Bonnie Bassler: The secret, social lives of bacteria

298,573 views ใƒป 2009-04-08

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yifat Adler ืžื‘ืงืจ: Yana Zhivin
ื—ื™ื™ื“ืงื™ื ื”ื ื”ื™ืฆื•ืจื™ื ื”ื—ื™ื™ื ื”ื•ืชื™ืงื™ื ื‘ื™ื•ืชืจ ืขืœ ืคื ื™ ื”ืื“ืžื”.
00:19
Bacteria are the oldest living organisms on the earth.
0
19012
2802
00:21
They've been here for billions of years,
1
21838
2021
ื”ื ื ืžืฆืื™ื ื›ืืŸ ืžืœื™ืืจื“ื™ ืฉื ื™ื.
00:23
and what they are are single-celled microscopic organisms.
2
23883
3953
ื”ื ื™ืฆื•ืจื™ื ื—ื“-ืชืื™ื™ื ืžื™ืงืจื•ืกืงื•ืคื™ื™ื.
00:27
So they're one cell
3
27860
1296
ื”ื ืžื•ืจื›ื‘ื™ื ืžืชื ืื—ื“ ื•ื™ืฉ ืœื”ื ืชื›ื•ื ื” ืžื™ื•ื—ื“ืช -
00:29
and they have this special property that they only have one piece of DNA.
4
29180
3672
ื™ืฉ ืœื”ื ืจืง ื“ื "ื ืื—ื“.
00:32
So they have very few genes and genetic information
5
32876
2928
ื™ืฉ ืœื”ื ืžืขื˜ ืžืื•ื“ ื’ื ื™ื
ื•ื ืชื•ื ื™ื ื’ื ื˜ื™ื™ื ืฉืžืงื•ื“ื“ื™ื ืืช ื›ืœ ื”ืชื›ื•ื ื•ืช ื”ืžืืคื™ื™ื ื•ืช ืื•ืชื.
00:35
to encode all of the traits that they carry out.
6
35828
2998
00:38
And the way bacteria make a living is that they consume nutrients
7
38850
3377
ื—ื™ื™ื“ืงื™ื ืžืชืงื™ื™ืžื™ื ืข"ื™
ืฆืจื™ื›ืช ื—ื•ืžืจื™ ืžื–ื•ืŸ ืžืกื‘ื™ื‘ืชื.
00:42
from the environment,
8
42251
1160
00:43
they grow to twice their size,
9
43435
1674
ื”ื ืžื›ืคื™ืœื™ื ืืช ื’ื•ื“ืœื, ืžืชื—ืœืงื™ื ืœืฉื ื™ื™ื ื‘ืืžืฆืข,
00:45
they cut themselves down in the middle,
10
45133
1879
ืชื ืื—ื“ ื”ื•ืคืš ืœืฉื ื™ื™ื. ื•ื”ืชื”ืœื™ืš ื—ื•ื–ืจ ืฉื•ื‘ ื•ืฉื•ื‘.
00:47
and one cell becomes two, and so on and so on.
11
47036
2712
00:49
They just grow and divide and grow and divide -- so a kind of boring life,
12
49772
3892
ื”ื ืจืง ื’ื“ืœื™ื ื•ืžืชื—ืœืงื™ื, ื’ื“ืœื™ื ื•ืžืชื—ืœืงื™ื. ื—ื™ื™ื ื“ื™ ืžืฉืขืžืžื™ื.
00:53
except that what I would argue is that you have an amazing interaction
13
53688
3305
ืื‘ืœ, ืื ื™ ื˜ื•ืขื ืช ืฉืœื›ืœ ืื—ื“ ืžืื™ืชื ื•
ื™ืฉ ืงืฉืจ ื’ื•ืžืœื™ืŸ ืžื•ืคืœื ืื™ืชื.
00:57
with these critters.
14
57017
1234
00:58
I know you guys think of yourself as humans,
15
58275
2083
ืื ื™ ื™ื•ื“ืขืช ืฉืืชื ื—ื•ืฉื‘ื™ื ืขืœ ืขืฆืžื›ื ื›ืื ื•ืฉื™ื™ื, ื•ืื ื™ ื“ื™ ืžืกื›ื™ืžื” ืื™ืชื›ื.
01:00
and this is sort of how I think of you.
16
60382
1891
ื”ืื™ืฉ ื”ื–ื” ืžื™ื™ืฆื’
01:02
This man is supposed to represent a generic human being,
17
62297
3237
ืื“ื ื›ืœืœื™.
01:05
and all of the circles in that man are all the cells that make up your body.
18
65558
4158
ื”ืขื™ื’ื•ืœื™ื ื‘ืชื•ื›ื• ื”ื ื”ืชืื™ื ืฉืžืจื›ื™ื‘ื™ื ืืช ื’ื•ืคื ื•.
01:09
There's about a trillion human cells that make each one of us who we are
19
69740
4144
ืงื™ื™ืžื™ื ื›ื˜ืจื™ืœื™ื•ืŸ ืชืื™ื ืื ื•ืฉื™ื™ื ืฉื”ื•ืคื›ื™ื ืื•ืชื ื• ืœืžื” ืฉืื ื—ื ื•,
ื•ืžืืคืฉืจื™ื ืœื ื• ืœืขืฉื•ืช ืืช ื”ื“ื‘ืจื™ื ืฉื‘ืจืฆื•ื ื ื• ืœืขืฉื•ืช.
01:13
and able to do all the things that we do.
20
73908
2070
ืื‘ืœ, ื™ืฉ ืœื ื• 10 ื˜ืจื™ืœื™ื•ืŸ ืชืื™ ื—ื™ื™ื“ืงื™ื
01:16
But you have 10 trillion bacterial cells in you or on you
21
76002
3341
ืฉื ืžืฆืื™ื ืขืœื™ื ื• ืื• ื‘ืชื•ื›ื ื• ื‘ื›ืœ ืจื’ืข ื•ืจื’ืข.
01:19
at any moment in your life.
22
79367
1301
01:20
So, 10 times more bacterial cells than human cells on a human being.
23
80692
4614
ื›ืœื•ืžืจ, ื‘ื›ืœ ืื“ื ื™ืฉื ื ืคื™ 10
ืชืื™ ื—ื™ื™ื“ืงื™ื ืžืืฉืจ ืชืื™ื ืื ื•ืฉื™ื™ื.
01:25
And, of course, it's the DNA that counts,
24
85330
1976
ื•ื›ืžื•ื‘ืŸ, ื”ื“ื "ื ื”ื•ื ื”ื’ื•ืจื ื”ืงื•ื‘ืข.
01:27
so here's all the A, T, Gs and Cs that make up your genetic code
25
87330
3410
ื”ื ื” ื›ืœ ื”-G, T ,A-ื™ื, ื•-C-ื™ื
ืฉืžืจื›ื™ื‘ื™ื ืืช ืงื•ื“ื›ื ื”ื’ื ื˜ื™, ื•ืงื•ื‘ืขื™ื ืืช ืชื›ื•ื ื•ืชื™ื›ื ื”ืžืœื‘ื‘ื•ืช.
01:30
and give you all your charming characteristics.
26
90764
2216
ื™ืฉ ืœื›ื ื›-30,000 ื’ื ื™ื.
01:33
You have about 30,000 genes.
27
93004
1666
01:34
Well, it turns out you have 100 times more bacterial genes
28
94694
3330
ื›ืœื•ืžืจ, ืคื™ 100 ื™ื•ืชืจ ื’ื ื™ื ืฉืœ ื—ื™ื™ื“ืงื™ื,
ืฉืžืžืœืื™ื ืชืคืงื™ื“ ื‘ื›ื ื•ืขืœื™ื›ื ื‘ืžืฉืš ื›ืœ ื—ื™ื™ื›ื.
01:38
playing a role in you or on you all of your life.
29
98048
3542
01:41
So at the best, you're 10 percent human; more likely, about one percent human,
30
101614
4840
ื‘ืžืงืจื” ื”ื˜ื•ื‘, ืืชื 10 ืื—ื•ื– ืื ื•ืฉื™ื™ื,
ืืš ืงืจื•ื‘ ืœื•ื“ืื™ ืฉืืชื ืื ื•ืฉื™ื™ื ื‘ืื—ื•ื– ืื—ื“ ื‘ืœื‘ื“,
01:46
depending on which of these metrics you like.
31
106478
2408
ืชืœื•ื™ ื‘ืฆื•ืจืช ื”ืžื“ื™ื“ื” ื”ื—ื‘ื™ื‘ื” ืขืœื™ื›ื.
01:48
I know you think of yourself as human beings,
32
108910
2121
ืืชื ื‘ื•ื“ืื™ ื—ื•ืฉื‘ื™ื ืขืœ ืขืฆืžื›ื ื›ืขืœ ืื ื•ืฉื™ื™ื,
ืื‘ืœ ืื ื™ ืจื•ืื” ืืชื›ื ื›-90 ืื• 99 ืื—ื•ื– ื—ื™ื™ื“ืงื™ื™ื.
01:51
but I think of you as 90 or 99 percent bacterial.
33
111055
3251
01:54
(Laughter)
34
114330
1213
[ืฆื—ื•ืง]
01:55
And these bacteria are not passive riders.
35
115567
2967
ื”ื—ื™ื™ื“ืงื™ื ื”ืืœื” ื”ื ืœื ืจื•ื›ื‘ื™ื ืคืืกื™ื‘ื™ื™ื.
01:58
These are incredibly important; they keep us alive.
36
118558
3246
ื”ื ื—ืฉื•ื‘ื™ื ื‘ื™ื•ืชืจ ื•ืžืืคืฉืจื™ื ืœื ื• ืœื—ื™ื•ืช.
02:01
They cover us in an invisible body armor
37
121828
2617
ื”ื ืžื›ืกื™ื ืื•ืชื ื• ื‘ืฉืจื™ื•ืŸ ื’ื•ืฃ ื‘ืœืชื™ ื ืจืื”
02:04
that keeps environmental insults out so that we stay healthy.
38
124469
3837
ืฉืžื’ืŸ ืขืœื™ื ื• ืžืคื ื™ ื”ืกื‘ื™ื‘ื”
ื•ืฉื•ืžืจ ืขืœ ื‘ืจื™ืื•ืชื ื•.
02:08
They digest our food, they make our vitamins,
39
128330
2479
ื”ื ืžืขื›ืœื™ื ืืช ืžื–ื•ื ื ื•, ื™ื•ืฆืจื™ื ืขื‘ื•ืจื ื• ื•ื™ื˜ืžื™ื ื™ื,
02:10
they actually educate your immune system to keep bad microbes out.
40
130833
4198
ื•ืžืœืžื“ื™ื ืืช ืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ ืฉืœื ื•
ืœืžื ื•ืข ื›ื ื™ืกื” ืžืžื™ืงืจื•ื‘ื™ื ืจืขื™ื.
ื”ื ืขื•ืฉื™ื ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ื ืคืœืื™ื ื”ืืœื”,
02:15
So they do all these amazing things
41
135055
2001
ืฉืžืกื™ื™ืขื™ื ืœื ื• ื•ื—ื™ื•ื ื™ื™ื ืœื—ื™ื™ื ื•,
02:17
that help us and are vital for keeping us alive,
42
137080
3616
02:20
and they never get any press for that.
43
140720
2110
ื‘ืœื™ ืœืงื‘ืœ ื›ืชื‘ืช ืฉืขืจ ื‘ืขื™ืชื•ืŸ.
