How germs travel on planes -- and how we can stop them | Raymond Wang

489,570 views ใƒป 2016-01-11

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Liblib Fib ืžื‘ืงืจ: Ido Dekkers
00:13
Can I get a show of hands --
0
13713
1366
ืชืจืื• ืœื™ ื‘ื”ืฆื‘ืขื”
00:15
how many of you in this room have been on a plane in this past year?
1
15103
3702
ื›ืžื” ืžื›ื ื”ื™ื• ืขืœ ืžื˜ื•ืก ื‘ืฉื ื” ื”ื—ื•ืœืคืช?
00:20
That's pretty good.
2
20258
1153
ื™ืคื”.
00:21
Well, it turns out that you share that experience
3
21435
2885
ืžืกืชื‘ืจ ืฉืืชื ืฉื•ืชืคื™ื ืœื—ื•ื•ื™ื” ื”ื–ื•
00:24
with more than three billion people every year.
4
24344
2835
ืขื ืขื•ื“ 3 ืžื™ืœื™ืืจื“ ืื ืฉื™ื ื‘ื›ืœ ืฉื ื”
00:27
And when we put so many people in all these metal tubes
5
27203
3137
ื•ื›ืฉืื ื• ืžื›ื ื™ืกื™ื ื›ืœ ื›ืš ื”ืจื‘ื” ืื ืฉื™ื ืœืชื•ืš ืฆื™ื ื•ืจื•ืช ื”ืžืชื›ืช ื”ืืœื•
00:30
that fly all over the world,
6
30364
1586
ืฉื˜ืกื™ื ื‘ื›ืœ ื”ืขื•ืœื
00:31
sometimes, things like this can happen
7
31974
2673
ืœืขื™ืชื™ื ื“ื‘ืจื™ื ื›ืืœื• ื™ื›ื•ืœื™ื ืœืงืจื•ืช
00:34
and you get a disease epidemic.
8
34671
1887
ื•ืืชื ื™ื›ื•ืœื™ื ืœืงื‘ืœ ืžื—ืœื”.
00:37
I first actually got into this topic
9
37116
1951
ื”ืชื—ืœืชื™ ืœืžืขืฉื” ืขื ื”ื ื•ืฉื ื”ื–ื”
00:39
when I heard about the Ebola outbreak last year.
10
39091
2632
ื›ืฉืฉืžืขืชื™ ืขืœ ื”ืชืคืจืฆื•ืช ื”ืื‘ื•ืœื” ืฉื ื” ืฉืขื‘ืจื”
00:41
And it turns out that,
11
41747
1460
ื•ืžืกืชื‘ืจ ืฉ
00:43
although Ebola spreads through these more range-limited,
12
43231
2830
ืœืžืจื•ืช ืฉืื‘ื•ืœื” ืžืชืคืฉื˜ ื‘ื˜ื•ื•ื—ื™ื ืžื•ื’ื‘ืœื™ื
00:46
large-droplet routes,
13
46085
1334
ื‘ืžืกืœื•ืœื™ ื”ืชืคืจืกื•ืช ื’ื“ื•ืœื™ื
00:47
there's all these other sorts of diseases
14
47443
1978
ื™ืฉ ืžื—ืœื•ืช ืื—ืจื•ืช
00:49
that can be spread in the airplane cabin.
15
49445
1976
ืฉื™ื›ื•ืœื•ืช ืœื”ืชืคืฉื˜ ื‘ืžื˜ื•ืกื™ื
00:51
The worst part is, when we take a look at some of the numbers,
16
51445
3184
ื”ื—ืœืง ื”ื›ื™ ื ื•ืจื,ื–ื” ื›ืฉืื ื—ื ื• ืžืชื‘ื•ื ื ื™ื ื‘ืžืกืคืจื™ื
00:54
it's pretty scary.
