœืงืœื”.
09:26
or steering stuff inside the tail broke in some way.
206
566158
3434
09:30
It's tails, pure and simple.
207
570007
2053
ื”ื–ื ื‘ื•ืช ืฉืœื”ื. ืงืœ ื•ืคืฉื•ื˜.
09:32
And when the pilots walk around the plane, guess what?
208
572084
2533
ื•ื›ืฉื”ื˜ื™ื™ืกื™ื ื‘ื•ื“ืงื™ื ืžืกื‘ื™ื‘ ืœืžื˜ื•ืก, ื”ื ืœื ืจื•ืื™ื ืืช ืžื” ืฉื™ืฉ ื‘ืชื•ืš ื”ื–ื ื‘.
09:34
They can't see that stuff inside the tail.
209
574641
2051
09:36
Now as I think about that,
210
576716
1437
ืขื›ืฉื™ื•, ื›ืฉืื ื™ ื—ื•ืฉื‘ืช ืขืœ ื–ื”,
ืื ื™ ื‘ืขืฆื ืžื—ืœืฆืช ืืช ื›ืœ ื”ืžื™ื“ืข ื”ืกืคืฆื™ืคื™ ื”ื–ื”.
09:38
I'm pulling up all of that specific information.
211
578177
3459
09:41
It's specific.
212
581660
1173
ื–ื” ืกืคืฆื™ืคื™. ื”ื—ืฉื™ื‘ื” ืฉืœื™ ื”ื™ื ืžืœืžื˜ื” ื›ืœืคื™ ืžืขืœื”.
09:42
See, my thinking's bottom-up.
213
582857
1495
09:44
I take all the little pieces and I put the pieces together like a puzzle.
214
584376
3697
ืื ื™ ืœื•ืงื—ืช ื•ืžืฆืจืคืช ืืช ื›ืœ ื”ืคื™ืกื•ืช ื”ืงื˜ื ื•ืช ื›ืžื• ื‘ื—ื™ื“ืช ืชืฆืจืฃ.
09:48
Now, here is a horse that was deathly afraid of black cowboy hats.
215
588097
3767
ืื– ื”ื ื” ื”ืกื•ืก ืฉืคื—ื“ ืคื—ื“-ืžื•ื•ืช ืžื›ื•ื‘ืขื™ ื‘ื•ืงืจื™ื ืฉื—ื•ืจื™ื.
09:51
He'd been abused by somebody with a black cowboy hat.
216
591888
2560
ื”ืชืขืœืœ ื‘ื• ืžื™ืฉื”ื• ืฉื—ื‘ืฉ ื›ื•ื‘ืข ื‘ื•ืงืจื™ื ืฉื—ื•ืจ.
09:54
White cowboy hats, that was absolutely fine.
217
594472
2889
ืขื ื›ื•ื‘ืขื™-ื‘ื•ืงืจื™ื ืœื‘ื ื™ื ืœื ื”ื™ืชื” ืœื• ื‘ืขื™ื”.
09:57
Now, the thing is, the world is going to need
218
597856
2550
ื”ืขื ื™ื™ืŸ ื”ื•ื ืฉื”ืขื•ืœื ืขืชื™ื“ ืœื”ื–ื“ืงืง ืœื›ืœ ืžื™ื ื™ ืžื•ื—ื•ืช ืฉืคื•ืขืœื™ื ื‘ืฆื•ื•ืชื.
10:00
all of the different kinds of minds to work together.
219
600430
4089
10:04
We've got to work on developing all these different kinds of minds.
220
604543
3191
ืขืœื™ื ื• ืœื”ืฉืงื™ืข ื‘ืคื™ืชื•ื— ื›ืœ ืกื•ื’ื™ ื”ืžื•ื—ื•ืช ื”ืืœื”.
10:07
And one of the things that is driving me really crazy
221
607758
2542
ื•ืžื” ืฉืžืžืฉ ืžืฉื’ืข ืื•ืชื™ ื›ืฉืื ื™ ื ื•ืกืขืช ืœืขืจื•ืš ืžืคื’ืฉื™ ืื•ื˜ื™ืกื˜ื™ื,
10:10
as I travel around and I do autism meetings,
222
610324
2347
10:12
is I'm seeing a lot of smart, geeky, nerdy kids,
223
612695
3141
ื”ื•ื ืฉืื ื™ ืคื•ื’ืฉืช ื”ืžื•ืŸ ื™ืœื“ื™ื ื—ื ื•ื ื™ื™ื ื•ื—ื›ืžื™ื.
10:15
and they just aren't very social,
224
615860
2175
ื•ื”ื ืœื ื”ื›ื™ ื—ื‘ืจื•ืชื™ื™ื,
ื•ืื™ืฉ ืื™ื ื ื• ืขื•ืฉื” ืžืฉื”ื• ื›ื“ื™ ืœืคืชื— ืืช ื”ืขื ื™ื™ืŸ ืฉืœื”ื
10:18
and nobody's working on developing their interest
225
618059
3091
ื‘ืžืฉื”ื• ื›ืžื• ืžื“ืข.
10:21
in something like science.
226
621174
1375
10:22
And this brings up the whole thing of my science teacher.
227
622926
2687
ื•ื–ื” ืžื‘ื™ื ืื•ืชื™ ืœืžื•ืจื” ืฉืœื™ ืœืžื“ืขื™ื.
10:25
My science teacher is shown absolutely beautifully in the movie.
228
625637
3108
ื”ืžื•ืจื” ืฉืœื™ ืœืžื“ืขื™ื ืžื•ืฆื’ ื ืคืœื ื‘ืกืจื˜ ื”ื–ื”.
10:28
I was a goofball student when I was in high school.
229
628769
2486
ื‘ืชื™ื›ื•ืŸ ื”ื™ื™ืชื™ ืชืœืžื™ื“ื” ื˜ื™ืคืฉื”.
ื‘ื›ืœืœ ืœื ื”ืชื™ื™ื—ืกืชื™ ืœืœื™ืžื•ื“ื™ื,
10:31
I just didn't care at all about studying,
230
631279
2028
10:33
until I had Mr. Carlock's science class.
231
633331
3229
ืขื“ ืฉื™ืขื•ืจ ื”ืžื“ืขื™ื ืฉืœ ืžืจ ืงืจืœื•ืง.
10:36
He was now Dr. Carlock in the movie.
232
636584
2372
ื–ื”ื• ื“"ืจ ืงืจืœื•ืง ืฉื‘ืกืจื˜.
10:39
And he got me challenged to figure out an optical illusion room.
233
639357
5879
ื•ื”ื•ื ื”ืฆื™ื‘ ืœื™ ืืชื’ืจ
ืœื”ืชืžืฆื ื‘ื—ื“ืจ ืžืœื ืืฉืœื™ื•ืช ืื•ืคื˜ื™ื•ืช.
10:45
This brings up the whole thing of you've got to show kids
234
645260
2715
ื–ื” ืžืขืœื” ืืช ื”ื ื•ืฉื ืฉืฆืจื™ืš ืœื”ืจืื•ืช ืœื™ืœื“ื™ื ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื.