02:22
But they get a lot of press because they do a lot of terrible things as well.
44
142854
4202
ืื‘ืœ ื”ื ืžืงื‘ืœื™ื ืคืจืกื•ื ืจื‘
ืžื›ื™ื•ื•ืŸ ืฉื”ื ืขื•ืฉื™ื ื’ื ื“ื‘ืจื™ื ื ื•ืจืื™ื™ื.
ื™ืฉื ื ืกื•ื’ื™ ื—ื™ื™ื“ืงื™ื ืจื‘ื™ื ืขืœ ืคื ื™ ื”ืื“ืžื”
02:27
So there's all kinds of bacteria on the earth
45
147080
2408
02:29
that have no business being in you or on you at any time,
46
149512
3475
ืฉื›ืœืœ ืœื ืืžื•ืจื™ื ืœื”ืชืงืจื‘ ืืœื™ื ื•,
ืื—ืจืช ืื ื• ื ืขืฉื™ื ื—ื•ืœื™ื ืžืื•ื“.
02:33
and if they are, they make you incredibly sick.
47
153011
3560
02:36
And so the question for my lab
48
156595
1453
ื”ืฉืืœื” ืฉืฉืืœื ื• ื‘ืžืขื‘ื“ื”, ื‘ื™ืŸ ืื ืชืจืฆื• ืœื—ืฉื•ื‘
02:38
is whether you want to think about all the good things that bacteria do
49
158072
3426
ืขืœ ื”ื“ื‘ืจื™ื ื”ื˜ื•ื‘ื™ื ืื• ื”ื“ื‘ืจื™ื ื”ืจืขื™ื ืฉื—ื™ื™ื“ืงื™ื ืขื•ืฉื™ื,
02:41
or all the bad things that bacteria do.
50
161522
1927
02:43
The question we had is: How could they do anything at all?
51
163473
2734
ื”ืฉืืœื” ื”ื™ื - ืื™ืš ื”ื ื‘ื›ืœืœ ืžืกื•ื’ืœื™ื ืœืขืฉื•ืช ืžืฉื”ื•?
ื”ื ื›ืœ ื›ืš ืงื˜ื ื˜ื ื™ื,
02:46
I mean, they're incredibly small.
52
166231
1598
02:47
You have to have a microscope to see one.
53
167853
1981
ืฆืจื™ืš ืžื™ืงืจื•ืกืงื•ืค ื›ื“ื™ ืœืจืื•ืช ืื•ืชื.
02:49
They live this sort of boring life where they grow and divide,
54
169858
3039
ื”ื—ื™ื™ื ืฉืœื”ื ืžืฉืขืžืžื™ื - ืจืง ื’ื“ื™ืœื” ื•ื—ืœื•ืงื”,
02:52
and they've always been considered to be these asocial, reclusive organisms.
55
172921
4724
ื•ื”ื ืชืžื™ื“ ื ื—ืฉื‘ื• ืœื™ืฆื•ืจื™ื ืžืชื‘ื•ื“ื“ื™ื ื•ืื ื˜ื™ ื—ื‘ืจืชื™ื™ื.
02:57
And so it seemed to us that they're just too small
56
177669
2523
ื•ื›ืš, ื ืจืื” ืœื ื• ืฉื”ื ืงื˜ื ื™ื ืžื›ื“ื™ ืœื”ืฉืคื™ืข
03:00
to have an impact on the environment
57
180216
1956
ืขืœ ื”ืกื‘ื™ื‘ื”
03:02
if they simply act as individuals.
58
182196
2574
ืื ื”ื ืคื•ืขืœื™ื ื›ื‘ื•ื“ื“ื™ื.
03:04
So we wanted to think if there couldn't be a different way that bacteria live.
59
184794
4269
ืจืฆื™ื ื• ืœื‘ื“ื•ืง ืื ืœื—ื™ื™ื“ืงื™ื ื™ืฉ
ืฆื•ืจืช ื—ื™ื™ื ืื—ืจืช.
ื”ืจืžื– ืœื›ืš ื”ื’ื™ืข ืžื—ื™ื™ื“ืง ื™ืžื™,
03:09
And the clue to this came from another marine bacterium,
60
189087
3784
03:12
and it's a bacterium called "Vibrio fischeri."
61
192895
2428
ืฉื ืงืจื ื•ื™ื‘ืจื™ื• ืคื™ืฉืจื™ (Vibrio Fischeri).
03:15
What you're looking at on this slide is just a person from my lab
62
195347
3552
ื‘ืฉืงื•ืคื™ืช ื–ื• ืืชื ืจื•ืื™ื ืื“ื ืžื”ืžืขื‘ื“ื” ืฉืœื™
03:18
holding a flask of a liquid culture of a bacterium,
63
198923
3133
ื”ืื•ื—ื– ื‘ื‘ืงื‘ื•ืง ืขื ืชืจื‘ื™ืช ื ื•ื–ืœื™ืช ืฉืœ ื—ื™ื™ื“ืง,
ื—ื™ื™ื“ืง ื™ืคื”ืคื” ื•ืœื ืžื–ื™ืง ืฉืžื’ื™ืข ืžื”ืื•ืงื™ื™ื ื•ืก,
03:22
a harmless, beautiful bacterium that comes from the ocean,
64
202080
3173
ื”ื ืงืจื ื•ื™ื‘ืจื™ื• ืคื™ืฉืจื™.
03:25
named Vibrio fischeri.
65
205277
1429
03:26
And this bacterium has the special property that it makes light,
66
206730
3326
ืœื—ื™ื™ื“ืง ื”ื–ื” ื™ืฉ ืชื›ื•ื ื” ืžื™ื•ื—ื“ืช - ื”ื•ื ืžืื™ืจ;
ื”ื•ื ื™ื•ืฆืจ ื‘ื™ื•-ืœื•ืžื™ื ืฆื™ื”,
03:30
so it makes bioluminescence,
67
210080
1393
03:31
like fireflies make light.
68
211497
1824
ื›ืžื• ื”ื’ื—ืœื™ืœื™ื•ืช.
03:33
We're not doing anything to the cells here,
69
213345
2035
ืœื ืขืฉื™ื ื• ืœืชืื™ื ืฉื•ื ื“ื‘ืจ.
03:35
we just took the picture by turning the lights off in the room,
70
215404
2990
ืฆื™ืœืžื ื• ื‘ื—ื“ืจ ื—ืฉื•ืš
ื•ื–ื” ืžื” ืฉืจืื™ื ื•.
03:38
and this is what we see.
71
218418
1424
03:39
And what's actually interesting to us was not that the bacteria made light
72
219866
3723
ืœืžืขืฉื”, ืœื ื”ืชืขื ื™ื™ื ื•
ื‘ืื•ืจ ืฉื”ื—ื™ื™ื“ืงื™ื ื”ืคื™ืงื•,
03:43
but when the bacteria made light.
73
223613
2157
ืืœื ื‘ืขื™ืชื•ื™ ื‘ื• ื”ื ื”ืคื™ืงื• ืืช ื”ืื•ืจ.
03:45
What we noticed is when the bacteria were alone,
74
225794
2699
ืฉืžื ื• ืœื‘ ืฉื›ืืฉืจ ื”ื—ื™ื™ื“ืงื™ื ื‘ื•ื“ื“ื™ื,
03:48
so when they were in dilute suspension,
75
228517
2155
ื›ืืฉืจ ื”ื ื ืžืฆืื™ื ื‘ืชืจื—ื™ืฃ ืžื”ื•ืœ, ื”ื ืœื ืžืื™ืจื™ื.
03:50
they made no light.
76
230696
1360
ืื‘ืœ, ื›ืืฉืจ ืžืกืคืจ ื”ืชืื™ื ืžื’ื™ืข ืœืจืžื” ืžืกื•ื™ื™ืžืช,
03:52
But when they grew to a certain cell number,
77
232080
2048
ื›ืœ ื”ื—ื™ื™ื“ืงื™ื ืžื“ืœื™ืงื™ื ืืช ื”ืื•ืจ ื‘ื• ื–ืžื ื™ืช.
03:54
all the bacteria turned on light simultaneously.
78
234152
3350
03:57
So the question that we had is:
79
237526
1728
ื”ืฉืืœื” ืฉืœื ื• ื”ื™ืชื”, ืื™ืš ื—ื™ื™ื“ืงื™ื, ื”ื™ืฆื•ืจื™ื ื”ืคืจื™ืžื™ื˜ื™ื‘ื™ื™ื ื”ืืœื”,
03:59
How can bacteria, these primitive organisms,
80
239278
2714
ื™ื›ื•ืœื™ื ืœื“ืขืช ืžืชื™ ื”ื ืœื‘ื“,
04:02
tell the difference from times when they're alone
81
242016
2328
ื•ืžืชื™ ื”ื ื‘ืงื”ื™ืœื”,
04:04
and times when they're in a community,
82
244368
1891
ื•ืœื”ื—ืœื™ื˜ ืœืขืฉื•ืช ื“ื‘ืจื™ื ื‘ื™ื—ื“.
04:06
and then all do something together?
83
246283
2127
ื”ื‘ื ื• ืฉื›ื“ื™ ืœืขืฉื•ืช ื–ืืช ื”ื ืžืฉื•ื—ื—ื™ื ื–ื” ืขื ื–ื”.
04:09
And what we figured out is that the way they do that is they talk to each other,
84
249024
4101
ื”ืฉื™ื—ื” ื ืขืจื›ืช ื‘ืฉืคื” ื›ื™ืžื™ืช.
04:13
and they talk with a chemical language.
85
253149
2170
ื–ื”ื• ืชื ื”ื—ื™ื™ื“ืง.
04:15
So this is now supposed to be my bacterial cell.
86
255343
2713
ื›ืฉื”ื•ื ื‘ื•ื“ื“ ื”ื•ื ืœื ืžืคื™ืง ืื•ืจ,
04:18
When it's alone, it doesn't make any light.
87
258080
2498
04:20
But what it does do is to make and secrete small molecules
88
260602
3754
ืื‘ืœ, ื”ื•ื ื™ื•ืฆืจ ื•ืžืคืจื™ืฉ ืžื•ืœืงื•ืœื•ืช ืงื˜ื ื•ืช
04:24
that you can think of like hormones,
89
264380
1878
ืฉื ื™ืชืŸ ืœื—ืฉื•ื‘ ืขืœื™ื”ืŸ ื›ืขืœ ื”ื•ืจืžื•ื ื™ื,
04:26
and these are the red triangles.
90
266282
1699
ื•ื”ืŸ ืžื™ื•ืฆื’ื•ืช ืข"ื™ ื”ืžืฉื•ืœืฉื™ื ื”ืื“ื•ืžื™ื. ื›ืืฉืจ ื”ื—ื™ื™ื“ืง ื‘ื•ื“ื“
04:28
And when the bacteria are alone, the molecules just float away,
91
268005
3601
ื”ืžื•ืœืงื•ืœื•ืช ืฆืคื•ืช ื”ืœืื” ื•ืœื ื ื•ืฆืจ ืื•ืจ.
04:31
and so, no light.