17
54653
1413
ื–ื” ื“ื™ ืžื‘ื”ื™ืœ
00:56
So with H1N1,
18
56090
1760
ืื– ืขื ื•ื™ืจื•ืก H1N1
00:57
there was this guy that decided to go on the plane
19
57874
2389
ื”ื™ื” ื‘ื—ื•ืจ ืื—ื“ ืฉื”ื—ืœื™ื˜ ืœืขืœื•ืช ืœื˜ื™ืกื”
01:00
and in the matter of a single flight
20
60287
1771
ื•ื‘ื˜ื™ืกื” ืื—ืช ื‘ืœื‘ื“
01:02
actually spread the disease to 17 other people.
21
62082
2254
ื”ืคื™ืฅ ืืช ื”ืžื—ืœื” ืœืขื•ื“ 17 ืื ืฉื™ื
01:04
And then there was this other guy with SARS,
22
64360
2128
ื•ื”ื‘ื—ื•ืจ ืขื ืกืืจืก
01:06
who managed to go on a three-hour flight
23
66512
2102
ืฉืขืœื” ืœื˜ื™ืกื” ืฉืœ 3 ืฉืขื•ืช
01:08
and spread the disease to 22 other people.
24
68638
2842
ื•ื”ืคื™ืฅ ืืช ื”ืžื—ืœื” ืœ 22 ืื ืฉื™ื ื ื•ืกืคื™ื
01:11
That's not exactly my idea of a great superpower.
25
71504
3408
ื–ื” ืœื ื™ื›ื•ืœืช ืขืœ-ื˜ื‘ืขื™ืช, ืฉืื ื™ ืžื’ื“ื™ืจ ื›ืžืขื•ืœื”
01:15
When we take a look at this, what we also find
26
75658
2564
ื›ืฉืื ื• ืžืชื‘ื•ื ื ื™ื ื‘ื–ื”, ืื ื—ื ื• ื™ื›ื•ืœื™ื ื’ื ืœืžืฆื•ื
01:18
is that it's very difficult to pre-screen for these diseases.
27
78246
2976
ืฉืงืฉื” ืžืื“ ืœืกื ืŸ ืžืจืืฉ ืืช ื”ืžื—ืœื•ืช ื”ืืœื•
01:21
So when someone actually goes on a plane,
28
81619
2091
ืื– ื›ืฉืžื™ืฉื”ื• ืžื—ืœื™ื˜ ืœืขืœื•ืช ืœื˜ื™ืกื”
01:23
they could be sick
29
83734
1206
ื”ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื—ื•ืœื™ื
01:24
and they could actually be in this latency period
30
84964
2395
ื•ื”ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื‘ืชืงื•ืคืช ื“ื’ื™ืจื”
01:27
in which they could actually have the disease
31
87383
2159
ืฉื™ืฉ ืœื”ื ืืช ื”ืžื—ืœื”
01:29
but not exhibit any symptoms,
32
89566
1572
ืื‘ืœ ื”ื™ื ืœื ืžืฆื™ื’ื” ืฉื•ื ืกื™ืžืคื˜ื•ืžื™ื
01:31
and they could, in turn, spread the disease
33
91162
2191
ื•ื”ื ื™ื›ื•ืœื™ื ืœื”ืคื™ืฅ ืื•ืชื”
01:33
to many other people in the cabin.
34
93377
1673
ืœืื ืฉื™ื ืจื‘ื™ื ืขืœ ื”ืžื˜ื•ืก
01:35
How that actually works is that right now
35
95074
2082
ืื™ืš ื–ื” ืขื•ื‘ื“ ื‘ืคื•ืขืœ ื”ื•ื ืฉืขื›ืฉื™ื•
01:37
we've got air coming in from the top of the cabin
36
97180
2286
ื™ืฉ ืœื ื• ืื•ื•ื™ืจ ืฉืžื’ื™ืข ืžื”ื—ืœืง ื”ืขืœื™ื•ืŸ ืฉืœ ื”ืชื
01:39
and from the side of the cabin, as you see in blue.
37
99490
2426
ื•ืžื”ืฆื“ ืฉืœ ื”ืชื, ื›ืคื™ ืฉืืชื ืจื•ืื™ื ื‘ื›ื—ื•ืœ.