10:47
interesting stuff.
235
647999
1157
10:49
You know, one of the things that I think maybe TED ought to do
236
649574
3313
ื—ืฉื‘ืชื™ ืฉืื—ื“ ื”ื“ื‘ืจื™ื ืฉ-TED ืฆืจื™ื›ื” ืœืขืฉื•ืช
10:52
is tell all the schools about all the great lectures that are on TED,
237
652911
3315
ื”ื•ื ืœืกืคืจ ื‘ื›ืœ ื‘ืชื™ ื”ืกืคืจ ืขืœ ื”ื”ืจืฆืื•ืช ื”ื ื”ื“ืจื•ืช ืฉืœ TED,
ื•ื™ืฉ ื’ื ื”ืžื•ืŸ ื“ื‘ืจื™ื ื ื”ื“ืจื™ื ื‘ืื™ื ื˜ืจื ื˜,
10:56
and there's all kinds of great stuff on the Internet
238
656250
2487
ืฉื™ื›ื•ืœื™ื ืœื”ื“ืœื™ืง ืืช ื”ื™ืœื“ื™ื.
10:58
to get these kids turned on.
239
658761
1372
ื›ื™ ืื ื™ ืจื•ืื” ื”ืžื•ืŸ ื™ืœื“ื™ื ื—ื ื•ื ื™ื ื›ืืœื”,
11:00
Because I'm seeing a lot of these geeky, nerdy kids,
240
660157
2486
11:02
and the teachers out in the Midwest and other parts of the country
241
662667
3184
ื•ื”ืžื•ืจื™ื ื‘ืžืขืจื‘ ื”ืชื™ื›ื•ืŸ, ื•ื‘ื—ืœืงื™ื ืื—ืจื™ื ืฉืœ ื”ืืจืฅ,
11:05
when you get away from these tech areas,
242
665875
1938
ื›ืฉืžืชืจื—ืงื™ื ืžืื–ื•ืจื™ ื”ื”ื™ื™-ื˜ืง,
11:07
they don't know what to do with these kids.
243
667837
2012
ื”ื ืœื ื™ื•ื“ืขื™ื ืžื” ืœืขืฉื•ืช ืขื ื”ื™ืœื“ื™ื ื”ืืœื”.
11:09
And they're not going down the right path.
244
669873
2021
ื•ื”ื ืœื ืขื•ื‘ื“ื™ื ื ื›ื•ืŸ.
11:11
The thing is, you can make a mind
245
671918
1782
ื”ืขื ื™ื™ืŸ ื”ื•ื ืฉืืคืฉืจ ืœืขืฆื‘ ืžื•ื—
11:13
to be more of a thinking and cognitive mind,
246
673724
2725
ื›ืš ืฉื™ื”ื™ื” ื™ื•ืชืจ ื—ื•ืฉื‘ ื•ืงื•ื’ื ื™ื˜ื™ื‘ื™,
11:16
or your mind can be wired to be more social.
247
676473
2475
ืื• ืœื—ื•ื•ื˜ ืื•ืชื• ื›ืžื•ื— ื—ื‘ืจืชื™ ื™ื•ืชืจ.
11:18
And what some of the research now has shown in autism
248
678972
2631
ื•ื—ืœืง ืžื”ืžื—ืงืจื™ื ื”ื™ื•ื ืžืจืื™ื ืฉื‘ืื•ื˜ื™ื–ื,
11:21
is there may by extra wiring back here in the really brilliant mind,
249
681627
3470
ื™ืฉ ืื•ืœื™ ืขื•ื“ืฃ ื—ื™ื•ื•ื˜ ื›ืืŸ ืžืื—ื•ืจ, ื‘ืžื•ื— ื”ืžื‘ืจื™ืง,
ื•ืคื” ืื ื• ืžืื‘ื“ื™ื ื›ืžื” ืžืขื’ืœื™ื ื—ื‘ืจืชื™ื™ื.
11:25
and we lose a few social circuits here.
250
685121
1913
ื–ื” ืžืขื™ืŸ ืกื—ืจ ื—ืœื™ืคื™ืŸ ื‘ื™ืŸ ื—ืฉื™ื‘ื” ืœื—ื‘ืจืชื™ื•ืช.
11:27
It's kind of a trade-off between thinking and social.
251
687058
2951
ื•ืื– ืืคืฉืจ ืœื”ื’ื™ืข ืœื ืงื•ื“ื” ืฉื‘ื” ื–ื” ื›ื” ื—ืžื•ืจ
11:30
And then you can get to the point where it's so severe,
252
690033
2592
11:32
you're going to have a person that's going to be non-verbal.
253
692649
2856
ืขื“ ืฉืื•ืชื• ืื“ื ืขืชื™ื“ ืœื”ื™ื•ืช ืœื-ืžื™ืœื•ืœื™.
11:35
In the normal human mind,
254
695529
1707
ื‘ืžื•ื— ื”ืื ื•ืฉื™ ื”ื ื•ืจืžืœื™,
11:37
language covers up the visual thinking we share with animals.
255
697260
3622
ื”ืฉืคื” ืžื›ืกื” ืขืœ ื”ื—ืฉื™ื‘ื” ื”ื•ื™ื–ื•ืืœื™ืช ืฉืžืฉื•ืชืคืช ืœื ื• ื•ืœื—ื™ื•ืช.
11:40
This is the work of Dr. Bruce Miller.
256
700906
2691
ื–ืืช ื™ืฆื™ืจื” ืฉืœ ื“"ืจ ื‘ืจื•ืก ืžื™ืœืจ.
ื”ื•ื ื—ืงืจ ื—ื•ืœื™ ืืœืฆื”ื™ื™ืžืจ
11:44
He studied Alzheimer's patients that had frontal temporal lobe dementia.
257
704756
3732
ืฉืกื‘ืœื• ืžื“ืžื ืฆื™ื” ืฉืœ ืื•ื ืช ื”ืจืงื” ื”ืงื“ืžื™ืช.
11:48
And the dementia ate out the language parts of the brain.
258
708512
3023
ื•ื”ื“ืžื ืฆื™ื” ืื™ื›ืœื” ืืช ื—ืœืงื™ ื”ืฉืคื” ืฉืœ ื”ืžื•ื—.
11:51
And then this artwork came out of somebody
259
711559
2271
ื•ืืช ื–ื” ืฆื™ื™ืจ ืื“ื ืฉืคืขื ื”ืจื›ื™ื‘ ืžืขืจื›ื•ืช ืฉืžืข ื‘ืžื›ื•ื ื™ื•ืช.
11:53
who used to install stereos in cars.