92
271630
1320
04:32
But when the bacteria grow and double
93
272974
1942
ืื‘ืœ, ื›ืืฉืจ ื”ื—ื™ื™ื“ืงื™ื ืžืชืจื‘ื™ื ื•ืžื›ืคื™ืœื™ื ืืช ืขืฆืžื
04:34
and they're all participating in making these molecules,
94
274940
3337
ื•ื›ื•ืœื ืžืฉืชืชืคื™ื ื‘ื™ื™ืฆื•ืจ ื”ืžื•ืœืงื•ืœื•ืช,
ืžืกืคืจ ื”ืžื•ืœืงื•ืœื•ืช ื”ื—ื•ืฅ-ืชืื™ื•ืช
04:38
the molecule, the extracellular amount of that molecule,
95
278301
3484
04:41
increases in proportion to cell number.
96
281809
2827
ื’ื“ืœ ื‘ื™ื—ืก ืฉื•ื•ื” ืœืžืกืคืจ ื”ืชืื™ื.
04:44
And when the molecule hits a certain amount
97
284660
2285
ื›ืืฉืจ ืžืกืคืจ ื”ืžื•ืœืงื•ืœื•ืช ืžื’ื™ืข ืœืจืžื” ืžืกื•ื™ื™ืžืช,
04:46
that tells the bacteria how many neighbors there are,
98
286969
2540
ื”ื“ื‘ืจ ืžืฆื‘ื™ืข ืœื—ื™ื™ื“ืงื™ื ืขืœ ื›ืžื•ืช ื”ืฉื›ื ื™ื ื‘ืกื‘ื™ื‘ื”.
04:49
they recognize that molecule
99
289533
1494
ื”ื ืžื–ื”ื™ื ืืช ื”ืžื•ืœืงื•ืœื”
04:51
and all of the bacteria turn on light in synchrony.
100
291051
3607
ื•ื›ืœ ื”ื—ื™ื™ื“ืงื™ื ืžื“ืœื™ืงื™ื ืืช ื”ืื•ืจ ื‘ื• ื–ืžื ื™ืช.
04:54
And so that's how bioluminescence works --
101
294682
2284
ื–ื•ื”ื™ ื”ื“ืจืš ื‘ื” ื‘ื™ื•-ืœื•ืžื™ื ืฆื™ื” ืขื•ื‘ื“ืช -
04:56
they're talking with these chemical words.
102
296990
2146
ื”ืชืื™ื ืžืฉื•ื—ื—ื™ื ื‘ืขื–ืจืช ืžื™ืœื™ื ื›ื™ืžื™ื•ืช.
ื”ืกื™ื‘ื” ืœื›ืš ืฉื”ื•ื™ื‘ืจื™ื• ืคื™ืฉืจื™ ืžื‘ืฆืข ื–ืืช ื ื˜ื•ืขื” ื‘ื‘ื™ื•ืœื•ื’ื™ื”.
04:59
The reason Vibrio fischeri is doing that comes from the biology --
103
299160
3470
05:02
again, another plug for the animals in the ocean.
104
302654
3402
ื ื—ื–ื•ืจ ืœื—ื™ื•ืช ื‘ืื•ืงื™ื™ื ื•ืก.
ื•ื™ื‘ืจื™ื• ืคื™ืฉืจื™ ื—ื™ ื‘ืชื•ืš ื”ื“ื™ื•ื ื•ืŸ ื”ื–ื”.
05:06
Vibrio fischeri lives in this squid.
105
306080
2276
05:08
What you're looking at is the Hawaiian bobtail squid.
106
308380
2676
ื–ื”ื• ื“ื™ื•ื ื•ืŸ ื‘ื•ื‘ื˜ื™ื™ืœ ื”ื•ื•ืื™.
ื”ื•ื ืฉื•ื›ื‘ ืขืœ ื’ื‘ื•,
05:11
It's been turned on its back,
107
311080
1644
05:12
and what I hope you can see are these two glowing lobes.
108
312748
3199
ื•ื ื™ืชืŸ ืœืจืื•ืช 2 ื›ื™ืกื™ื ื–ื•ื”ืจื™ื
05:15
These house the Vibrio fischeri cells.
109
315971
2269
ื‘ื”ื ืฉื•ื›ื ื™ื ืชืื™ ื”ื•ื™ื‘ืจื™ื• ืคื™ืฉืจื™.
05:18
They live in there, at high cell number.
110
318264
2004
ื›ืืฉืจ ืžืกืคืจื ื’ื‘ื•ื”,
05:20
That molecule is there, and they're making light.
111
320292
2963
ื”ืžื•ืœืงื•ืœื•ืช ื”ื”ืŸ ื’ื•ืจืžื•ืช ืœื”ื ืœื”ืื™ืจ.
ื”ื“ื™ื•ื ื•ืŸ ืžื•ื›ืŸ ืœืกื‘ื•ืœ ืืช ื”ืชืขืœื•ืœื™ื ืฉืœื”ื
05:23
And the reason the squid is willing to put up with these shenanigans
112
323279
3261
ื›ื™ ื”ื•ื ื–ืงื•ืง ืœืื•ืจ ืฉื”ื ืžืคื™ืงื™ื.
05:26
is because it wants that light.
113
326564
1490
ื”ื ื—ื™ื™ื ื‘ืกื™ืžื‘ื™ื•ื–ื”.
05:28
The way that this symbiosis works
114
328078
1978
ื”ื“ื™ื•ื ื•ืŸ ื”ื–ื” ื—ื™ ืœื™ื“ ื—ื•ืคื™ ื”ื•ื•ืื™
05:30
is that this little squid lives just off the coast of Hawaii,
115
330080
3399
05:33
just in sort of shallow knee-deep water.
116
333503
2327
ื‘ืžื™ื ืจื“ื•ื“ื™ื ื‘ื’ื•ื‘ื” ื”ื‘ืจื›ื™ื™ื.
05:35
And the squid is nocturnal,
117
335854
1527
ื”ื“ื™ื•ื ื•ืŸ ื”ื•ื ื—ื™ื” ืœื™ืœื™ืช. ื‘ืžืฉืš ื”ื™ื•ื
05:37
so during the day, it buries itself in the sand and sleeps.
118
337405
3651
ื”ื•ื ื™ืฉืŸ ืงื‘ื•ืจ ื‘ื—ื•ืœ.
ื‘ืœื™ืœื” ื”ื•ื ื™ื•ืฆื ืœืฆื•ื“.
05:41
But then at night, it has to come out to hunt.
119
341080
2317
05:43
So on bright nights
120
343421
1244
ื‘ืœื™ืœื•ืช ื‘ื”ื ื”ื™ืจื— ืื• ื”ื›ื•ื›ื‘ื™ื ืžืคื™ืฆื™ื ืื•ืจ ืจื‘,
05:44
when there's lots of starlight or moonlight,
121
344689
2103
ืื•ืจ ื–ื” ื—ื•ื“ืจ ืืœ ืขื•ืžืง ื”ืžื™ื ื‘ื”ื ื—ื™ ื”ื“ื™ื•ื ื•ืŸ,
05:46
that light can penetrate the depth of the water the squid lives in,
122
346816
3197
ืžื›ื™ื•ื•ืŸ ืฉื”ื ื‘ื’ื•ื‘ื” ืขืฉืจื•ืช ืกื ื˜ื™ืžื˜ืจื™ื ืกืคื•ืจื™ื ื‘ืœื‘ื“.
05:50
since it's just in those couple feet of water.
123
350037
2144
ื”ื“ื™ื•ื ื•ืŸ ืคื™ืชื— ืชืจื™ืก ืฉื™ื›ื•ืœ ืœื”ืคืชื— ื•ืœื”ืกื’ืจ
05:52
What the squid has developed is a shutter that can open and close
124
352205
3728
ืžืขืœ ืื™ื‘ืจ ื”ืื•ืจ ื”ืžื™ื•ื—ื“ ืฉืžืื›ืœืก ืืช ื”ื—ื™ื™ื“ืงื™ื.
05:55
over the specialized light organ housing the bacteria.
125
355957
3099
ืขืœ ื’ื‘ ื”ื“ื™ื•ื ื•ืŸ ื™ืฉื ื ื’ืœืื™ื,
05:59
And then it has detectors on its back
126
359080
1976
ืฉืžืืคืฉืจื™ื ืœื• ืœื—ื•ืฉ ื›ืžื” ืื•ืจ ื™ืจื— ืื• ื›ื•ื›ื‘ื™ื ืคื•ื’ืข ื‘ื’ื‘ื•.
06:01
so it can sense how much starlight or moonlight is hitting its back.
127
361080
3494
06:04
And it opens and closes the shutter
128
364598
1813
ื”ื•ื ืคื•ืชื— ื•ืกื•ื’ืจ ืืช ื”ืชืจื™ืก
06:06
so the amount of light coming out of the bottom,
129
366435
2267
ื›ืš ืฉื›ืžื•ืช ื”ืื•ืจ ืฉืžื•ื—ื–ืจืช ืžืชื—ืชื™ืชื• -
06:08
which is made by the bacterium,
130
368726
1523
ืฉืžื™ื•ืฆืจืช ืข"ื™ ื”ื—ื™ื™ื“ืงื™ื,
06:10
exactly matches how much light hits the squid's back,
131
370273
2668
ืชืชืื™ื ื‘ื“ื™ื•ืง ืœื›ืžื•ืช ื”ืื•ืจ ืฉืคื•ื’ืขืช ื‘ื’ื‘ื•,
06:12
so the squid doesn't make a shadow.
132
372965
1958
ื•ื›ืš ื”ื•ื ืœื ืžื˜ื™ืœ ืฆืœ.
06:14
So it actually uses the light from the bacteria
133
374947
2544
ื”ื•ื ืžืฉืชืžืฉ ื‘ืื•ืจ ืฉืœ ื”ื—ื™ื™ื“ืงื™ื
06:17
to counter-illuminate itself in an antipredation device,
134
377515
3521
ื›ืชืื•ืจื”-ื ื’ื“ื™ืช ื‘ืžืชืงืŸ ื”ืชื—ืžืงื•ืช ืžื˜ื•ืจืคื™ื.
ื›ืš, ื”ื˜ื•ืจืคื™ื ืœื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ืฆื™ืœื•
06:21
so predators can't see its shadow,
135
381060
1996
ืœื—ืฉื‘ ืืช ืžืกืœื•ืœื• ื•ืœืื›ื•ืœ ืื•ืชื•.
06:23
calculate its trajectory and eat it.
136
383080
1976
ื–ื”ื• ื”ืžืคืฆื™ืฅ ื”ื—ืžืงืŸ ืฉืœ ื”ืื•ืงื™ื™ื ื•ืก.
06:25
So this is like the stealth bomber of the ocean.
137
385080
2602
06:27
(Laughter)
138
387706
1174
[ืฆื—ื•ืง]
06:28
But then if you think about it, this squid has this terrible problem,
139
388904
3257
ืื‘ืœ ืœื“ื™ื•ื ื•ืŸ ื™ืฉ ื‘ืขื™ื” ืงืฉื”.
ื”ื•ื ืžื˜ื•ืคืœ ื‘ืชืจื‘ื™ืช ืฆืคื•ืคื” ืฉืœ ื—ื™ื™ื“ืงื™ื
06:32
because it's got this dying, thick culture of bacteria,
140
392185
2713
06:34
and it can't sustain that.
141
394922
1455
ืฉื”ื•ื ืœื ืžืกื•ื’ืœ ืœืชื—ื–ืง.