01:41
And then also, that air goes out through these very efficient filters
38
101940
4202
ื•ื’ื ืื•ื•ื™ืจ ืฉื™ื•ืฆื ื“ืจืš ื”ืžืกื ื ื™ื ื”ื™ืขื™ืœื™ื ื”ืืœื”
01:46
that eliminate 99.97 percent of pathogens near the outlets.
39
106166
4548
ืฉืžื—ืกืœื™ื 99.97% ืคืชื•ื’ื ื™ื ืœื™ื“ ื”ืฉืงืขื™ื
01:51
What happens right now, though,
40
111444
1477
ืžื” ืฉืงื•ืจื” ืขื›ืฉื™ื•
01:52
is that we have this mixing airflow pattern.
41
112945
2067
ืฉื™ืฉ ืœื ื• ื–ื” ื“ืคื•ืก ืฉืœ ื–ืจื™ืžืช ืื•ื•ื™ืจ ืžืขื•ืจื‘ื‘
01:55
So if someone were to actually sneeze,
42
115036
1832
ื›ืš ืฉืื ืžืฉื”ื• ืœืžืขืฉื” ืžืชืขื˜ืฉ
01:56
that air would get swirled around multiple times
43
116892
2704
ื”ืื•ื•ื™ืจ ื™ืกืชื•ื‘ื‘ ืžืกืคืจ ืคืขืžื™ื
01:59
before it even has a chance to go out through the filter.
44
119620
3245
ืœืคื ื™ ืฉืชื”ื™ื” ืœื• ื”ื–ื“ืžื ื•ืช ืœืขื‘ื•ืจ ื“ืจืš ื”ืžืกื ืŸ
02:03
So I thought: clearly, this is a pretty serious problem.
45
123785
3213
ืื– ื—ืฉื‘ืชื™: ื‘ืจื•ืจ ืฉื™ืฉ ืคื” ื‘ืขื™ื” ืจืฆื™ื ื™ืช
02:07
I didn't have the money to go out and buy a plane,
46
127022
3733
ืœื ื”ื™ื” ืœื™ ืืช ื”ื›ืกืฃ ืœืงื ื•ืช ืžื˜ื•ืก
02:10
so I decided to build a computer instead.
47
130779
2238
ืื– ื”ื—ืœื˜ืชื™ ื‘ืžืงื•ื ืœื‘ื ื•ืช ืžื—ืฉื‘
02:13
It actually turns out that with computational fluid dynamics,
48
133041
3272
ืžืกืชื‘ืจ ืฉื‘ืขื–ืจืช ื—ื™ืฉื•ื‘ื™ื•ืช ื“ื™ื ืžื™ืงื” ืฉืœ ื ื•ื–ืœื™ื
02:16
what we're able to do is create these simulations
49
136337
2601
ืžื” ืฉื”ืฆืœื—ื ื• ืœื™ืฆื•ืจ ื–ื” ืืช ื”ืกื™ืžื•ืœืฆื™ื•ืช ื”ืืœื•
02:18
that give us higher resolutions
50
138962
1794
ืฉื ืชื ื• ืœื ื• ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื” ื™ื•ืชืจ
02:20
than actually physically going in and taking readings in the plane.
51
140780
3620
ืžืืฉืจ ืœืœื›ืช ืคื™ื–ื™ืช ืœืžื˜ื•ืก ื•ืœื‘ืฆืข ืžื“ื™ื“ื•ืช
02:24
And so how, essentially, this works is you would start out
52
144836
3014
ืื– ืื™ืš, ื‘ืขืฆื, ื–ื” ืขื•ื‘ื“ ืืชื” ืžืชื—ื™ืœ
02:27
with these 2D drawings --
53
147874
1672
ืขื ืฆื™ื•ืจื™ ื“ื• ืžื™ืžื“
02:29
these are floating around in technical papers around the Internet.