260
713854
1968
11:56
Now, Van Gogh doesn't know anything about physics,
261
716827
3666
ื ื›ื•ืŸ ืฉื•ื•ืืŸ-ื’ื•ืš ืœื ืžื‘ื™ืŸ ื›ืœื•ื ื‘ืคื™ื–ื™ืงื”,
12:00
but I think it's very interesting that there was some work done
262
720517
3321
ืื‘ืœ ื ืจืื” ืœื™ ืžืขื ื™ื™ืŸ ืžืื“ ืฉืžื—ืงืจ ืžืกื•ื™ื ื”ื•ื›ื™ื—
12:03
to show that this eddy pattern in this painting
263
723862
2723
ืฉืชื‘ื ื™ื•ืช ื”ืžืขืจื‘ื•ืœื•ืช ื‘ืฆื™ื•ืจ ื”ื–ื”
12:06
followed a statistical model of turbulence,
264
726609
3148
ืžืชื ื”ื’ื•ืช ืœืคื™ ื“ื’ื ืกื˜ื˜ื™ืกื˜ื™ ืฉืœ ืžืขืจื‘ื•ืœืช.
12:09
which brings up the whole interesting idea
265
729781
2019
ืžื” ืฉืžืขืœื” ืืช ื›ืœ ื”ืจืขื™ื•ืŸ ื”ืžืขื ื™ื™ืŸ
12:11
of maybe some of this mathematical patterns is in our own head.
266
731824
3738
ืฉืื•ืœื™ ืžืฉื”ื• ืžื”ืชื‘ื ื™ื•ืช ื”ืžืชืžื˜ื™ื•ืช ื”ืืœื”
ื ืžืฆื ื‘ืชื•ืš ืจืืฉื ื•.
12:15
And the Wolfram stuff --
267
735586
1553
ื•ื‘ื ื•ืฉื "ื•ื•ืœืคืจืื", ื ื™ื”ืœืชื™ ืจืฉื™ืžื•ืช
12:17
I was taking notes and writing down all the search words I could use,
268
737163
4566
ื•ื›ืชื‘ืชื™ ืืช ื›ืœ ืžื™ืœื•ืช ื”ื—ื™ืคื•ืฉ ืฉื™ื›ื•ืœืชื™ ืœื”ืฉืชืžืฉ ื‘ื”ืŸ
12:21
because I think that's going to go on in my autism lectures.
269
741753
3327
ื›ื™ ื ืจืื” ืœื™ ืฉื–ื” ื™ื™ืžืฉืš ื‘ื”ืจืฆืื•ืชื™ ืขืœ ื”ืื•ื˜ื™ื–ื.
12:25
We've got to show these kids interesting stuff.
270
745104
2427
ืื ื• ื—ื™ื™ื‘ื™ื ืœื”ืจืื•ืช ืœื™ืœื“ื™ื ื”ืืœื” ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื.
12:27
And they've taken out the auto-shop class
271
747555
2267
ืื‘ืœ ืžื‘ื˜ืœื™ื ืืช ืœื™ืžื•ื“ื™ ื”ื›ืจืช ื”ืจื›ื‘, ื”ืฉืจื˜ื•ื˜, ื•ื”ืืžื ื•ืช.
12:29
and the drafting class and the art class.
272
749846
2100
12:31
I mean, art was my best subject in school.
273
751970
2266
ื•ืืžื ื•ืช ื”ืจื™ ื”ื™ืชื” ื”ืชื—ื•ื ื”ื›ื™ ื˜ื•ื‘ ืฉืœื™ ื‘ื‘ื™ื”"ืก.
12:34
We've got to think about all these different kinds of minds,
274
754260
2859
ืขืœื™ื ื• ืœื—ืฉื•ื‘ ืขืœ ื›ืœ ืกื•ื’ื™ ื”ืžื•ื—ื•ืช ื”ืฉื•ื ื™ื ื”ืœืœื•.
ื•ื‘ื”ื—ืœื˜ ืœืขื‘ื•ื“ ืขื ื›ืœ ืกื•ื’ื™ ื”ืžื•ื—ื•ืช ื”ืฉื•ื ื™ื ื”ืœืœื•.
12:37
and we've got to absolutely work with these kind of minds,
275
757143
2780
12:39
because we absolutely are going to need
276
759947
2288
ื›ื™ ืื ื• ืขืชื™ื“ื™ื ื‘ื”ื—ืœื˜ ืœื”ื–ื“ืงืง ืœืกื•ื’ื™ ืื ืฉื™ื ื›ืืœื” ื‘ืขืชื™ื“.
12:42
these kinds of people in the future.
277
762259
2521
12:45
And let's talk about jobs.
278
765260
1779
ื‘ื•ืื• ื ื“ื‘ืจ ืขืœ ืžืงื•ืžื•ืช ืขื‘ื•ื“ื”.
12:47
OK, my science teacher got me studying,
279
767524
2193
ืื– ื”ืžื•ืจื” ืฉืœื™ ืœืžื“ืขื™ื ื”ื›ืจื™ื— ืื•ืชื™ ืœืœืžื•ื“
12:49
because I was a goofball that didn't want to study.
280
769741
2414
ื›ื™ ื”ื™ื™ืชื™ ื˜ื™ืคืฉื” ืฉืœื ืจื•ืฆื” ืœืœืžื•ื“.
12:52
But you know what? I was getting work experience.
281
772179
2345
ืื‘ืœ ืืชื ื™ื•ื“ืขื™ื ืžื”? ืจื›ืฉืชื™ ื ืกื™ื•ืŸ ืขื‘ื•ื“ื”.
12:54
I'm seeing too many of these smart kids who haven't learned basic things,
282
774548
3464
ืื ื™ ืจื•ืื” ื™ื•ืชืจ ืžื“ื™ ื™ืœื“ื™ื ื—ื›ืžื™ื ืฉืœื ืœืžื“ื• ื“ื‘ืจื™ื ื‘ืกื™ืกื™ื™ื,
ื›ืžื• ืื™ืš ืœื”ืชื™ื™ืฆื‘ ื‘ื–ืžืŸ.
12:58
like how to be on time -- I was taught that when I was eight years old.
283
778036
3448
ืืช ื–ื” ืœื™ืžื“ื• ืื•ืชื™ ื›ืฉื”ื™ื™ืชื™ ื‘ืช ืฉืžื•ื ื”.
ื•ื ื™ืžื•ืกื™ ืฉื•ืœื—ืŸ ื‘ืžืกื™ื‘ื•ืช ื™ื•ื ืจืืฉื•ืŸ ืืฆืœ ืกื‘ืชื.
13:01
How to have table manners at granny's Sunday party.
284
781508
2555
ืืช ื–ื” ืœื™ืžื“ื• ืื•ืชื™ ื›ืฉื”ื™ื™ืชื™ ืžืื“ ืžืื“ ืฆืขื™ืจื”.
13:04
I was taught that when I was very, very young.
285
784087
2185
13:06
And when I was 13, I had a job at a dressmaker's shop sewing clothes.
286
786746
4977
ื›ืฉื”ื™ื™ืชื™ ื‘ืช 13 ื”ื™ืชื” ืœื™ ืขื‘ื•ื“ื” ืืฆืœ ืชื•ืคืจืช ืฉืžืœื•ืช ื•ืžื›ืจืชื™ ื‘ื’ื“ื™ื.