06:36
And so what happens is, every morning when the sun comes up,
142
396401
2895
ื•ืœื›ืŸ, ื‘ื›ืœ ื‘ื•ืงืจ ื›ืฉื”ืฉืžืฉ ื–ื•ืจื—ืช
ื›ืฉื”ื“ื™ื•ื ื•ืŸ ื”ื•ืœืš ืœื™ืฉื•ืŸ ืงื‘ื•ืจ ื‘ื—ื•ืœ,
06:39
the squid goes back to sleep, it buries itself in the sand,
143
399320
2836
ื”ื•ื ืžืคืขื™ืœ ืžืฉืื‘ื” ื”ืžื—ื•ื‘ืจืช ืœืฉืขื•ืŸ ื”ื‘ื™ื•ืœื•ื’ื™ ืฉืœื•,
06:42
and it's got a pump that's attached to its circadian rhythm.
144
402180
2830
ื•ื”ืžืฉืื‘ื” ืฉื•ืื‘ืช ื”ื—ื•ืฆื” 95 ืื—ื•ื– ืžื”ื—ื™ื™ื“ืงื™ื.
06:45
And when the sun comes up, it pumps out, like, 95 percent of the bacteria.
145
405034
4591
06:49
So now the bacteria are dilute,
146
409649
1652
ืขื›ืฉื™ื• ื”ื—ื™ื™ื“ืงื™ื ืžื“ื•ืœืœื™ื, ืื™ืŸ ืžื•ืœืงื•ืœื•ืช ื“ืžื•ื™ื•ืช ื”ื•ืจืžื•ืŸ,
06:51
that little hormone molecule is gone, so they're not making light.
147
411325
3152
ื•ืื™ืŸ ืชืื•ืจื”.
06:54
But, of course, the squid doesn't care, it's asleep in the sand.
148
414501
3033
ืื‘ืœ, ืœื“ื™ื•ื ื•ืŸ ืœื ืื›ืคืช. ื”ื•ื ื™ืฉืŸ ื‘ืชื•ืš ื”ื—ื•ืœ.
ื‘ืžืฉืš ื”ื™ื•ื, ื”ื—ื™ื™ื“ืงื™ื ืžื›ืคื™ืœื™ื ืืช ืขืฆืžื,
06:57
And as the day goes by, the bacteria double,
149
417558
2054
ืžืคืจื™ืฉื™ื ืืช ื”ืžื•ืœืงื•ืœื”, ื•ืžืชื—ื™ืœื™ื ืœื”ืื™ืจ ื‘ืœื™ืœื” -
06:59
they release the molecule, and then light comes on at night,
150
419636
2825
ื‘ื“ื™ื•ืง ื‘ื–ืžืŸ ื‘ื• ื”ื“ื™ื•ื ื•ืŸ ื–ืงื•ืง ืœืชืื•ืจื” ืฉืœื”ื.
07:02
exactly when the squid wants it.
151
422485
2109
07:04
So first, we figured out how this bacterium does this,
152
424618
3347
ืจืืฉื™ืช, ื”ื‘ื ื• ืื™ืš ื”ื—ื™ื™ื“ืง ื”ื–ื” ืžืื™ืจ.
07:07
but then we brought the tools of molecular biology to this
153
427989
2746
ืœืื—ืจ ืžื›ืŸ, ื”ืฉืชืžืฉื ื• ื‘ื›ืœื™ื ืฉืœ ื‘ื™ื•ืœื•ื’ื™ื” ืžื•ืœืงื•ืœืจื™ืช
07:10
to figure out, really, what's the mechanism.
154
430759
2152
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ืžื ื’ื ื•ืŸ.
07:12
And what we found -- so this is now supposed to be my bacterial cell --
155
432935
4024
ื–ื”ื•, ืฉื•ื‘, ืชื ื”ื—ื™ื™ื“ืง.
07:16
is that Vibrio fischeri has a protein.
156
436983
1921
,ื’ื™ืœื™ื ื• ืฉืœื•ื™ื‘ืจื™ื• ืคื™ืฉืจื™ ื™ืฉ ื—ืœื‘ื•ืŸ,
07:18
That's the red box --
157
438928
1189
ืฉืžืกื•ืžืŸ ืข"ื™ ื”ืžืœื‘ืŸ ื”ืื“ื•ื. ื–ื”ื• ืื ื–ื™ื ืฉื™ื•ืฆืจ ืืช
07:20
it's an enzyme that makes that little hormone molecule,
158
440141
2974
ืžื•ืœืงื•ืœืช ื”ื”ื•ืจืžื•ืŸ ื”ืงื˜ื ื” - ื”ืžืฉื•ืœืฉ ื”ืื“ื•ื.
07:23
the red triangle.
159
443139
1167
07:24
And then as the cells grow,
160
444330
1310
ื›ืฉืžืกืคืจ ื”ืชืื™ื ื’ื“ืœ, ื•ื›ื•ืœื ืžืคืจื™ืฉื™ื ืืช ื”ืžื•ืœืงื•ืœื”
07:25
they're all releasing that molecule into the environment,
161
445664
2706
ืืœ ื”ืกื‘ื™ื‘ื”, ื™ื”ื™ื• ื‘ื” ืžื•ืœืงื•ืœื•ืช ืจื‘ื•ืช.
07:28
so there's lots of molecule there.
162
448394
1662
ืœื—ื™ื™ื“ืงื™ื ื™ืฉ ืขืœ ืงืจื•ื ื”ืชื ืงื•ืœื˜ืŸ
07:30
And the bacteria also have a receptor on their cell surface
163
450080
3881
07:33
that fits like a lock and key with that molecule.
164
453985
2529
ืฉืžืชืื™ื ืœืžื•ืœืงื•ืœื” ื›ืžื• ืžื ืขื•ืœ ืœืžืคืชื—.
07:36
These are just like the receptors on the surfaces of your cells.
165
456538
3590
ื”ื ื‘ื“ื™ื•ืง ื›ืžื• ื”ืงื•ืœื˜ื ื™ื ืขืœ ืงืจื•ืžื™ ื”ืชืื™ื ืฉืœื›ื.
ื›ืฉื”ืžื•ืœืงื•ืœื” ืžื’ื™ืขื” ืœืจืžื” ืžืกื•ื™ื™ืžืช,
07:40
So when the molecule increases to a certain amount,
166
460152
2423
07:42
which says something about the number of cells,
167
462599
2247
ืฉืื•ืžืจืช ืžืฉื”ื• ืขืœ ืžืกืคืจ ื”ืชืื™ื -
07:44
it locks down into that receptor
168
464870
1749
ื”ื™ื ื ื ืขืœืช ื‘ืชื•ืš ื”ืงื•ืœื˜ืŸ
07:46
and information comes into the cells
169
466643
2377
ื•ื ื›ื ืก ืžื™ื“ืข ืืœ ื”ืชืื™ื
ืฉื’ื•ืจื ืœื”ื ืœื”ืคืขื™ืœ
07:49
that tells the cells to turn on this collective behavior of making light.
170
469044
4859
ืืช ื”ื”ืชื ื”ื’ื•ืช ื”ืฉื™ืชื•ืคื™ืช ืฉืœ ื”ืชืื•ืจื”.
07:53
Why this is interesting is because in the past decade,
171
473927
2696
ื”ื“ื‘ืจ ืžืขื ื™ื™ืŸ ื›ื™ ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ
07:56
we have found that this is not just some anomaly
172
476647
2243
ื’ื™ืœื™ื ื• ืฉื–ืืช ืœื ืกืชื ืื ื•ืžืœื™ื”
07:58
of this ridiculous, glow-in-the-dark bacterium that lives in the ocean --
173
478914
3467
ืฉืœ ื”ื—ื™ื™ื“ืง ื”ืžื’ื•ื—ืš ื”ื–ื•ื”ืจ ื‘ื—ืฉื™ื›ื” ื”ื—ื™ ื‘ืื•ืงื™ื™ื ื•ืก.
ืœื›ืœ ื”ื—ื™ื™ื“ืงื™ื ื™ืฉ ืžืขืจื›ื•ืช ื›ืืœื”.
08:02
all bacteria have systems like this.
174
482405
1857
08:04
So now what we understand is that all bacteria can talk to each other.
175
484286
3633
ื›ืœื•ืžืจ, ื›ืœ ื”ื—ื™ื™ื“ืงื™ื ื™ื›ื•ืœื™ื ืœืฉื•ื—ื— ื–ื” ืขื ื–ื”.
08:07
They make chemical words, they recognize those words,
176
487943
2802
ื”ื ื™ื•ืฆืจื™ื ืžื™ืœื™ื ื›ื™ืžื™ื•ืช, ืžื–ื”ื™ื ืื•ืชืŸ,
08:10
and they turn on group behaviors
177
490769
2006
ื•ืžืคืขื™ืœื™ื ื”ืชื ื”ื’ื•ื™ื•ืช ืงื‘ื•ืฆืชื™ื•ืช
08:12
that are only successful when all of the cells participate in unison.
178
492799
4598
ืฉืžืฆืœื™ื—ื•ืช ืจืง ื›ืืฉืจ ื›ืœ ื”ืชืื™ื ืคื•ืขืœื™ื ื™ื—ื“ื™ื•.
08:17
So now we have a fancy name for this: we call it "quorum sensing."
179
497421
3412
ืชื•ืคืขื” ื–ืืช ื ืงืจืืช ื—ื™ืฉืช-ืžื ื™ื™ืŸ.
08:20
They vote with these chemical votes,
180
500857
2016
ื”ื ืžืฆื‘ื™ืขื™ื ื”ืฆื‘ืขื•ืช ื›ื™ืžื™ื•ืช,
08:22
the vote gets counted, and then everybody responds to the vote.
181
502897
3944
ื”ื”ืฆื‘ืขื•ืช ื ืกืคืจื•ืช ื•ื›ื•ืœื ืžื’ื™ื‘ื™ื ืœืชื•ืฆืืช ื”ื”ืฆื‘ืขื”.
08:26
What's important for today's talk is we know there are hundreds of behaviors
182
506865
3836
ืžื” ืฉื—ืฉื•ื‘ ืœื ื•ืฉื ืฉืœื ื• ื”ื™ื•ื ื”ื•ื
ืฉืื ื• ื™ื•ื“ืขื™ื ืฉืœื—ื™ื™ื“ืงื™ื ื™ืฉ ืžืื•ืช ื”ืชื ื”ื’ื•ื™ื•ืช
08:30
that bacteria carry out in these collective fashions.
183
510725
2928
ืฉืžื‘ื•ืฆืขื•ืช ื‘ืฉื™ื˜ื•ืช ื”ืฉื™ืชื•ืคื™ื•ืช ื”ืืœื”.
08:33
But the one that's probably the most important to you is virulence.
184
513677
3503
ื”ื”ืชื ื”ื’ื•ืช ื”ื—ืฉื•ื‘ื” ื‘ื™ื•ืชืจ ืขื‘ื•ืจื™ื ื• ื”ื™ื ื”ืชืงืคื” ืืœื™ืžื”.
ืื ืžืกืคืจ ื—ื™ื™ื“ืงื™ื ื ื›ื ืกื™ื ืœื’ื•ืคื›ื,
08:37
It's not like a couple bacteria get in you and start secreting some toxins --
185
517204
4247
ื•ืžืชื—ื™ืœื™ื ืœื”ืคืจื™ืฉ ืจืขืœื™ื,
08:41
you're enormous; that would have no effect on you, you're huge.
186
521475
3732
ืœื ืชื—ื•ืฉื• ื‘ื›ืš ืžื›ื™ื•ื•ืŸ ืฉืืชื ืขื ืงื™ื™ื.