54
149570
3128
ืฉื ืžืฆืื™ื ื‘ืžืกืžื›ื™ื ื˜ื›ื ื™ื™ื ื‘ืจื—ื‘ื™ ื”ืื ื˜ืจื ื˜
02:32
I take that and then I put it into this 3D-modeling software,
55
152722
2893
ื”ื–ื ืชื™ ืื•ืชื ืœืชื•ื›ื ืช ืžื™ื“ื•ืœ ืชืœืช ืžื™ืžื“
02:35
really building that 3D model.
56
155639
1779
ืฉืชืณื›ืœืก ื‘ื•ื ื” ืžื•ื“ืœ ืชืœืช ืžื™ืžื“ื™
02:37
And then I divide that model that I just built into these tiny pieces,
57
157442
4459
ื•ืื– ื—ื™ืœืงืชื™ ืืช ื”ืžื•ื“ืœ ืฉื”ืจื’ืข ื‘ื ื™ืชื™ ืœื—ืชื™ื›ื•ืช ืงื˜ื ื•ืช
02:41
essentially meshing it so that the computer can better understand it.
58
161925
3577
ื‘ืขืฆื ืžืฉืœื‘ ืื•ืชื ื‘ืฆื•ืจื” ื›ื–ื• ืฉืžื—ืฉื‘ ื™ื‘ื™ืŸ ืื•ืชื ื˜ื•ื‘ ื™ื•ืชืจ
02:45
And then I tell the computer where the air goes in and out of the cabin,
59
165526
3721
ื•ืื– ืื ื™ ืžื–ื™ืŸ ืœืžื—ืฉื‘ ืžืื™ืคื” ื ื›ื ืก ื•ื™ื•ืฆื ื”ืื•ื™ืจ ืœืชื ื”ื ื•ืกืขื™ื
02:49
throw in a bunch of physics
60
169271
1499
ื–ื•ืจืง ืคื ื™ืžื” ืงืฆืช ืคื™ื–ื™ืงื”
02:50
and basically sit there and wait until the computer calculates the simulation.
61
170794
4221
ื•ืœืžืขืฉื” ื™ื•ืฉื‘ ื•ืžื—ื›ื” ืขื“ ืฉื”ืžื—ืฉื‘ ื™ื—ืฉื‘ ืืช ื”ื”ื“ืžื™ื™ื”
02:56
So what we get, actually, with the conventional cabin is this:
62
176015
3627
ืžื” ืฉืื ื—ื ื• ืžืงื‘ืœื™ื ื‘ืชื ื ื•ืกืขื™ื ืจื’ื™ืœ ื–ื” ื–ื”:
02:59
you'll notice the middle person sneezing,
63
179666
2247
ืืชื ืชื‘ื—ื™ื ื• ืฉื”ืื™ืฉ ื‘ืืžืฆืข ื”ืชืขื˜ืฉ
03:02
and we go "Splat!" -- it goes right into people's faces.
64
182767
3392
ื•..ื˜ืจืื— ื–ื” ื”ื•ืœืš ื™ืฉืจ ืœืชื•ืš ื”ืคื ื™ื ืฉืœ ืื ืฉื™ื
03:06
It's pretty disgusting.
65
186882
1821
ืฉื–ื” ื“ื™ ืžื’ืขื™ืœ
03:08
From the front, you'll notice those two passengers
66
188727
2348
ืžืงื“ื™ืžื”, ืฉื™ืžื• ืœื‘, ืœืฉื ื™ ื”ื ื•ืกืขื™ื
03:11
sitting next to the central passenger
67
191099
1786
ืฉื™ื•ืฉื‘ื™ื ืœืฆื™ื“ื™ ื”ืžืชืขื˜ืฉ
03:12
not exactly having a great time.
68
192909
1706
ืœื ื‘ื“ื™ื•ืง ื ื”ื ื™ื
03:14
And when we take a look at that from the side,
69
194639
2186
ื•ืื ืžืกืชื›ืœื™ื ืขืœ ื–ื” ืžื”ืฆื“
03:16
you'll also notice those pathogens spreading across the length of the cabin.