13:11
I did internships in college,
287
791747
2588
ืขืฉื™ืชื™ ื”ืชืžื—ื•ื™ื•ืช ื‘ืงื•ืœื’'.
13:14
I was building things,
288
794359
3203
ื‘ื ื™ืชื™ ื“ื‘ืจื™ื.
13:17
and I also had to learn how to do assignments.
289
797586
3017
ื•ื”ื™ื” ืขืœื™ ื’ื ืœืœืžื•ื“ ืœื‘ืฆืข ืžื˜ืœื•ืช.
13:20
You know, all I wanted to do was draw pictures of horses when I was little.
290
800627
3590
ื›ืฉื”ื™ื™ืชื™ ืงื˜ื ื” ืจืฆื™ืชื™ ืจืง ืœืฆื™ื™ืจ ืกื•ืกื™ื.
13:24
My mother said, "Well let's do a picture of something else."
291
804241
2828
ืื™ืžื™ ืืžืจื”, "ื‘ื•ืื™ ื ืฆื™ื™ืจ ืžืฉื”ื• ืื—ืจ."
ื”ื ื—ื™ื™ื‘ื™ื ืœืœืžื•ื“ ืœืขืฉื•ืช ืžืฉื”ื• ืื—ืจ.
13:27
They've got to learn how to do something else.
292
807093
2164
ื ื ื™ื— ืฉื”ื™ืœื“ ืžืงื•ื‘ืข ืขืœ ืœื’ื•.
13:29
Let's say the kid is fixated on Legos.
293
809281
1844
ื”ื‘ื” ื ื’ืจื•ื ืœื• ืœืขื‘ื•ื“ ืขืœ ื‘ื ื™ื™ืช ื“ื‘ืจื™ื ืฉื•ื ื™ื.
13:31
Let's get him working on building different things.
294
811149
2697
13:33
The thing about the autistic mind is it tends to be fixated.
295
813870
3596
ื”ืขื ื™ื™ืŸ ืขื ื”ืžื•ื— ื”ืื•ื˜ื™ืกื˜ื™ ื”ื•ื ื ื˜ื™ื™ืชื• ืœื”ืชืงื‘ืข.
13:37
Like if the kid loves race cars, let's use race cars for math.
296
817490
3878
ื ื ื™ื— ืฉื”ื™ืœื“ ืื•ื”ื‘ ืžื›ื•ื ื™ื•ืช ืžืจื•ืฅ,
ืื– ื‘ื•ืื• ื ื ืฆืœ ืืช ื–ื” ื›ื“ื™ ืœืœืžื•ื“ ืžืชืžื˜ื™ืงื”.
13:41
Let's figure out how long it takes a race car to go a certain distance.
297
821392
3440
ื”ื‘ื” ื ืจืื” ื›ืžื” ื–ืžืŸ ืœื•ืงื— ืœืžื›ื•ื ื™ืช ืžืจื•ืฅ ืœืขื‘ื•ืจ ืžืจื—ืง ืžืกื•ื™ื.
13:44
In other words, use that fixation
298
824856
3113
ื‘ืžืœื™ื ืื—ืจื•ืช, ืœื ืฆืœ ืืช ื”ืงื™ื‘ืขื•ืŸ
13:47
in order to motivate that kid, that's one of the things we need to do.
299
827993
3856
ื›ื“ื™ ืœืชืช ืœื™ืœื“ ืžื•ื˜ื™ื‘ืฆื™ื”. ื–ื” ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืขืœื™ื ื• ืœืขืฉื•ืช.
13:51
I really get fed up when the teachers,
300
831873
3088
ืžืžืฉ ื ืžืืก ืœื™ ื›ืฉื”ืžื•ืจื™ื,
13:54
especially when you get away from this part of the country,
301
834985
2802
ื‘ืžื™ื•ื—ื“ ื›ืฉืžืชืจื—ืงื™ื ืžื—ืœืง ื”ืืจืฅ ื”ื–ื”,
ืœื ื™ื•ื“ืขื™ื ืžื” ืœืขืฉื•ืช ืขื ื”ื™ืœื“ื™ื ื”ื—ื›ืžื™ื ื”ืืœื”.
13:57
they don't know what to do with these smart kids.
302
837811
2380
ื–ื” ืžืžืฉ ืžืฉื’ืข ืื•ืชื™.
14:00
It just drives me crazy.
303
840215
1163
14:01
What can visual thinkers do when they grow up?
304
841402
2242
ื‘ืžื” ื™ื•ื›ืœื• ืœืขืกื•ืง ื”ื—ื•ืฉื‘ื™ื ื”ื•ื™ื–ื•ืืœื™ื™ื ื›ืฉื™ื’ื“ืœื•?
14:03
They can do graphic design, all kinds of stuff with computers,
305
843668
2949
ื”ื ื™ื•ื›ืœื• ืœืขืกื•ืง ื‘ืขื™ืฆื•ื‘ ื’ืจืคื™, ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืขื ืžื—ืฉื‘ื™ื,
14:06
photography, industrial design.
306
846641
3383
ืฆื™ืœื•ื, ืขื™ืฆื•ื‘ ืชืขืฉื™ื™ืชื™.
14:11
The pattern thinkers -- they're the ones that are going to be your mathematicians,
307
851643
3932
ื”ื—ื•ืฉื‘ื™ื ื”ืชื‘ื ื™ืชื™ื™ื, ืืœื” ืขืชื™ื“ื™ื ืœื”ื™ื•ืช ื”ืžืชืžื˜ื™ืงืื™ื ื•ืžื”ื ื“ืกื™ ื”ืชื•ื›ื ื” ืฉืœื›ื.
14:15
your software engineers, your computer programmers,
308
855599
2507
ืžืชื›ื ืชื™ ื”ืžื—ืฉื‘ื™ื ืฉืœื›ื, ื›ืœ ื”ืชืคืงื™ื“ื™ื ื”ืืœื”.
14:18
all of those kinds of jobs.
309
858130
1963
ื•ื™ืฉื ื ืžื•ื—ื•ืช ื”ืžืœื™ื. ืืœื” ื™ื”ื™ื• ืขื™ืชื•ื ืื™ื ื ื”ื“ืจื™ื.
14:20
And then you've got the word minds; they make great journalists,
310
860117
3572
14:23
and they also make really, really good stage actors.
311
863713
2523
ื•ื’ื ืฉื—ืงื ื™ ืชื™ืื˜ืจื•ืŸ ืžืžืฉ ื˜ื•ื‘ื™ื.
14:26
Because the thing about being autistic is,
312
866260
2392
ื›ื™ ื”ืขื ื™ื™ืŸ ืขื ื–ื” ืฉืื ื™ ืื•ื˜ื™ืกื˜ื™ืช ื”ื•ื ืฉื”ื™ื” ืขืœื™ ืœืœืžื•ื“ ื›ื™ืฉื•ืจื™ื ื—ื‘ืจืชื™ื™ื
14:28
I had to learn social skills like being in a play.