ืื ื• ืžื‘ื™ื ื™ื ืขืชื”
08:45
But what they do, we now understand,
187
525231
2139
08:47
is they get in you, they wait, they start growing,
188
527394
2962
ืฉื”ื ื ื›ื ืกื™ื, ืžื—ื›ื™ื, ืžืชื—ื™ืœื™ื ืœื”ืชืจื‘ื•ืช,
08:50
they count themselves with these little molecules,
189
530380
2372
ืกื•ืคืจื™ื ืืช ืขืฆืžื ื‘ืขื–ืจืช ื”ืžื•ืœืงื•ืœื•ืช ื”ืงื˜ื ื•ืช,
08:52
and they recognize when they have the right cell number
190
532776
2635
ืžื–ื”ื™ื ืžืชื™ ืžืกืคืจื ื‘ื“ื™ื•ืง ืžืชืื™ื
ื›ืš ืฉืื ื›ืœ ื”ื—ื™ื™ื“ืงื™ื ื™ืชืงื™ืคื• ื‘ื™ื—ื“
08:55
that if all of the bacteria launch their virulence attack together,
191
535435
3221
08:58
they're going to be successful at overcoming an enormous host.
192
538680
3676
ื”ื ื™ืฆืœื™ื—ื• ืœื”ืชื’ื‘ืจ ืขืœ ื”ืžืืจื— ื”ืขื ืง ืฉืœื”ื.
09:02
So bacteria always control pathogenicity with quorum sensing.
193
542380
4836
ื”ื—ื™ื™ื“ืงื™ื ืฉื•ืœื˜ื™ื ื‘ืคืชื•ื’ื ื™ื•ืช ื‘ืขื–ืจืช ื—ื™ืฉืช-ืžื ื™ื™ืŸ.
ื–ืืช ื”ื“ืจืš ื‘ื” ื”ื ืคื•ืขืœื™ื.
09:07
So that's how it works.
194
547732
1324
ื‘ื ื•ืกืฃ, ื‘ื“ืงื ื• ืžื”ืŸ ื”ืžื•ืœืงื•ืœื•ืช ื”ืืœื” -
09:09
We also then went to look at what are these molecules.
195
549080
2649
09:11
These were the red triangles on my slides before.
196
551753
2584
ื”ืžืฉื•ืœืฉื™ื ื”ืื“ื•ืžื™ื ืฉื”ื•ืคื™ืขื• ื‘ืฉืงืคื™ื ืฉืœื™.
09:14
This is the Vibrio fischeri molecule.
197
554361
2292
ื–ื•ื”ื™ ื”ืžื•ืœืงื•ืœื” ืฉืœ ื”ื•ื™ื‘ืจื™ื• ืคื™ืฉืจื™.
09:16
This is the word that it talks with.
198
556677
1758
ื–ื•ื”ื™ ื”ืžื™ืœื” ื‘ืืžืฆืขื•ืชื” ื”ื•ื ืžื“ื‘ืจ.
09:18
And then we started to look at other bacteria,
199
558459
2148
ื”ืชื—ืœื ื• ืœื‘ื“ื•ืง ื—ื™ื™ื“ืงื™ื ืื—ืจื™ื,
09:20
and these are just a smattering of the molecules that we've discovered.
200
560631
3406
ื•ื–ื”ื• ืจืง ืžื“ื’ื ื—ืœืงื™ ืฉืœ ื”ืžื•ืœืงื•ืœื•ืช ืฉืžืฆืื ื•.
ืื ื™ ืžืงื•ื•ื” ืฉืืชื ืจื•ืื™ื
09:24
What I hope you can see is that the molecules are related.
201
564061
3240
ืฉื™ืฉ ืงืฉืจ ื‘ื™ื ื™ื”ืŸ.
09:27
The left-hand part of the molecule is identical
202
567325
2444
ื”ื—ืœืง ื”ืฉืžืืœื™ ืฉืœ ื”ืžื•ืœืงื•ืœื•ืช ื–ื”ื”
09:29
in every single species of bacteria.
203
569793
2603
ื‘ื›ืœ ื”ืžื™ื ื™ื ืฉืœ ื”ื—ื™ื™ื“ืงื™ื,
09:32
But the right-hand part of the molecule is a little bit different
204
572420
3086
ืื‘ืœ ื”ื—ืœืง ื”ื™ืžื ื™ ืฉืœ ื”ืžื•ืœืงื•ืœื•ืช ืงืฆืช ืฉื•ื ื”.
09:35
in every single species.
205
575530
1486
ื“ื‘ืจ ื–ื” ืžืขื ื™ืง
09:37
What that does is to confer exquisite species specificities to these languages.
206
577040
5499
ื™ื™ื—ื•ื“ื™ื•ืช ืœืฉืคื” ืฉืœ ื›ืœ ืžื™ืŸ ื—ื™ื™ื“ืงื™ื.
09:42
So each molecule fits into its partner receptor
207
582563
3242
ื›ืœ ืžื•ืœืงื•ืœื” ืžืชืื™ืžื” ืืš ื•ืจืง ืœืงื•ืœื˜ืŸ ืฉืœ ื—ื™ื™ื“ืง ืฉื•ืชืฃ.
09:45
and no other.
208
585829
1157
ืืœื” ื”ืŸ ืฉื™ื—ื•ืช ืคืจื˜ื™ื•ืช ื•ื—ืฉืื™ื•ืช.
09:47
So these are private, secret conversations.
209
587010
2858
09:49
These conversations are for intraspecies communication.
210
589892
3815
ืฉื™ื—ื•ืช ืืœื” ืžืฉืžืฉื•ืช ืœืชืงืฉื•ืจืช ืชื•ืš-ืžื™ื ื™ืช.
09:53
Each bacteria uses a particular molecule that's its language
211
593731
4192
ืœื›ืœ ื—ื™ื™ื“ืง ื™ืฉ ืžื•ืœืงื•ืœื” ืžืกื•ื™ื™ืžืช ืฉืžื”ื•ื•ื” ืืช ื”ืฉืคื” ืฉืœื•,
09:57
that allows it to count its own siblings.
212
597947
3210
ื•ืžืืคืฉืจืช ืœื• ืœืกืคื•ืจ ืืช ื—ื‘ืจื™ื•.
ื‘ืฉืœื‘ ื–ื”
10:02
Once we got that far,
213
602189
1220
10:03
we thought we were starting to understand that bacteria have these social behaviors.
214
603433
3972
ื”ืชื—ืœื ื• ืœื”ื‘ื™ืŸ ืฉืœื—ื™ื™ื“ืงื™ื ื™ืฉ ื”ืชื ื”ื’ื•ื™ื•ืช ื—ื‘ืจืชื™ื•ืช.
ื‘ื ื•ืกืฃ, ื”ื‘ื ื• ืฉืจื•ื‘ ื”ื–ืžืŸ
10:07
But what we were really thinking about is that most of the time,
215
607429
3055
ื—ื™ื™ื“ืงื™ื ื—ื™ื™ื ื‘ืฆื•ื•ืชื
10:10
bacteria don't live by themselves, they live in incredible mixtures,
216
610508
3251
ืขื ืžืื•ืช ื•ืืœืคื™ ืžื™ื ื™ื ืื—ืจื™ื ืฉืœ ื—ื™ื™ื“ืงื™ื.
10:13
with hundreds or thousands of other species of bacteria.
217
613783
2805
10:16
And that's depicted on this slide.
218
616612
1709
ืฉืงืฃ ื–ื” ืžืชืืจ ื–ืืช. ื–ื”ื• ื”ืขื•ืจ ืฉืœื›ื.
10:18
This is your skin.
219
618345
1156
10:19
So this is just a picture -- a micrograph of your skin.
220
619525
3018
ื–ื•ื”ื™ ืชืžื•ื ืช ืžื™ืงืจื•ืกืงื•ืค ืฉืœ ื”ืขื•ืจ ืฉืœื›ื.
10:22
Anywhere on your body, it looks pretty much like this.
221
622567
2564
ื”ื•ื ื ืจืื” ื‘ืขืจืš ื›ืš ื‘ื›ืœ ืžืงื•ื ื‘ื’ื•ืฃ.
ืื ื™ ืžืงื•ื•ื” ืฉืืชื ืžืฆืœื™ื—ื™ื ืœื”ื‘ื—ื™ืŸ ื‘ืžื’ื•ื•ืŸ ื”ื—ื™ื™ื“ืงื™ื ืฉื ืžืฆื ืฉื.
10:25
What I hope you can see
222
625155
1242
10:26
is that there's all kinds of bacteria there.
223
626421
2115
10:28
And so we started to think, if this really is about communication in bacteria,
224
628560
4127
ื—ืฉื‘ื ื• ืฉืื ืžื“ื•ื‘ืจ ืขืœ ืชืงืฉื•ืจืช ื‘ื™ืŸ ื—ื™ื™ื“ืงื™ื
10:32
and it's about counting your neighbors,
225
632711
1920
ื•ืขืœ ืกืคื™ืจืช ื”ืฉื›ื ื™ื ืฉืœืš,
10:34
it's not enough to be able to only talk within your species.
226
634655
3618
ืœื ืžืกืคื™ืง ืœื“ื‘ืจ ืจืง ืขื ื‘ื ื™ ืžื™ื ืš.
ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ื“ืจืš ืœื‘ืฆืข ืžืคืงื“ ืชื•ืฉื‘ื™ื
10:38
There has to be a way to take a census
227
638297
2204
ื’ื ืฉืœ ืฉืืจ ื”ื—ื™ื™ื“ืงื™ื ื‘ืื•ื›ืœื•ืกื™ื”.
10:40
of the rest of the bacteria in the population.
228
640525
2456
ืื– ื—ื–ืจื ื• ืœื‘ื™ื•ืœื•ื’ื™ื” ืžื•ืœืงื•ืœืจื™ืช
10:43
So we went back to molecular biology
229
643005
2051
ื•ื”ืชื—ืœื ื• ืœื—ืงื•ืจ ื—ื™ื™ื“ืงื™ื ืฉื•ื ื™ื.
10:45
and started studying different bacteria.
230
645080
1949
ื•ื’ื™ืœื™ื ื•, ืฉืœืžืขืฉื”
10:47
And what we've found now is that, in fact, bacteria are multilingual.
231
647053
4003
ื”ื—ื™ื™ื“ืงื™ื ื”ื ืจื‘-ืœืฉื•ื ื™ื™ื.
ืœื›ื•ืœื ื™ืฉ ืฉืคื” ื™ื™ื—ื•ื“ื™ืช ืคื ื™ืžื™ืช -
10:51
They all have a species-specific system,
232
651080
2976
ืžื•ืœืงื•ืœื” ืฉืื•ืžืจืช "ืื ื™".
10:54
they have a molecule that says "me."
233
654080
1822
10:55
But then running in parallel to that is a second system
234
655926
2770
ื’ื™ืœื™ื ื•, ืฉื‘ืžืงื‘ื™ืœ ืงื™ื™ืžืช ืžืขืจื›ืช ื ื•ืกืคืช
10:58
that we've discovered, that's generic.
235
658720
2071
ืฉื”ื™ื ื›ืœืœื™ืช.