70
196849
3993
ืฉื™ืžื• ืœื‘ ื’ื ืœืคืชื•ื’ื ื™ื ืฉืžืชืคื–ืจื™ื ืœืื•ืจืš ืชื ื”ื ื•ืกืขื™ื
03:22
The first thing I thought was, "This is no good."
71
202017
2350
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉื—ืฉื‘ืชื™: ื–ื” ืœื ื˜ื•ื‘
03:24
So I actually conducted more than 32 different simulations
72
204391
3508
ืื– ื™ืฆืจืชื™ ื™ื•ืชืจ ืž 32 ืกื™ืžื•ืœืฆื™ื•ืช ืฉื•ื ื•ืช
03:27
and ultimately, I came up with this solution right here.
73
207923
3365
ื•ืœื‘ืกื•ืฃ ื”ื’ืขืชื™ ืœืคืชืจื•ืŸ ื”ื–ื”
03:31
This is what I call a -- patent pending -- Global Inlet Director.
74
211312
3516
ื–ื” ืžื” ืฉืื ื™ ืžื›ื ื”, (ืžืžืชื™ืŸ ืœืื™ืฉื•ืจ ืคื˜ื ื˜) ืžืคืจืฆื•ืŸ ื”ื›ื•ื•ืŸ ื’ืœื•ื‘ืœื™.
03:34
With this, we're able to reduce pathogen transmission
75
214852
2566
ื‘ืขื–ืจืชื• ืื ื• ื™ื›ื•ืœื™ื ืœืฆืžืฆื ื”ืขื‘ืจืช ืคืชื•ื’ื ื™ื
03:37
by about 55 times,
76
217442
1768
ื‘ืขืจืš ืคื™ ,55
03:39
and increase fresh-air inhalation by about 190 percent.
77
219234
3153
ื•ืœื”ื’ื“ื™ืœ ืืช ืฉืื™ืคืช ื”ืื•ื™ืจ ื”ื ืงื™ ื‘ 190%.
03:42
So how this actually works
78
222411
1604
ืื– ืื™ืš ื–ื” ื‘ืขืฆื ืขื•ื‘ื“
03:44
is we would install this piece of composite material
79
224039
3129
ื–ื” ืฉืื ื—ื ื• ืžืชืงื™ื ื™ื ืืช ื”ื—ืชื™ื›ื” ื”ื–ื• ื‘ื ื•ื™ื” ืžื—ื•ืžืจ ืžืจื•ื›ื‘
03:47
into these existing spots that are already in the plane.
80
227192
2968
ืœืชื•ืš ื”ืžืงื•ืžื•ืช ื”ืืœื• ืฉื›ื‘ืจ ืงื™ื™ืžื™ื ื‘ืžื˜ื•ืก.
03:50
So it's very cost-effective to install
81
230184
2001
ื›ืš ืฉื”ื”ืชืงื ื” ืžืื“ ื—ืกื›ื•ื ื™ืช
03:52
and we can do this directly overnight.
82
232209
1848
ื•ื ื™ืชืŸ ืœืขืฉื•ืช ืืช ื–ื” ืžื™ื™ื“ื™ืช ื‘ืžื”ืœืš ืœื™ืœื”.
03:54
All we have to do is put a couple of screws in there and you're good to go.
83
234081
3548
ื›ืœ ืžื” ืฉืฆืจื™ืš ื–ื” ืœื”ื‘ืจื™ื’ ืฉื ื™ ื‘ืจื’ื™ื ื•ืื ื—ื ื• ืžืกื•ื“ืจื™ื.
03:57
And the results that we get are absolutely amazing.
84
237653
2859
ื•ื”ืชื•ืฆืื•ืช ืฉืžืชืงื‘ืœื•ืช ื”ืŸ ืคืฉื•ื˜ ืžื“ื”ื™ืžื•ืช.