313
868676
2831
ื›ืžื• ืชืคืงื™ื“ ื‘ื”ืฆื’ื”.
14:31
You just kind of ... you just have to learn it.
314
871531
2373
ื–ื” ื“ื™ ื“ื•ืžื”. ืฆืจื™ืš ืคืฉื•ื˜ ืœืœืžื•ื“ ืืช ื–ื”.
14:34
And we need to be working with these students.
315
874260
2976
ื•ืื ื• ื—ื™ื™ื‘ื™ื ืœืขื‘ื•ื“ ืขื ื”ืชืœืžื™ื“ื™ื ื”ืืœื”.
14:37
And this brings up mentors.
316
877260
2108
ื•ื–ื” ืžืขืœื” ืืช ื ื•ืฉื ื”ืžื•ืจื™ื ื”ืจื•ื—ื ื™ื™ื.
14:39
You know, my science teacher was not an accredited teacher.
317
879392
3100
ื”ืžื•ืจื” ืฉืœื™ ืœืžื“ืขื™ื ืœื ื”ื™ื” ืžื•ืจื” ืžื•ืกืžืš.
14:42
He was a NASA space scientist.
318
882516
1720
ื”ื•ื ื”ื™ื” ืžื“ืขืŸ ื—ืœืœ ื‘ื ืืก"ื.
14:44
Some states now are getting it to where, if you have a degree in biology
319
884260
3404
ื›ืžื” ืžื“ื™ื ื•ืช ื”ื’ื™ืขื• ื›ืขืช ืœืฉืœื‘ ืฉื‘ื•,
ืื ื™ืฉ ืœืš ืชื•ืืจ ื‘ื‘ื™ื•ืœื•ื’ื™ื” ืื• ื‘ื›ื™ืžื™ื”,
14:47
or in chemistry,
320
887688
1271
14:48
you can come into the school and teach biology or chemistry.
321
888983
2837
ืืชื” ืจืฉืื™ ืœื‘ื•ื ืœื‘ื™ื”"ืก ื•ืœืœืžื“ ื‘ื™ื•ืœื•ื’ื™ื” ืื• ื›ื™ืžื™ื”.
14:51
We need to be doing that.
322
891844
1526
ืขืœื™ื ื• ืœืขืฉื•ืช ื–ืืช.
14:53
Because what I'm observing is,
323
893800
1790
ื›ื™ ืžื” ืฉืื ื™ ืžื‘ื—ื™ื ื” ื‘ื•
14:55
the good teachers, for a lot of these kids,
324
895614
2049
ื”ื•ื ืฉื”ืžื•ืจื™ื ื”ื˜ื•ื‘ื™ื ืฉืœ ืจื‘ื™ื ืžื”ื™ืœื“ื™ื ื”ืืœื”,
14:57
are out in the community colleges.
325
897687
1648
ื ืžืฆืื™ื ื‘ืงื•ืœื’'ื™ื ื”ืงื”ื™ืœืชื™ื™ื.
14:59
But we need to be getting some of these good teachers
326
899359
2536
ืขืœื™ื ื• ืœื”ื‘ื™ื ื›ืžื” ืžื”ืžื•ืจื™ื ื”ื˜ื•ื‘ื™ื ื”ืืœื” ืœืชื™ื›ื•ืŸ.
15:01
into the high schools.
327
901919
1151
ื•ืขื•ื“ ื“ื‘ืจ, ืฉืขืฉื•ื™ ืœื”ื™ื•ืช ืžืื“ ืžืื“ ืžืื“ ืžื•ืฆืœื—
15:03
Another thing that can be very, very, very successful is:
328
903094
3556
15:06
there's a lot of people that may have retired
329
906674
2108
ื”ื•ื ืฉื™ืฉ ืจื‘ื™ื ืฉืื•ืœื™ ืคืจืฉื• ืœื’ืžืœืื•ืช ืžืชืขืฉื™ื™ืช ื”ืชื•ื›ื ื”,
15:08
from working in the software industry,
330
908806
1822
15:10
and they can teach your kid.
331
910652
1388
ื•ื”ื ืžืกื•ื’ืœื™ื ืœืœืžื“ ื™ืœื“ื™ื.
ื•ืœื ืžืฉื ื” ืื ื™ืœืžื“ื• ืื•ืชื ื“ื‘ืจื™ื ื™ืฉื ื™ื,
15:12
And it doesn't matter if what they teach them is old,
332
912064
2809
15:14
because what you're doing is you're lighting the spark.
333
914897
2727
ื›ื™ ื‘ื›ืš ื”ื ื™ื“ืœื™ืงื• ืืช ื”ื ื™ืฆื•ืฅ.
15:17
You're getting that kid turned on.
334
917648
2464
ืฆืจื™ืš ืœื”ื“ืœื™ืง ืืช ื”ื™ืœื“.
15:20
And you get him turned on, then you'll learn all the new stuff.
335
920136
3415
ื•ืื—ืจื™ ืฉื ื“ืœืง, ื”ื•ื ื›ื‘ืจ ื™ืœืžื“ ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ื—ื“ืฉื™ื.
15:23
Mentors are just essential.
336
923575
2264
ืžื•ืจื™ื ืจื•ื—ื ื™ื™ื ื”ื ืžืžืฉ ืฆื•ืจืš ื—ื™ื•ื ื™.
15:25
I cannot emphasize enough what my science teacher did for me.
337
925863
3733
ืื™ื ื ื™ ื™ื›ื•ืœื” ืœื”ื“ื’ื™ืฉ ืžืกืคื™ืง
ืžื” ืฉื”ืžื•ืจื” ืฉืœื™ ืœืžื“ืขื™ื ืขืฉื” ืœืžืขื ื™.
15:30
And we've got to mentor them, hire them.
338
930204
3032
ื•ืขืœื™ื ื• ืœื”ืฉืชืžืฉ ื‘ื”ื, ืœื”ืขืกื™ืง ืื•ืชื.
15:33
And if you bring them in for internships in your companies,
339
933260
2808
ื•ืื ืืชื ืžื‘ื™ืื™ื ืื•ืชื ืœื”ืชืžื—ื•ื™ื•ืช ื‘ื—ื‘ืจื•ืช ืฉืœื›ื,
ื”ืขื ื™ื™ืŸ ืขื ืื•ื˜ื™ื–ื, ืขื ืžื•ื— ืžืกื•ื’ ืืกืคืจื’ืจ,
15:36
the thing about the autism, Asperger-y kind of mind,
340
936092
2473
15:38
you've got to give them a specific task.
341
938589
1968
ื”ื•ื ืฉืฆืจื™ืš ืœืชืช ืžื˜ืœื” ืกืคืฆื™ืคื™ืช. ืœื ืกืชื ืœื•ืžืจ, "ืชืขืฆื‘ ืชื•ื›ื ื” ื—ื“ืฉื”".
15:40
Don't just say, "Design new software."