11:00
So they have a second enzyme that makes a second signal,
236
660815
3061
ืงื™ื™ื ืื ื–ื™ื ื ื•ืกืฃ ืฉื™ื•ืฆืจ ืื•ืช ื ื•ืกืฃ
11:03
and it has its own receptor,
237
663900
1679
ื•ื™ืฉ ืœื• ืงื•ืœื˜ืŸ ืžืฉืœื•.
11:05
and this molecule is the trade language of bacteria.
238
665603
3453
ื”ืžื•ืœืงื•ืœื” ื”ื–ื• ื”ื™ื ืฉืคืช ื”ืžืกื—ืจ ืฉืœ ื”ื—ื™ื™ื“ืงื™ื.
ื”ื™ื ื‘ืฉื™ืžื•ืฉ ืฉืœ ื›ืœ ื”ื—ื™ื™ื“ืงื™ื ื”ืฉื•ื ื™ื.
11:09
It's used by all different bacteria,
239
669080
1976
ื”ื™ื ืฉืคืช ื”ืชืงืฉื•ืจืช ื”ื‘ื™ืŸ-ืžื™ื ื™ืช.
11:11
and it's the language of interspecies communication.
240
671080
3443
11:14
What happens is that bacteria are able to count
241
674547
3509
ื”ื—ื™ื™ื“ืงื™ื ื™ื›ื•ืœื™ื ืœืกืคื•ืจ
ื›ืžื” "ืื ื™" ื•ื›ืžื” "ืืชื”".
11:18
how many of "me" and how many of "you."
242
678080
2098
11:20
And they take that information inside,
243
680202
2068
ื”ื ืžื›ื ื™ืกื™ื ืืช ื”ืžื™ื“ืข
11:22
and they decide what tasks to carry out
244
682294
2762
ื•ืžื—ืœื™ื˜ื™ื ืื™ื–ื” ืžืฉื™ืžื•ืช ืœื‘ืฆืข
ืœืคื™ ืชื•ืฆืื•ืช ื”ื”ืฆื‘ืขื” - ืžื™ ื”ืจื•ื‘ ื•ืžื™ ื”ืžื™ืขื•ื˜
11:25
depending on who's in the minority and who's in the majority
245
685080
3019
11:28
of any given population.
246
688123
1944
ื‘ืื•ื›ืœื•ืกื™ื” ื”ื ืชื•ื ื”.
11:30
Then, again, we turned to chemistry,
247
690853
2105
ื•ืฉื•ื‘, ืคื ื™ื ื• ืœื›ื™ืžื™ื”,
11:32
and we figured out what this generic molecule is --
248
692982
2479
ื•ื’ื™ืœื™ื ื• ืืช ื”ืžื•ืœืงื•ืœื” ื”ื›ืœืœื™ืช -
11:35
that was the pink ovals on my last slide, this is it.
249
695485
3152
ื”ืืœื™ืคืกื•ืช ื”ื•ื•ืจื•ื“ื•ืช ื‘ืฉืงืฃ ื”ืื—ืจื•ืŸ.
11:38
It's a very small, five-carbon molecule.
250
698661
2728
ื–ื•ื”ื™ ืžื•ืœืงื•ืœื” ืžืื•ื“ ืงื˜ื ื” ื‘ืขืœืช 5 ืคื—ืžื ื™ื.
ืœืžื“ื ื• ื“ื‘ืจ ื—ืฉื•ื‘ -
11:41
And what the important thing is that we learned
251
701413
2260
11:43
is that every bacterium has exactly the same enzyme
252
703697
2809
ืื•ืชื• ืื ื–ื™ื ืงื™ื™ื ื‘ื›ืœ ื”ื—ื™ื™ื“ืงื™ื
11:46
and makes exactly the same molecule.
253
706530
2187
ื•ื”ื•ื ื™ื•ืฆืจ ื‘ื“ื™ื•ืง ืืช ืื•ืชื” ื”ืžื•ืœืงื•ืœื”.
11:48
So they're all using this molecule for interspecies communication.
254
708741
3790
ื•ื›ืš ื›ื•ืœื ืžืฉืชืžืฉื™ื ื‘ืžื•ืœืงื•ืœื” ื”ื–ื•
ืขื‘ื•ืจ ืชืงืฉื•ืจืช ื‘ื™ืŸ-ืžื™ื ื™ืช.
11:52
This is the bacterial Esperanto.
255
712555
2680
ื–ื•ื”ื™ ื”ืืกืคืจื ื˜ื• ืฉืœ ื”ื—ื™ื™ื“ืงื™ื.
11:55
(Laughter)
256
715259
1423
[ืฆื—ื•ืง]
11:56
So once we got that far,
257
716706
1384
ื‘ืฉืœื‘ ื–ื”, ื›ื‘ืจ ื”ื‘ื ื•
11:58
we started to learn that bacteria can talk to each other
258
718114
2634
ืฉื—ื™ื™ื“ืงื™ื ื™ื›ื•ืœื™ื ืœืชืงืฉืจ ื‘ืขื–ืจืช ืฉืคื” ื›ื™ืžื™ืช ื–ื•.
12:00
with this chemical language.
259
720772
1350
ื•ื”ืชื—ืœื ื• ืœื—ืฉื•ื‘ ืฉืื•ืœื™ ืงื™ื™ื
12:02
But we started to think
260
722146
1150
12:03
that maybe there is something practical that we can do here as well.
261
723320
3354
ื’ื ื™ื™ืฉื•ื ืฉื™ืžื•ืฉื™ ืœื™ื“ืข ื–ื”.
ืกื™ืคืจืชื™ ืœื›ื ืฉืœื—ื™ื™ื“ืงื™ื ื™ืฉ ื”ืชื ื”ื’ื•ื™ื•ืช ื—ื‘ืจืชื™ื•ืช ืฉื•ื ื•ืช ื•ืžืฉื•ื ื•ืช.
12:06
I've told you that bacteria have all these social behaviors,
262
726698
2857
ื”ื ืžืชืงืฉืจื™ื ื‘ืขื–ืจืช ื”ืžื•ืœืงื•ืœื•ืช.
12:09
that they communicate with these molecules.
263
729579
2062
12:11
Of course, I've also told you that one of the important things they do
264
731665
3331
ื”ื–ื›ืจืชื™ ืฉืื—ื“ ื”ื“ื‘ืจื™ื ื”ื—ืฉื•ื‘ื™ื ืฉื”ื ืขื•ืฉื™ื
ื”ื•ื ืœื™ื–ื•ื ืคืชื•ื’ื ื™ื•ืช ื‘ืขื–ืจืช ื—ื™ืฉืช-ืžื ื™ื™ืŸ.
12:15
is to initiate pathogenicity using quorum sensing.
265
735020
3036
ื—ืฉื‘ื ื•, ืžื” ื™ืงืจื” ืื ื ืžื ืข
12:18
So we thought:
266
738080
1153
12:19
What if we made these bacteria so they can't talk or they can't hear?
267
739257
3728
ืžื”ื—ื™ื™ื“ืงื™ื ืœื“ื‘ืจ ืื• ืœืฉืžื•ืข?
ื”ืื ื ื•ื›ืœ ืœืžืฆื•ื ืกื•ื’ื™ื ื—ื“ืฉื™ื ืฉืœ ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”?
12:23
Couldn't these be new kinds of antibiotics?
268
743009
2649
12:25
And of course, you've just heard and you already know
269
745682
2477
ืืชื ื•ื“ืื™ ื›ื‘ืจ ื™ื•ื“ืขื™ื
ืฉื”ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื” ืื•ื–ืœืช ืœื ื•.
12:28
that we're running out of antibiotics.
270
748183
1849
ื‘ื™ืžื™ื ื•, ื”ื—ื™ื™ื“ืงื™ื ืคื™ืชื—ื• ืขืžื™ื“ื•ืช ืจื‘-ืชืจื•ืคืชื™ืช.
12:30
Bacteria are incredibly multi-drug-resistant right now,
271
750056
2708
12:32
and that's because all of the antibiotics that we use kill bacteria.
272
752788
3977
ื•ื–ืืช ื‘ื’ืœืœ ืฉื›ืœ ื”ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื” ืฉืื ื• ืžืฉืชืžืฉื™ื ื‘ื” ื”ื•ืจื’ืช ื—ื™ื™ื“ืงื™ื.
12:36
They either pop the bacterial membrane,
273
756789
2110
ื”ื™ื ืžืคื•ืฆืฆืช ืืช ืงืจื•ื ื”ื—ื™ื™ื“ืง,
12:38
they make the bacterium so it can't replicate its DNA.
274
758923
2903
ืื• ืžื•ื ืขืช ืžื”ื—ื™ื™ื“ืง ืœืฉื›ืคืœ ืืช ื”ื“ื "ื ืฉืœื•.
12:41
We kill bacteria with traditional antibiotics,
275
761850
2394
ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื” ืžืกื•ืจืชื™ืช ื”ื•ืจื’ืช ื—ื™ื™ื“ืงื™ื
12:44
and that selects for resistant mutants.
276
764268
2526
ื•ื›ืš ื ื•ืชืจื™ื ื”ืžื•ื˜ื ื˜ื™ื ื”ืขืžื™ื“ื™ื.
12:46
And so now, of course, we have this global problem
277
766818
2749
ื•ื›ืขืช, ื›ืžื•ื‘ืŸ, ืงื™ื™ืžืช ื‘ืขื™ื” ืขื•ืœืžื™ืช
12:49
in infectious diseases.
278
769591
1658
ืฉืœ ืžื—ืœื•ืช ื–ื™ื”ื•ืžื™ื•ืช.
12:51
So we thought, what if we could sort of do behavior modifications,
279
771273
3372
ื—ืฉื‘ื ื•, ืžื” ื™ืงืจื” ืื ื ืฆืœื™ื— ืœื‘ืฆืข ืœื—ื™ื™ื“ืงื™ื ืฉื™ื ื•ื™ ื”ืชื ื”ื’ื•ืชื™?
12:54
just make these bacteria so they can't talk, they can't count,
280
774669
3388
ืื ื ืžื ืข ืžื”ื—ื™ื™ื“ืงื™ื ืœื“ื‘ืจ, ืื• ืœืกืคื•ืจ,
ื•ื›ืš ื ืžื ืข ืžื”ื ืœืคืชื•ื— ื‘ื”ืชืงืคื” ืืœื™ืžื”?
12:58
and they don't know to launch virulence?
281
778081
2401
13:00
So that's exactly what we've done,
282
780506
1681
ื•ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืขืฉื™ื ื• ื‘ืขื–ืจืช ืฉืชื™ ืืกื˜ืจื˜ื’ื™ื•ืช.
13:02
and we've sort of taken two strategies.
283
782211
1908
ื‘ืจืืฉื•ื ื”, ื”ืชืžืงื“ื ื•
13:04
The first one is, we've targeted the intraspecies communication system.
284
784143
4189
ื‘ืžืขืจื›ืช ื”ืชืงืฉื•ืจืช ื”ืชื•ืš-ืžื™ื ื™ืช.
13:08
So we made molecules that look kind of like the real molecules, which you saw,
285
788356
4225
ื™ืฆืจื ื• ืžื•ืœืงื•ืœื•ืช ื“ื•ืžื•ืช ืœืืžื™ืชื™ื•ืช ืฉืจืื™ืชื
ืื‘ืœ ืขื ื”ื‘ื“ืœ ืงื˜ืŸ -
13:12
but they're a little bit different.