04:00
Instead of having those problematic swirling airflow patterns,
85
240536
3536
ื‘ืžืงื•ื ื“ืคื•ืกื™ ื–ืจื™ืžืช ืื•ื™ืจ ื‘ืขื™ื™ืชื™ื™ื,
04:04
we can create these walls of air
86
244096
1742
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฆื•ืจ ืงื™ืจื•ืช ืื•ื™ืจ
04:05
that come down in-between the passengers
87
245862
2170
ืฉื™ื•ืจื“ื™ื ื‘ื™ืŸ ื”ื ื•ืกืขื™ื
04:08
to create personalized breathing zones.
88
248056
1898
ืœื™ืฆื™ืจืช ืื™ื–ื•ืจื™ ื ืฉื™ืžื” ืื™ืฉื™ื™ื.
04:09
So you'll notice the middle passenger here is sneezing again,
89
249978
2985
ืื– ืืชื ืฉืžื™ื ืœื‘ ืฉื”ื ื•ืกืข ื‘ืืžืฆืข ืžืชืขื˜ืฉ ืฉื•ื‘,
04:12
but this time, we're able to effectively push that down
90
252987
2713
ืื‘ืœ ื”ืคืขื, ืื ื• ืžืกื•ื’ืœื™ื ืœื“ื—ื•ืฃ ืืช ื–ื” ื‘ื™ืขื™ืœื•ืช ืœืžื˜ื”
04:15
to the filters for elimination.
91
255724
2713
ืืœ ื”ืคื™ืœื˜ืจื™ื ืœื”ืฉืžื“ื”
04:18
And same thing from the side,
92
258461
1396
ื•ืื•ืชื• ื”ื“ื‘ืจ ืžื”ืฆื“ื“ื™ื,
04:19
you'll notice we're able to directly push those pathogens down.
93
259881
3229
ืฉื™ืžื• ืœื‘ ืฉืื ื• ืžืกื•ื’ืœื™ื ืœื“ื—ื•ืฃ ืืช ื”ืคืชื•ื’ื ื™ื ืžื˜ื”.
04:23
So if you take a look again now at the same scenario
94
263682
3494
ืื– ืื ื ืกืชื›ืœ ืฉื•ื‘ ืขืœ ืื•ืชื• ืชืจื—ื™ืฉ
04:27
but with this innovation installed,
95
267200
1689
ื”ืคืขื ืขื ื”ื”ืžืฆืื”,
04:28
you'll notice the middle passenger sneezes,
96
268913
2016
ืชืจืื• ืฉื”ื ื•ืกืข ื‘ืืžืฆืข ืžืชืขื˜ืฉ,
04:30
and this time, we're pushing that straight down into the outlet
97
270953
3073
ื•ื”ืคืขื ืื ื—ื ื• ื“ื•ื—ืคื™ื ืืช ื–ื” ื™ืฉื™ืจื•ืช ืœื™ืฆื™ืื”
04:34
before it gets a chance to infect any other people.
98
274050
3721
ืœืคื ื™ ืฉื™ืฉ ืœื–ื” ื”ื–ื“ืžื ื•ืช ืœื”ื“ื‘ื™ืง ื ื•ืกืขื™ื ื ื•ืกืคื™ื.
04:37
So you'll notice the two passengers sitting next to the middle guy
99
277795
3124
ืฉื™ืžื• ืœื‘ ืฉืฉื ื™ ื”ื ื•ืกืขื™ื ืฉื™ื•ืฉื‘ื™ื ืœืฆื“ ื”ื‘ื—ื•ืจ ื‘ืืžืฆืข
04:40
are breathing virtually no pathogens at all.
100
280943
2233
ืœื ื ื•ืฉืžื™ื ืคืชื•ื’ื ื™ื ื›ืœืœ.
04:43
Take a look at that from the side as well,
101
283200
2528
ื‘ื•ืื• ื ืจืื” ืืช ื–ื” ื’ื ืžื”ืฆื“,
04:45
you see a very efficient system.
102
285752
1555
ืืชื ืจื•ืื™ื ืžืขืจื›ืช ื™ืขื™ืœื” ื‘ื™ื•ืชืจ.
04:47
And in short, with this system, we win.