342
940581
1842
ืฆืจื™ืš ืœื•ืžืจ ืœื”ื ืžืฉื”ื• ื”ืจื‘ื” ื™ื•ืชืจ ืกืคืฆื™ืคื™.
15:42
You've got to tell them something more specific:
343
942447
2267
"ืื ื• ื‘ื•ื ื™ื ืชื•ื›ื ื” ืขื‘ื•ืจ ื˜ืœืคื•ืŸ, ื”ื™ื ืฆืจื™ื›ื” ืœืขืฉื•ืช ืžืฉื”ื• ืžืกื•ื™ื
15:44
"We're designing software for a phone
344
944738
1897
15:46
and it has to do some specific thing,
345
946659
1800
15:48
and it can only use so much memory."
346
948483
1753
"ื•ื”ื™ื ื™ื›ื•ืœื” ืœื”ืฉืชืžืฉ ืจืง ื‘ื›ืš-ื•ื›ืš ื–ื›ืจื•ืŸ."
15:50
That's the kind of specificity you need.
347
950260
2427
ื–ื” ืกื•ื’ ื”ืกืคืฆื™ืคื™ื•ืช ื”ืจืฆื•ื™.
15:52
Well, that's the end of my talk.
348
952711
1859
ื˜ื•ื‘, ื–ื”ื• ืกื•ืฃ ื”ื”ืจืฆืื” ืฉืœื™.
15:54
And I just want to thank everybody for coming.
349
954594
2243
ื•ืื ื™ ืจืง ืจื•ืฆื” ืœื”ื•ื“ื•ืช ืœื›ื•ืœื›ื ืขืœ ืฉื‘ืืชื.
15:56
It was great to be here.
350
956861
1375
ื ื”ื“ืจ ืœื”ื™ื•ืช ื›ืืŸ.
15:58
(Applause)
351
958260
7000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
16:09
(Applause ends)
352
969786
2191
ื™ืฉ ืœืš ืฉืืœื” ืืœื™? ื‘ืกื“ืจ.
16:12
Oh -- you have a question for me? OK.
353
972001
1825
16:13
(Applause)
354
973850
2397
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ื›ืจื™ืก ืื ื“ืจืกื•ืŸ: ืชื•ื“ื” ืจื‘ื” ืœืš ืขืœ ื”ื”ืจืฆืื”.
16:16
Chris Anderson: Thank you so much for that.
355
976271
2028
16:18
You know, you once wrote -- I like this quote:
356
978323
2326
ื›ืชื‘ืช ืคืขื, ื•ืื ื™ ืื•ื”ื‘ ืืช ื”ืฆื™ื˜ื˜ื” ื”ื–ื•,
16:20
"If by some magic, autism had been eradicated from the face of the Earth,
357
980673
4561
"ืื ืข"ื™ ืงืกื ื›ืœืฉื”ื•, ื”ืื•ื˜ื™ื–ื ื”ื™ื” ื—ื•ืœืฃ ืžืŸ ื”ืขื•ืœื,
16:25
then men would still be socializing in front of a wood fire
358
985258
2977
"ื‘ื ื™ ื”ืื“ื ืขื“ื™ื™ืŸ ื”ื™ื• ื™ื•ืฉื‘ื™ื ื‘ืฆื•ื•ืชื ืกื‘ื™ื‘ ื”ืžื“ื•ืจื”
16:28
at the entrance to a cave."
359
988259
1341
"ื‘ืคืชื— ื”ืžืขืจื”."
16:29
(Laughter)
360
989624
1028
16:30
Temple Grandin: Because who do you think made the first stone spear?
361
990676
3236
ื˜ืžืคืœ ื’ืจื ื“ื™ืŸ: ื•ื›ื™ ืžื™ ื™ืฆืจ ืืช ื›ื™ื“ื•ืŸ ื”ืื‘ืŸ ื”ืจืืฉื•ืŸ?
ื–ื” ืขื ื”ืืกืคืจื’ืจ. ื•ืื™ืœื• ื ืคื˜ืจื ื• ืžื›ืœ ื”ื’ื ื˜ื™ืงื” ื”ืื•ื˜ื™ืกื˜ื™ืช
16:33
It was the Asperger guy,
362
993936
1158
16:35
and if you were to get rid of all the autism genetics,
363
995118
2553
ืœื ื™ื”ื™ื” ื™ื•ืชืจ ืขืžืง ื”ืกื™ืœื™ืงื•ืŸ.
16:37
there'd be no more Silicon Valley, and the energy crisis would not be solved.
364
997695
3665
ื•ืžืฉื‘ืจ ื”ืื ืจื’ื™ื” ืœื ื™ื™ืคืชืจ.
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
16:41
(Applause)
365
1001384
1341
16:42
CA: I want to ask you a couple other questions,
366
1002749
2230
ื›"ื: ืื– ื™ืฉ ืœื™ ืขื•ื“ ื›ืžื” ืฉืืœื•ืช.
ื•ืื ืื—ืช ืžื”ืŸ ืœื ืชื”ื™ื” ื”ื•ืœืžืช,
16:45
and if any of these feel inappropriate, it's OK just to say, "Next question."
367
1005003
3764
ืื™ืžืจื™ ืจืง, "ื”ืฉืืœื” ื”ื‘ืื”".
16:48
But if there is someone here who has an autistic child,
368
1008791
3614
ืื‘ืœ ืื ื™ืฉ ื›ืืŸ ืžื™ืฉื”ื•
ืฉื™ืฉ ืœื• ื™ืœื“ ืื•ื˜ื™ืกื˜ื™,
16:52
or knows an autistic child and feels kind of cut off from them,
369
1012429
4741
ืื• ืžื›ื™ืจ ื™ืœื“ ืื•ื˜ื™ืกื˜ื™
ื•ืžืจื’ื™ืฉ ืžื ื•ืชืง ืžืžื ื•,
16:57
what advice would you give them?
370
1017793
1847
ืื™ื–ื• ืขืฆื” ืชื•ื›ืœื™ ืœืชืช ืœื•?
16:59
TG: Well, first of all, we've got to look at age.
371
1019664
2329
ื˜"ื’: ืงื•ื“ื ื›ืœ, ืฆืจื™ืš ืœื‘ื“ื•ืง ืืช ืขื ื™ื™ืŸ ื”ื’ื™ืœ.
ืื ื”ื™ืœื“ ื”ื•ื ื‘ืŸ ืฉื ืชื™ื™ื, ืฉืœื•ืฉ ืื• ืืจื‘ืข,
17:02
If you have a two, three or four-year-old, no speech, no social interaction,
372
1022017
3949
ืœื ืžื“ื‘ืจ, ืœืœื ืงืฉืจื™ื ื—ื‘ืจืชื™ื™ื,
17:05
I can't emphasize enough: Don't wait.
373
1025990
2289
ืื™ื ื™ ื™ื›ื•ืœื” ืœื”ื“ื’ื™ืฉ ื™ื•ืชืจ: ืืกื•ืจ ืœื—ื›ื•ืช.