286
792605
1710
ื”ืŸ ื ื ืขืœื•ืช ื‘ืงื•ืœื˜ื ื™ื
13:14
And so they lock into those receptors,
287
794339
1855
ื•ืžื•ื ืขื•ืช ื–ื™ื”ื•ื™ ืฉืœ ื”ืžื•ืœืงื•ืœื•ืช ื”ืืžื™ืชื™ื•ืช.
13:16
and they jam recognition of the real thing.
288
796218
2746
13:18
So by targeting the red system,
289
798988
1929
ืข"ื™ ื”ืชืžืงื“ื•ืช ื‘ืžืขืจื›ืช ื”ืื“ื•ืžื”
13:20
what we are able to do is make species-specific, or disease-specific,
290
800941
4946
ืื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืžื•ืœืงื•ืœื•ืช ื ื•ื’ื“ื•ืช
ื—ื™ืฉืช-ืžื ื™ื™ืŸ ื™ื—ื•ื“ื™ื•ืช ืœื—ื™ื™ื“ืง ืื• ืžื—ืœื” ืžืกื•ื™ื™ืžื™ื.
13:25
anti-quorum-sensing molecules.
291
805911
1835
13:27
We've also done the same thing with the pink system.
292
807770
2589
ืขืฉื™ื ื• ื“ื‘ืจ ื–ื”ื” ื‘ืžืขืจื›ืช ื”ื•ื•ืจื•ื“ื”.
13:30
We've taken that universal molecule and turned it around a little bit
293
810383
3430
ืฉื™ื ื™ื ื• ืงืฆืช ืืช ื”ืžื•ืœืงื•ืœื” ื”ืื•ื ื™ื‘ืจืกืœื™ืช
13:33
so that we've made antagonists of the interspecies communication system.
294
813837
4219
ื•ื›ืš ื™ืฆืจื ื• ืชืจื•ืคื•ืช ืฉืžืขื›ื‘ื•ืช
ืืช ืžืขืจื›ืช ื”ืชืงืฉื•ืจืช ื”ื‘ื™ืŸ-ืžื™ื ื™ืช.
ืื ื• ืžืงื•ื•ื™ื ืฉื”ืŸ ื™ืฉืžืฉื• ื›ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื” ืจื—ื‘ืช ื˜ื•ื•ื—
13:38
The hope is that these will be used as broad-spectrum antibiotics
295
818080
4227
13:42
that work against all bacteria.
296
822331
1966
ืฉืชืคืขืœ ื ื’ื“ ื›ืœ ื”ื—ื™ื™ื“ืงื™ื.
13:44
And so to finish, I'll show you the strategy.
297
824321
2760
ืœืกื™ื•ื ืืจืื” ืœื›ื ืืช ื”ืืกื˜ืจื˜ื’ื™ื”.
13:47
In this one, I'm just using the interspecies molecule,
298
827105
2662
ื›ืืŸ ืื ื™ ืžืฉืชืžืฉืช ื‘ืžื•ืœืงื•ืœื” ื”ื‘ื™ืŸ-ืžื™ื ื™ืช,
13:49
but the logic is exactly the same.
299
829791
2119
ืื‘ืœ ื”ืœื•ื’ื™ืงื” ื–ื”ื”.
13:51
So what you know is that when that bacterium gets into the animal --
300
831934
3253
ื›ืืฉืจ ื”ื—ื™ื™ื“ืง ื ื›ื ืก ืืœ ื”ื—ื™ื”,
ื‘ืžืงืจื” ื”ื–ื” - ืขื›ื‘ืจ,
13:55
in this case, a mouse --
301
835211
1169
13:56
it doesn't initiate virulence right away.
302
836404
2395
ื”ื•ื ืœื ื™ื•ื–ื ืžืชืงืคื” ืืœื™ืžื” ื‘ืื•ืคืŸ ืžื™ื™ื“ื™.
13:58
It gets in, it starts growing,
303
838823
1715
ื”ื•ื ื ื›ื ืก, ืžืชืจื‘ื” ื•ืžืชื—ื™ืœ ืœื”ืคืจื™ืฉ
14:00
it starts secreting its quorum-sensing molecules.
304
840562
2846
ืืช ืžื•ืœืงื•ืœื•ืช ื—ื™ืฉืช-ื”ืžื ื™ืŸ ืฉืœื•.
14:03
It recognizes when it has enough bacteria
305
843432
2374
ื”ื•ื ืžื–ื”ื” ืžืชื™ ื™ืฉ ืžืกืคื™ืง ื—ื™ื™ื“ืงื™ื,
14:05
that now they're going to launch their attack,
306
845830
2164
ื›ื•ืœื ื™ื•ื–ืžื™ื ื”ืชืงืคื”,
ื•ื”ื—ื™ื” ืžืชื”.
14:08
and the animal dies.
307
848018
1303
14:09
And so what we've been able to do is to give these virulent infections,
308
849345
3543
ืื ื—ื ื• ื”ื“ื‘ืงื ื• ืืช ื”ื—ื™ื” ื‘ื–ื™ื”ื•ื
14:12
but we give them in conjunction with our anti-quorum-sensing molecules.
309
852912
3843
ื•ื ืชื ื• ืœื” ื‘ืžืงื‘ื™ืœ ืžื•ืœืงื•ืœื•ืช ื ื•ื’ื“ื•ืช ื—ื™ืฉืช-ืžื ื™ื™ืŸ -
14:16
So these are molecules that look kind of like the real thing,
310
856779
2858
ืžื•ืœืงื•ืœื•ืช ืฉื ืจืื•ืช ื›ืžื• ื”ืืžื™ืชื™ื•ืช
ืื‘ืœ ืฉื•ื ื•ืช ืงืฆืช ื›ืžื• ืฉื ื™ืชืŸ ืœืจืื•ืช ื‘ืฉืงื•ืคื™ืช.
14:19
but they're a little different, which I've depicted on this slide.
311
859661
3113
ื’ื™ืœื™ื ื• ืฉืื ืžื“ื‘ื™ืงื™ื ืืช ื”ื—ื™ื”
14:22
What we now know is that if we treat the animal with a pathogenic bacterium --
312
862798
3725
ื‘ื—ื™ื™ื“ืง ื’ื•ืจื ืžื—ืœื” ื”ืขืžื™ื“ ืœืžื’ื•ื•ืŸ ืชืจื•ืคื•ืช
14:26
a multi-drug-resistant pathogenic bacterium --
313
866547
2277
14:28
in the same time we give our anti-quorum-sensing molecule,
314
868848
4024
ื•ื‘ืื•ืชื• ื”ื–ืžืŸ ื ื•ืชื ื™ื ืœื” ืืช ื”ืžื•ืœืงื•ืœื” ื”ื ื•ื’ื“ืช ื—ื™ืฉืช-ืžื ื™ื™ืŸ,
14:32
in fact, the animal lives.
315
872896
1879
ื”ื—ื™ื” ืฉื•ืจื“ืช.
14:34
And so we think that this is the next generation of antibiotics,
316
874799
3228
ืื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื”ื• ื”ื“ื•ืจ ื”ื—ื“ืฉ ืฉืœ ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”
14:38
and it's going to get us around, at least initially,
317
878051
2489
ื•ื”ื•ื ื™ื•ื›ืœ ืœืขื–ื•ืจ ืœื ื• ืœื”ืชื’ื‘ืจ
14:40
this big problem of resistance.
318
880564
2174
ืขืœ ื‘ืขื™ื™ืช ื”ืขืžื™ื“ื•ืช.
14:42
What I hope you think is that bacteria can talk to each other,
319
882762
3233
ื•ืœืกื™ื›ื•ื, ื—ื™ื™ื“ืงื™ื ื™ื›ื•ืœื™ื ืœืชืงืฉืจ ื–ื” ืขื ื–ื”,
ื”ืžื™ืœื™ื ืฉืœื”ื ื”ืŸ ื—ื•ืžืจื™ื ื›ื™ืžื™ื™ื.
14:46
they use chemicals as their words,
320
886019
2150
14:48
they have an incredibly complicated chemical lexicon
321
888193
3086
ื™ืฉ ืœื”ื ืžื™ืœื•ืŸ ื›ื™ืžื™ ืžื•ืจื›ื‘ ื‘ื™ื•ืชืจ,
14:51
that we're just now starting to learn about.
322
891303
2733
ืฉืื ื—ื ื• ืจืง ืžืชื—ื™ืœื™ื ืœื’ืœื•ืช.
ื“ื‘ืจ ื–ื” ืžืืคืฉืจ ืœื—ื™ื™ื“ืงื™ื
14:54
Of course, what that allows bacteria to do is to be multicellular.
323
894060
4828
ืœื”ื™ื•ืช ืจื‘-ืชืื™ื™ื.
14:58
So in the spirit of TED,
324
898912
1805
ื•ื‘ืจื•ื— ืฉืœ TED - ื”ื ืžืฉืชืคื™ื ืคืขื•ืœื”
15:00
they're doing things together because it makes a difference.
325
900741
3876
ื›ื“ื™ ืœื—ื•ืœืœ ืฉื™ื ื•ื™.
ืœื—ื™ื™ื“ืงื™ื ื™ืฉ ื”ืชื ื”ื’ื•ื™ื•ืช ืฉื™ืชื•ืคื™ื•ืช
15:04
What happens is that bacteria have these collective behaviors,
326
904641
3282
15:07
and they can carry out tasks
327
907947
1789
ื•ื”ื ื™ื›ื•ืœื™ื ืœื‘ืฆืข ืžืฉื™ืžื•ืช
15:09
that they could never accomplish if they simply acted as individuals.
328
909760
4160
ืฉืœื ื”ื™ื• ื™ื›ื•ืœื™ื ืœื‘ืฆืข
ืื ื”ื™ื• ืคื•ืขืœื™ื ื›ื™ื—ื™ื“ื™ื.
15:13
What I would hope that I could further argue to you
329
913944
3201
ืื ื™ ืžืงื•ื•ื” ืฉืื•ื›ืœ ืœื”ืžืฉื™ืš ื•ืœื˜ืขื•ืŸ
ืฉื”ื—ื™ื™ื“ืงื™ื ื”ืžืฆื™ืื• ืืช ื”ืจื‘-ืชืื™ื•ืช.
15:17
is that this is the invention of multicellularity.
330
917169
2600
15:19
Bacteria have been on the earth for billions of years;
331
919793
3600
ื”ื—ื™ื™ื“ืงื™ื ืงื™ื™ืžื™ื ืžื™ืœื™ืืจื“ื™ ืฉื ื™ื.
15:23
humans, couple hundred thousand.
332
923417
2043
ื”ืื ืฉื™ื - ืจืง ื›ืžื” ืžืื•ืช ืืœืคื™ื.
15:25
So we think bacteria made the rules for how multicellular organization works.
333
925484
5509
ืื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื—ื™ื™ื“ืงื™ื ืงื‘ืขื• ืืช ื”ื›ืœืœื™ื
ืฉืœ ื“ืจืš ื”ืคืขื•ืœื” ืฉืœ ืืจื’ื•ืŸ ืจื‘ ืชืื™.
ืื ื• ื—ื•ืฉื‘ื™ื ืฉืžื—ืงืจ ืฉืœ ื—ื™ื™ื“ืงื™ื
15:31
And we think by studying bacteria,
334
931017
2393
15:33
we're going to be able to have insight about multicellularity in the human body.
335
933434
4117
ื™ืชืŸ ืœื ื• ืชื•ื‘ื ื•ืช ืœื’ื‘ื™ ืจื‘-ืชืื™ื•ืช ื‘ื’ื•ืฃ ื”ืื“ื.