103
287331
2622
ื•ื‘ืงื™ืฆื•ืจ ืขื ื”ืžืขืจื›ืช ื”ื–ื•, ืื ื• ืžื ืฆื—ื™ื.
04:51
When we take a look at what this means,
104
291255
2889
ื›ืฉืžืกืชื›ืœื™ื ืขืœ ื”ืžืฉืžืขื•ื™ื•ืช,
04:54
what we see is that this not only works if the middle passenger sneezes,
105
294168
3472
ืžื” ืฉืื ื—ื ื• ืจื•ืื™ื ืœื ืจืง ืฉืขื•ื‘ื“ ืื ื”ื ื•ืกืข ื‘ืžืจื›ื– ืžืชืขื˜ืฉ,
04:57
but also if the window-seat passenger sneezes
106
297664
2774
ืืœื ื’ื ืื ืžื“ื•ื‘ืจ ื‘ื ื•ืกืข ืฉืœื™ื“ ื—ืœื•ืŸ ืฉืžืชืขื˜ืฉ
05:00
or if the aisle-seat passenger sneezes.
107
300462
2095
ืื• ื ื•ืกืข ื‘ืžืขื‘ืจ ืฉืžืชืขื˜ืฉ.
05:03
And so with this solution, what does this mean for the world?
108
303167
3087
ืื ื›ืš ืžื” ื”ืžืฉืžืขื•ืช ืœืขื•ืœื, ืขื ื”ืคืชืจื•ืŸ ื”ื–ื”?
05:06
Well, when we take a look at this
109
306278
3514
ื•ื‘ื›ืŸ ื›ืฉืื ื—ื ื• ืžืกืชื›ืœื™ื ืขืœ ื–ื”
05:09
from the computer simulation into real life,
110
309816
2569
ืžื”ืกื™ืžื•ืœืฆื™ื” ืืœ ื”ื—ื™ื™ื ื”ืืžื™ืชื™ื™ื,
05:12
we can see with this 3D model that I built over here,
111
312409
2762
ื ื™ืชืŸ ืœืจืื•ืช ืขื ืžื•ื“ืœ ื”ืชืœืช ืžื™ืžื“ ืฉื‘ื ื™ืชื™ ื›ืืŸ,
05:15
essentially using 3D printing,
112
315195
2088
ื‘ืืžืฆืขื•ืช ืžื“ืคืกืช ืชืœืช ืžื™ืžื“,
05:17
we can see those same airflow patterns coming down,
113
317307
2959
ื ื™ืชืŸ ืœื”ื‘ื—ื™ืŸ ื‘ืื•ืชื ื“ืคื•ืกื™ ื–ืจื™ืžืช ืื•ื™ืจ ืฉื™ื•ืจื“ื™ื,
05:20
right to the passengers.
114
320290
1586
ื™ืฉื™ืจื•ืช ืืœ ื”ื ื•ืกืขื™ื.
05:22
In the past, the SARS epidemic actually cost the world
115
322920
3070
ื‘ืขื‘ืจ, ืžื’ื™ืคืช ื”ืกืืจืก ืขืœืชื” ืœืขื•ืœื
05:26
about 40 billion dollars.
116
326014
1929
ื‘ืขืจืš 40 ืžื™ืœื™ืืจื“ ื“ื•ืœืจ.
05:27
And in the future,
117
327967
1159
ื•ื‘ืขืชื™ื“,
05:29
a big disease outbreak could actually cost the world
118
329150
2546
ื”ืชืคืจืฆื•ืช ืžื—ืœื” ื™ื›ื•ืœื” ืœืขืœื•ืช ืœืขื•ืœื
05:31
in excess of three trillion dollars.
119
331720
1858
ื™ื•ืชืจ ืžืฉืœื•ืฉื” ื˜ืจื™ืœื™ื•ืŸ ื“ื•ืœืจื™ื.