ื“ืจื•ืฉื•ืช ืœืคื—ื•ืช 20 ืฉืขื•ืช ืฉื‘ื•ืขื™ื•ืช ืฉืœ ืœื™ืžื•ื“ ืื—ื“-ืขืœ-ืื—ื“.
17:08
You need at least 20 hours a week of one-to-one teaching.
374
1028303
3130
17:11
The thing is, autism comes in different degrees.
375
1031612
2493
ื”ืขื ื™ื™ืŸ ื”ื•ื ืฉื”ืื•ื˜ื™ื–ื ืงื™ื™ื ื‘ื“ืจื’ื•ืช ืฉื•ื ื•ืช.
17:14
About half of the people on the spectrum are not going to learn to talk,
376
1034129
3507
ื‘ืขืจืš ื—ืฆื™ ืžื”ืื ืฉื™ื ืฉืขืœ ื”ืกืคืงื˜ืจื•ื
ืœื ื™ืœืžื“ื• ืœื“ื‘ืจ,
17:17
and they won't be working in Silicon Valley.
377
1037660
2101
ื•ื”ื ืœื ื™ืขื‘ื“ื• ื‘ืขืžืง ื”ืกื™ืœื™ืงื•ืŸ. ื–ื” ืœื ื™ืชืื™ื ืœื”ื.
17:19
That would not be a reasonable thing for them to do.
378
1039785
2450
ืื‘ืœ ื™ืฉื ื ื”ื™ืœื“ื™ื ื”ื—ื ื•ื ื™ื™ื ื”ื—ื›ืžื™ื
17:22
But then you get these smart, geeky kids with a touch of autism,
379
1042259
3077
ืขื ืžืขื˜ ืื•ื˜ื™ื–ื,
17:25
and that's where you've got to get them turned on
380
1045360
2480
ื•ืืช ืืœื” ืฆืจื™ืš ืœื”ื“ืœื™ืง
17:27
with doing interesting things.
381
1047864
1489
ื‘ืขื–ืจืช ืขืฉื™ื™ืช ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื.
17:29
I got social interaction through shared interests --
382
1049377
3015
ืœืžื“ืชื™ ืžื’ืขื™ื ื—ื‘ืจืชื™ื™ื ื“ืจืš ืชื—ื•ืžื™ ืขื ื™ื™ืŸ ืžืฉื•ืชืฃ.
17:32
I rode horses with other kids, I made model rockets with other kids,
383
1052416
3957
ืจื›ื‘ืชื™ ืขืœ ืกื•ืกื™ื ื•ื‘ื ื™ืชื™ ื“ื’ืžื™ ื˜ื™ืœื™ื ืขื ื™ืœื“ื™ื ืื—ืจื™ื,
17:36
did electronics lab with other kids.
384
1056397
1978
ืขื‘ื“ืชื™ ื‘ืžืขื‘ื“ืช ื”ืืœืงื˜ืจื•ื ื™ืงื” ืขื ื™ืœื“ื™ื ืื—ืจื™ื,
17:38
And in the '60s, it was gluing mirrors onto a rubber membrane on a speaker
385
1058399
4251
ื•ื‘ืฉื ื•ืช ื”ืฉื™ืฉื™ื ื–ื” ื”ื™ื” ืœื”ื“ื‘ื™ืง ืžืจืื•ืช ืขืœ ืžืžื‘ืจื ื” ืฉืœ ืจืžืงื•ืœ
17:42
to make a light show.
386
1062674
1181
ื›ื“ื™ ืœืงื‘ืœ ืžื•ืคืข ืื•ืจื•ืช.
17:43
That was, like, we considered that super cool.
387
1063879
2222
ื•ื–ื” ื”ื™ื”... ื—ืฉื‘ื ื• ืฉื–ื” ื”ื›ื™ ืžืขื•ืœื”.
17:46
(Laughter)
388
1066125
1006
ื›"ื: ื”ืื ื–ื” ืœื-ืžืฆื™ืื•ืชื™ ืขื‘ื•ืจื
17:47
CA: Is it unrealistic for them
389
1067155
1497
17:48
to hope or think that that child loves them, as some might, as most, wish?
390
1068676
4740
ืœืงื•ื•ืช ืื• ืœื—ืฉื•ื‘ ืฉืื•ืชื• ื™ืœื“
ื™ืื”ื‘ ืื•ืชื, ื›ืคื™ ืฉืื—ื“ื™ื, ืื• ืจื‘ื™ื, ื”ื™ื• ืจื•ืฆื™ื?
17:53
TG: Well, I tell you, that child will be loyal,
391
1073440
2234
ื˜"ื’: ืื•ืžืจ ืœืš ื›ืš. ื”ื™ืœื“ ื”ื–ื” ื™ื”ื™ื” ื ืืžืŸ ืœืš
17:55
and if your house is burning down, they're going to get you out of it.
392
1075698
3375
ื•ืื ื‘ื™ืชืš ื™ื™ืฉืจืฃ ื”ื•ื ื™ื™ื›ื ืก ื›ื“ื™ ืœื—ืœืฅ ืื•ืชืš ืžืฉื.
ื›"ื: ื•ื•ืื•. ืื– ืจื•ื‘ ื”ืื ืฉื™ื, ืื ืชืฉืืœื™ ืื•ืชื
17:59
CA: Wow. So most people, if you ask them what they're most passionate about,
393
1079097
3659
ืžื” ืฉืœื“ื‘ืจื™ื”ื ื”ื›ื™ ื—ืฉื•ื‘ ืœื”ื, ื”ื ื“ื‘ืจื™ื ื›ืžื•
18:02
they'd say things like, "My kids" or "My lover."
394
1082780
2848
"ื”ื™ืœื“ื™ื ืฉืœื™" ืื• "ื”ืื”ื•ื‘ ืฉืœื™"
ืžื” ื”ื›ื™ ื—ืฉื•ื‘ ืœืš?
18:06
What are you most passionate about?
395
1086270
1752
18:08
TG: I'm passionate about that the things I do
396
1088046
3031
ื˜"ื’: ื—ืฉื•ื‘ื™ื ืœื™ ื”ื“ื‘ืจื™ื ืฉืื ื™ ืขื•ืฉื”
ื•ืฉื™ื”ืคื›ื• ืืช ื”ืขื•ืœื ืœืžืงื•ื ื˜ื•ื‘ ื™ื•ืชืจ.
18:11
are going to make the world a better place.
397
1091101
2037
ื›ืฉืื ืœื™ืœื“ ืื•ื˜ื™ืกื˜ื™ ืื•ืžืจืช,
18:13
When I have a mother of an autistic child say,
398
1093162
2222
"ื™ืœื“ื™ ื”ืœืš ืœืงื•ืœื’' ื”ื•ื“ื•ืช ืœืกืคืจ ืฉืœืš ืื• ืื—ืช ืžื”ืจืฆืื•ืชื™ืš",
18:15
"My kid went to college because of your book
399
1095408
2062
18:17
or one of your lectures,"
400
1097494
1200
ื–ื” ื’ื•ืจื ืœื™ ืื•ืฉืจ.