15:37
So we know that the principles and the rules,
336
937575
2148
ืื ื• ืžืงื•ื•ื™ื ืฉืื ื ื•ื›ืœ ืœื”ื‘ื™ืŸ ืืช ื”ืขืงืจื•ื ื•ืช
15:39
if we can figure them out in these sort of primitive organisms,
337
939747
3022
ื•ื”ื›ืœืœื™ื ื‘ื™ืฆื•ืจื™ื ื”ืคืจื™ืžื™ื˜ื™ื‘ื™ื™ื ื”ืืœื”,
ื ื•ื›ืœ ืœื™ื™ืฉื ืื•ืชื
15:42
the hope is that they will be applied
338
942793
1792
ื’ื ืขืœ ืžื—ืœื•ืช ื•ื”ืชื ื”ื’ื•ื™ื•ืช ืื ื•ืฉื™ื•ืช.
15:44
to other human diseases and human behaviors as well.
339
944609
2804
ืื ื™ ืžืงื•ื•ื” ืฉืœืžื“ืชื
15:48
I hope that what you've learned
340
948245
1526
15:49
is that bacteria can distinguish self from other.
341
949795
2347
ืฉื—ื™ื™ื“ืงื™ื ื™ื›ื•ืœื™ื ืœื”ื‘ื—ื™ืŸ ื‘ื™ืŸ ื”ืขืฆืžื™ ื•ื”ืื—ืจ.
15:52
So by using these two molecules,
342
952166
1530
ื‘ืขื–ืจืช 2 ื”ืžื•ืœืงื•ืœื•ืช ื”ื ื™ื›ื•ืœื™ื ืœื”ื’ื™ื“ "ืื ื™" ื•"ืืชื”".
15:53
they can say "me" and they can say "you."
343
953720
2259
ื•ื›ืžื•ื‘ืŸ ืฉื’ื ืื ื• ืขื•ืฉื™ื ื–ืืช,
15:56
And again, of course, that's what we do,
344
956003
1977
ื’ื ื‘ื“ืจืš ืžื•ืœืงื•ืœืจื™ืช,
15:58
both in a molecular way, and also in an outward way,
345
958004
3462
ื•ื’ื ื‘ืกื‘ื™ื‘ืชื ื• ื”ื—ื™ืฆื•ื ื™ืช.
16:01
but I think about the molecular stuff.
346
961490
1929
ืื ื™ ืžื˜ืคืœืช ื‘ื—ืœืง ื”ืžื•ืœืงื•ืœืจื™.
16:03
This is exactly what happens in your body.
347
963443
2018
ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืงื•ืจื” ื‘ื’ื•ืคื›ื.
16:05
It's not like your heart cells and kidney cells get all mixed up every day,
348
965485
3595
ืชืื™ ื”ืœื‘ ื•ืชืื™ ื”ื›ืœื™ื” ืฉืœื›ื ืœื ืžืชืขืจื‘ื‘ื™ื
ื‘ื–ื›ื•ืช ื”ื›ื™ืžื™ื”
16:09
and that's because there's all of this chemistry going on,
349
969104
2751
16:11
these molecules that say who each of these groups of cells is
350
971879
3177
ืฉืœ ื”ืžื•ืœืงื•ืœื•ืช ืฉืื•ืžืจื•ืช ืœื›ืœ ืงื‘ื•ืฆืช ืชืื™ื
ืžื™ ื”ื™ื ื•ืžื” ืชืคืงื™ื“ื”.
16:15
and what their tasks should be.
351
975080
1874
16:16
So again, we think bacteria invented that,
352
976978
3078
ืื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื—ื™ื™ื“ืงื™ื ื”ืžืฆื™ืื• ื–ืืช,
ื•ืืชื ืจืง ืคื™ืชื—ืชื ืขื•ื“ ืงืฆืช ืจืขืฉ ื•ืฆืœืฆื•ืœื™ื,
16:20
and you've just evolved a few more bells and whistles,
353
980080
2535
16:22
but all of the ideas are in these simple systems that we can study.
354
982639
4321
ืืš ื›ืœ ื”ืจืขื™ื•ื ื•ืช ื ืžืฆืื™ื ื‘ืžืขืจื›ื•ืช ื”ืคืฉื•ื˜ื•ืช ื”ืืœื”
16:26
And the final thing is, just to reiterate that there's this practical part,
355
986984
3700
ืฉืื ื• ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ. ื•ื‘ื—ืœืง ื”ืžืขืฉื™ -
16:30
and so we've made these anti-quorum-sensing molecules
356
990708
3038
ื™ืฆืจื ื• ืžื•ืœืงื•ืœื•ืช ื ื•ื’ื“ื•ืช ื—ื™ืฉืช-ืžื ื™ื™ืŸ
16:33
that are being developed as new kinds of therapeutics.
357
993770
2586
ืฉืžืคื•ืชื—ื•ืช ื›ืืžืฆืขื™ ืจื™ืคื•ื™ ื—ื“ืฉื™ื.
16:36
But then, to finish with a plug for all the good and miraculous bacteria
358
996380
3470
ื‘ืžืงื‘ื™ืœ, ืœื˜ื•ื‘ืช ื”ื—ื™ื™ื“ืงื™ื ื”ื˜ื•ื‘ื™ื ื•ื”ืžื•ืคืœืื™ื
16:39
that live on the earth,
359
999874
1524
ืฉื—ื™ื™ื ืขืœ ืคื ื™ ื”ืื“ืžื”,
16:41
we've also made pro-quorum-sensing molecules.
360
1001422
2539
ื™ืฆืจื ื• ื’ื ืžื•ืœืงื•ืœื•ืช ืชื•ืžื›ื•ืช ื—ื™ืฉืช-ืžื ื™ื™ืŸ
16:43
So we've targeted those systems to make the molecules work better.
361
1003985
3231
ืฉืžืฉืคืจื•ืช ืืช ืชื™ืคืงื•ื“ื.
ื™ืฉ ื‘ืชื•ื›ื›ื ืื• ืขืœื™ื›ื ื™ื•ืชืจ ืžืคื™ 10 ื—ื™ื™ื“ืงื™ื
16:47
So remember, you have these 10 times or more bacterial cells
362
1007240
3505
16:50
in you or on you, keeping you healthy.
363
1010769
2048
ืฉืฉื•ืžืจื™ื ืขืœ ื‘ืจื™ืื•ืชื›ื.
16:52
What we're also trying to do is to beef up the conversation
364
1012841
3303
ืื ื• ืžื ืกื™ื ืœื”ืžืจื™ืฅ ืืช ื”ืฉื™ื—ื”
ืฉืœ ื”ื—ื™ื™ื“ืงื™ื ืฉื—ื™ื™ื ื‘ื”ื“ื“ื™ื•ืช ืื™ืชื›ื,
16:56
of the bacteria that live as mutualists with you,
365
1016168
2736
16:58
in the hopes of making you more healthy,
366
1018928
2048
ื›ื“ื™ ืœืฉืคืจ ืืช ื‘ืจื™ืื•ืชื›ื.
ืื ื ืฉืคืจ ืืช ื”ืฉื™ื—ื•ืช
17:01
making those conversations better,
367
1021000
1741
17:02
so bacteria can do things that we want them to do
368
1022765
2885
ื”ื—ื™ื™ื“ืงื™ื ื™ื•ื›ืœื• ืœื‘ืฆืข ืืช ืžื‘ื•ืงืฉื ื•
17:05
better than they would be on their own.
369
1025674
2775
ื‘ืฆื•ืจื” ื˜ื•ื‘ื” ื™ื•ืชืจ.
17:08
Finally, I wanted to show you --
370
1028897
2071
ื•ืœื‘ืกื•ืฃ, ื‘ืจืฆื•ื ื™ ืœื”ืฆื™ื’ ื‘ืคื ื™ื›ื
17:10
this is my gang at Princeton, New Jersey.
371
1030992
2184
ืืช ื”ื—ื‘ื•ืจื” ืฉืœื™ ืžืคืจื™ื ืกื˜ื•ืŸ, ื ื™ื• ื’'ืจืกื™.
ื›ืœ ืžื” ืฉื”ื–ื›ืจืชื™ ื‘ื”ืจืฆืื”, ื”ืชื’ืœื” ืข"ื™ ืžื™ืฉื”ื• ืžื”ืชืžื•ื ื” ื”ื–ืืช.
17:13
Everything I told you about was discovered by someone in that picture.
372
1033200
3841
ื›ืืฉืจ ืืชื ืœื•ืžื“ื™ื ื“ื‘ืจื™ื
17:17
And I hope when you learn things, like about how the natural world works --
373
1037065
3544
ื›ืžื• ืื™ืš ืขื•ืœื ื”ื˜ื‘ืข ืคื•ืขืœ,
17:20
I just want to say that whenever you read something in the newspaper
374
1040633
3211
ื›ืืฉืจ ืืชื ืงื•ืจืื™ื ื‘ืขื™ืชื•ืŸ ืื• ืฉื•ืžืขื™ื
17:23
or you hear some talk about something ridiculous in the natural world,
375
1043868
3370
ื“ื‘ืจื™ื ืžื’ื•ื—ื›ื™ื ืขืœ ืขื•ืœื ื”ื˜ื‘ืข,
ืชื–ื›ืจื• ืฉื”ื ื ืขืฉื• ืข"ื™ ื™ืœื“.
17:27
it was done by a child.
376
1047262
1499
17:28
So science is done by that demographic.
377
1048785
2314
ื”ืžื“ืข ืžืชื‘ืฆืข ืข"ื™ ืื ืฉื™ื ืืœื”.
ื›ืœ ื”ื—ื‘ืจ'ื” ื‘ืชืžื•ื ื” ื”ื ื‘ื ื™ 20-30,
17:31
All of those people are between 20 and 30 years old,
378
1051123
3373
17:34
and they are the engine that drives scientific discovery in this country.
379
1054520
4537
ื•ื”ื ื”ืžื ื•ืข ืฉืžื ื™ืข ืืช ืชื’ืœื™ื•ืช ื”ืžื“ืข.
ื”ืชืžื–ืœ ืžื–ืœื™ ืœืขื‘ื•ื“ ืื™ืชื.
17:39
And it's a really lucky demographic to work with.
380
1059081
2355
17:41
(Applause)
381
1061460
1002
ืื ื™ ืžืชื‘ื’ืจืช ื•ื”ื ื ืฉืืจื™ื ื‘ืื•ืชื• ื’ื™ืœ
17:42
I keep getting older and older, and they're always the same age.
382
1062486
3002
ื•ื–ื•ื”ื™ ืขื‘ื•ื“ื” ื ืคืœืื” ื•ืžืขื ื’ืช.
17:45
And it's just a crazy, delightful job.
383
1065512
2170
17:47
And I want to thank you for inviting me here,
384
1067706
2195
ืชื•ื“ื” ืขืœ ื”ื”ื–ืžื ื”.
17:49
it's a big treat for me to get to come to this conference.
385
1069925
3019
ื ื”ื ืชื™ ืžืื•ื“ ืœื”ืฉืชืชืฃ ื‘ื•ืขื™ื“ื” ื”ื–ื•.
17:52
(Applause)
386
1072968
2260
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
17:57
Thanks.
387
1077724
1198
ืชื•ื“ื”.
17:58
(Applause)
388
1078946
2900
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7