05:33
So before, it used to be that you had to take an airplane out of service
120
333942
3477
ื‘ืขื‘ืจ ื ื“ืจืฉืช ืœื”ื•ืฆื™ื ืืช ื”ืžื˜ื•ืก ืžืฉื™ืจื•ืช
05:37
for one to two months,
121
337443
1872
ืœืžืฉืš ื—ื•ื“ืฉ ืื• ื—ื•ื“ืฉื™ื™ื,
05:39
spend tens of thousands of man hours and several million dollars
122
339339
3572
ืœื”ื•ืฆื™ื ืืœืคื™ ืฉืขื•ืช ืขื‘ื•ื“ื” ื•ื›ืžื” ืžืœื™ื•ื ื™ ื“ื•ืœืจื™ื
05:42
to try to change something.
123
342935
1323
ื‘ื ืกื™ื•ืŸ ืœืฉื ื•ืช ืžืฉื”ื•.
05:44
But now, we're able to install something essentially overnight
124
344282
3511
ืื‘ืœ ื›ื™ื•ื ืื ื• ื™ื›ื•ืœื™ื ืœื”ืชืงื™ืŸ ืžืฉื”ื• ื‘ืžื”ืœืš ืœื™ืœื”
05:47
and see results right away.
125
347817
1727
ื•ืœืจืื•ืช ืชื•ืฆืื•ืช ืžื™ื™ื“ื™ืช.
05:49
So it's really now a matter of taking this through to certification,
126
349568
3206
ื›ืจื’ืข ื–ื” ืขื ื™ื™ืŸ ืฉืœ ืงื‘ืœืช ื”ืกืžื›ื”,
05:52
flight testing,
127
352798
1190
ืžื‘ื—ื ื™ ื˜ื™ืกื”,
05:54
and going through all of these regulatory approvals processes.
128
354012
2992
ื”ืจื‘ื” ืชื”ืœื™ื›ื™ื ืœืงื‘ืœืช ืื™ืฉื•ืจื™ื ืจื’ื•ืœื˜ื•ืจื™ื™ื.
05:57
But it just really goes to show that sometimes the best solutions
129
357028
3064
ืื‘ืœ ื–ื” ื‘ื ืœื”ืจืื•ืช ืฉืœืคืขืžื™ื ื”ืคืชืจื•ื ื•ืช ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ
06:00
are the simplest solutions.
130
360116
1438
ื”ื ื”ืคืชืจื•ื ื•ืช ื”ืคืฉื•ื˜ื™ื.
06:01
And two years ago, even,
131
361935
3190
ื•ืœืคื ื™ ืฉื ืชื™ื™ื,
06:05
this project would not have happened,
132
365149
1769
ื”ืคืจื•ื™ื™ืงื˜ ื”ื–ื” ืœื ื™ื›ืœ ืœื”ืชืงื™ื™ื,
06:06
just because the technology then wouldn't have supported it.
133
366942
2826
ืจืง ื‘ื’ืœืœ ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืื– ืœื ืื™ืคืฉืจื” ืืช ื–ื”.
06:09
But now with advanced computing
134
369792
2469
ืื‘ืœ ื›ื™ื•ื ืขื ื™ื›ื•ืœื•ืช ืžื—ืฉื•ื‘ ืžืชืงื“ืžื•ืช
06:12
and how developed our Internet is,
135
372285
2186
ื•ืื™ื ื˜ืจื ื˜ ืžืคื•ืชื—,
06:14
it's really the golden era for innovation.
136
374495
2639
ื–ื” ืขื™ื“ืŸ ื”ื–ื”ื‘ ืœื”ืžืฆืื•ืช
06:17
And so the question I ask all of you today is: why wait?
137
377158
3243
ืื– ื”ืฉืืœื” ืฉืื ื™ ืฉื•ืืœ ืืช ื›ื•ืœื›ื: ืœืžื” ืœื—ื›ื•ืช?
06:20
Together, we can build the future today.
138
380425
2321
ื™ื—ื“ ืื ื• ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช ืืช ื”ืขืชื™ื“ ื”ื™ื•ื.
06:23
Thanks.
139
383123
1151
ืชื•ื“ื”
06:24
(Applause)
140
384298
3106
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7