18:18
that makes me happy.
401
1098718
1151
ื‘ืชื™ ื”ืžื˜ื‘ื—ื™ื™ื ืฉืื™ืชื ืขื‘ื“ืชื™ ื‘ืฉื ื•ืช ื”-80 ื”ื™ื• ื ื•ืจืื™ื ื•ืื™ื•ืžื™ื.
18:19
You know, the slaughter plants I worked with in the '80s;
402
1099893
2713
18:22
they were absolutely awful.
403
1102630
1317
18:23
I developed a really simple scoring system for slaughter plants,
404
1103971
3276
ืคื™ืชื—ืชื™ ืฉื™ื˜ืช ื“ื™ืจื•ื’ ืคืฉื•ื˜ื” ืขื‘ื•ืจ ืžืคืขืœื™ ื”ืฉื—ื™ื˜ื”,
18:27
where you just measure outcomes:
405
1107271
1552
ืฉื‘ื” ืžื•ื“ื“ื™ื ืชื•ืฆืื•ืช: ื›ืžื” ืจืืฉื™ ื‘ืงืจ ื ืคืœื•,
18:28
How many cattle fell down?
406
1108847
1242
ื›ืžื” ืจืืฉื™ ื‘ืงืจ ื ื“ืงืจื• ื‘ืžื ืงืจ,
18:30
How many got poked with the prodder?
407
1110113
1748
18:31
How many cattle are mooing their heads off?
408
1111885
2031
ื›ืžื” ืจืืฉื™ ื‘ืงืจ ื’ื•ืขื™ื ื›ืฉืจืืฉื ื ื›ืจืช?
ื•ื–ื” ืžืื“ ืžืื“ ืคืฉื•ื˜.
18:34
And it's very, very simple.
409
1114278
1334
18:35
You directly observe a few simple things.
410
1115636
1977
ืจื•ืื™ื ืžื™ื“ ื›ืžื” ื“ื‘ืจื™ื ืคืฉื•ื˜ื™ื.
18:37
It's worked really well.
411
1117637
1164
ื–ื” ืขื‘ื“ ื˜ื•ื‘ ืžืื“.
18:38
I get satisfaction out of seeing stuff
412
1118825
2339
ื”ืคืงืชื™ ืกื™ืคื•ืง ื›ืฉืจืื™ืชื™ ื“ื‘ืจื™ื ืฉื’ืจืžื• ืœืฉื™ื ื•ื™ ืืžื™ืชื™ ื‘ืขื•ืœื ื”ืืžื™ืชื™.
18:41
that makes real change in the real world.
413
1121188
2720
18:43
We need a lot more of that, and a lot less abstract stuff.
414
1123932
2749
ืื ื• ื–ืงื•ืงื™ื ืœืขื•ื“ ืžื–ื”,
ื•ืœื”ืจื‘ื” ืคื—ื•ืช ื“ื‘ืจื™ื ืžื•ืคืฉื˜ื™ื.
18:46
CA: Totally.
415
1126705
1151
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
18:47
(Applause)
416
1127880
5083
18:52
CA: When we were talking on the phone, one of the things you said
417
1132987
3099
ื›"ื: ื›ืฉืฉื•ื—ื—ื ื• ื‘ื˜ืœืคื•ืŸ, ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืืžืจืช
ื•ืฉืžืžืฉ ื”ืคืœื™ื ืื•ืชื™, ื”ื™ื”
18:56
that really astonished me
418
1136110
1202
18:57
was that one thing you were passionate about was server farms.
419
1137336
3161
ืฉืืช ืจื•ืื” ื—ืฉื™ื‘ื•ืช ืจื‘ื” ื‘ื—ื•ื•ืช ืฉืจืชื™ื. ืกืคืจื™ ืœื™ ืขืœ ื–ื”.
19:01
Tell me about that.
420
1141103
1151
ื˜"ื’: ื”ืกื™ื‘ื” ื”ื™ื ืฉื”ืชืจื’ืฉืชื™ ื›ืฉืงืจืืชื™ ืขืœื™ื”ืŸ
19:02
TG: Well, the reason why I got really excited when I read about that,
421
1142278
3377
19:05
it contains knowledge.
422
1145679
1656
ืžืคื ื™ ืฉื”ืŸ ืžื›ื™ืœื•ืช ื™ื“ืข.
19:07
It's libraries.
423
1147359
1658
ืืœื• ื”ืŸ ืกืคืจื™ื•ืช.
19:09
And to me, knowledge is something that is extremely valuable.
424
1149041
3519
ื•ืขื‘ื•ืจื™ ื™ื“ืข ื”ื•ื ืžืฉื”ื• ื‘ืขืœ ืขืจืš ืขืฆื•ื.
19:12
So, maybe over 10 years ago now, our library got flooded.
425
1152584
3116
ืœืคื ื™ ืื•ืœื™ ื™ื•ืชืจ ืž-10 ืฉื ื™ื ื”ืกืคืจื™ื” ืฉืœื ื• ื”ื•ืฆืคื”,
19:15
This is before the Internet got really big.
426
1155724
2051
ื•ื–ื” ืขื•ื“ ืœืคื ื™ ืฉื”ืื™ื ื˜ืจื ื˜ ืžืžืฉ ื’ื“ืœ
19:17
And I was really upset about all the books being wrecked,
427
1157799
2681
ื•ืื ื™ ื”ื™ื™ืชื™ ืขืฆื•ื‘ื” ืขืœ ื›ืš ืฉื›ืœ ื”ืกืคืจื™ื ื ื”ืจืกื•,
ื›ื™ ืžื“ื•ื‘ืจ ื‘ื™ื“ืข ืฉื”ื•ืฉืžื“.
19:20
because it was knowledge being destroyed.
428
1160504
1976
ื•ื—ื•ื•ืช ืฉืจืชื™ื, ืื• ืžืจื›ื–ื™ ื ืชื•ื ื™ื
19:22
And server farms, or data centers, are great libraries of knowledge.
429
1162504
4413
ื”ื ืกืคืจื™ื•ืช ืขื ืง ืฉืœ ื™ื“ืข.
19:26
CA: Temple, can I just say,
430
1166941
1291
ื›"ื: ื˜ืžืคืœ, ืื•ื›ืœ ืจืง ืœื•ืžืจ ืื™ื–ื” ืขื•ื ื’ ื”ื•ื ืœืืจื— ืื•ืชืš ื‘"TED".
19:28
it's an absolute delight to have you at TED.
431
1168256
2086
ื˜"ื’: ืชื•ื“ื” ืจื‘ื” ืœืš. ืชื•ื“ื” ืจื‘ื”.
19:30
Thank you so much.
432
1170366
1151
19:31
TG: Well, thank you so much. Thank you.
433
1171541
1895
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
19:33
(Applause)
434
1173460
5236
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7