The jobs we'll lose to machines -- and the ones we won't | Anthony Goldbloom

609,606 views ・ 2016-08-31

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Milenka Okuka Lektor: Mile Živković
00:12
So this is my niece.
0
12968
1262
Dakle, ovo je moja nećaka.
00:14
Her name is Yahli.
1
14644
1535
Zove se Jali.
00:16
She is nine months old.
2
16203
1511
Stara je devet meseci.
00:18
Her mum is a doctor, and her dad is a lawyer.
3
18201
2528
Njena majka je doktor, a njen otac je advokat.
00:21
By the time Yahli goes to college,
4
21269
2006
Kad Jali pođe na fakultet,
00:23
the jobs her parents do are going to look dramatically different.
5
23299
3253
poslovi koje njeni roditelji obavljaju izgledaće drastično drugačije.
00:27
In 2013, researchers at Oxford University did a study on the future of work.
6
27347
5073
Istraživači sa Oksforda su 2013. uradili istraživanje o budućnosti poslova.
00:32
They concluded that almost one in every two jobs have a high risk
7
32766
4139
Zaključili su da je gotovo jedan od svaka dva posla pod velikim rizikom
00:36
of being automated by machines.
8
36929
1824
da bude mašinski automatizovan.
00:40
Machine learning is the technology
9
40388
1905
Mašinsko učenje je tehnologija
00:42
that's responsible for most of this disruption.
10
42317
2278
koja je najodgovornija za ovaj raskol.
00:44
It's the most powerful branch of artificial intelligence.
11
44619
2790
To je najmoćnija grana veštačke inteligencije.
00:47
It allows machines to learn from data
12
47433
1882
Omogućuje mašinama da uče iz podataka
00:49
and mimic some of the things that humans can do.
13
49339
2592
i da oponašaju neke stvari koje ljudi mogu da rade.
00:51
My company, Kaggle, operates on the cutting edge of machine learning.
14
51955
3415
Moja firma, Kagle, se bavi najnaprednijim vidom mašinskog učenja.
00:55
We bring together hundreds of thousands of experts
15
55394
2386
Spajamo na stotine hiljada eksperata
00:57
to solve important problems for industry and academia.
16
57804
3118
kako bismo rešili važne probleme u industriji i akademiji.
01:01
This gives us a unique perspective on what machines can do,
17
61279
3222
To nam pruža jedinstvenu perspektivu na to šta mašine mogu,
01:04
what they can't do
18
64525
1235
šta ne mogu
01:05
and what jobs they might automate or threaten.
19
65784
2939
i koje poslove mogu da automatizuju ili ugroze.
01:09
Machine learning started making its way into industry in the early '90s.
20
69316
3550
Mašinsko učenje se počelo probijati u industriji tokom ranih '90-ih.
01:12
It started with relatively simple tasks.
21
72890
2124
Počelo je relativno jednostavnim zadacima.
01:15
It started with things like assessing credit risk from loan applications,
22
75406
4115
Počelo je stvarima poput bavljenja kreditnim rizikom kod molbi za zajam,
01:19
sorting the mail by reading handwritten characters from zip codes.
23
79545
4053
sortiranjem pošte čitanjem ručno pisanih slova zip kodova.
01:24
Over the past few years, we have made dramatic breakthroughs.
24
84036
3169
Tokom proteklih nekoliko godina imali smo drastična dostignuća.
01:27
Machine learning is now capable of far, far more complex tasks.
25
87586
3916
Mašinsko učenje je sada sposobno za daleko, daleko složenije zadatke.
01:31
In 2012, Kaggle challenged its community
26
91860
3231
Godine 2012. Kagle je izazvao njegovu zajednicu
01:35
to build an algorithm that could grade high-school essays.
27
95115
3189
da naprave algoritam koji bi ocenjivao srednjoškolske eseje.
01:38
The winning algorithms were able to match the grades
28
98328
2604
Pobednički algoritmi su mogli da daju podudarne ocene
01:40
given by human teachers.
29
100956
1665
kao i ljudski profesori.
01:43
Last year, we issued an even more difficult challenge.
30
103092
2984
Prošle godine smo napravili čak i komplikovaniji izazov.
01:46
Can you take images of the eye and diagnose an eye disease
31
106100
2953
Možete li da uzmete snimak oka i da dijagnostikujete očnu bolest
01:49
called diabetic retinopathy?
32
109077
1694
pod nazivom dijabetička retinopatija?
01:51
Again, the winning algorithms were able to match the diagnoses
33
111164
4040
Opet su pobednički algoritmi mogli da daju podudarnu dijagnozu
01:55
given by human ophthalmologists.
34
115228
1825
kao i ljudski oftalmolozi.
01:57
Now, given the right data, machines are going to outperform humans
35
117561
3212
Sad, uz odgovarajuće podatke mašine će da nadmaše ljude
02:00
at tasks like this.
36
120797
1165
u sličnim zadacima.
02:01
A teacher might read 10,000 essays over a 40-year career.
37
121986
3992
Nastavnik može da pročita 10.000 eseja tokom 40-ogodišnje karijere.
02:06
An ophthalmologist might see 50,000 eyes.
38
126407
2360
Oftalmolog može da pregleda 50.000 očiju.
02:08
A machine can read millions of essays or see millions of eyes
39
128791
3913
Mašina može da pročita na milione eseja ili da pregleda na milione očiju
02:12
within minutes.
40
132728
1276
za nekoliko minuta.
02:14
We have no chance of competing against machines
41
134456
2858
Nemamo nikakve šanse u takmičenju s mašinama
02:17
on frequent, high-volume tasks.
42
137338
2321
na učestalim zadacima velikog obima.
02:20
But there are things we can do that machines can't do.
43
140665
3724
Ali ima nešto što mi možemo, a mašine ne mogu.
02:24
Where machines have made very little progress
44
144791
2200
Mašine su postigle veoma mali napredak
02:27
is in tackling novel situations.
45
147015
1854
kod bavljenja novim situacijama.
02:28
They can't handle things they haven't seen many times before.
46
148893
3899
Ne mogu da savladaju nešto što nisu videle mnogo puta ranije.
02:33
The fundamental limitations of machine learning
47
153321
2584
Temeljno ograničenje mašinskog učenja
02:35
is that it needs to learn from large volumes of past data.
48
155929
3394
je što mašine moraju da uče iz obilja prethodnih podataka.
02:39
Now, humans don't.
49
159347
1754
A ljudi ne moraju.
02:41
We have the ability to connect seemingly disparate threads
50
161125
3030
Sposobni smo da povežemo naoko nepovezane niti
02:44
to solve problems we've never seen before.
51
164179
2238
kako bismo rešili za nas nov problem.
02:46
Percy Spencer was a physicist working on radar during World War II,
52
166808
4411
Persi Spenser je bio fizičar koji je radio na radaru tokom II svetskog rata,
02:51
when he noticed the magnetron was melting his chocolate bar.
53
171243
3013
kad je primetio kako magnetron topi njegovu tablu čokolade.
02:54
He was able to connect his understanding of electromagnetic radiation
54
174970
3295
Mogao je da poveže sopstveno razumevanje elektromagnetne radijacije
02:58
with his knowledge of cooking
55
178289
1484
sa poznavanjem kuvanja
02:59
in order to invent -- any guesses? -- the microwave oven.
56
179797
3258
kako bi izumeo - pretpostavljate li šta? - mikrotalasnu pećnicu.
03:03
Now, this is a particularly remarkable example of creativity.
57
183444
3073
Sad, ovo je izrazito upečatljiv primer kreativnosti.
03:06
But this sort of cross-pollination happens for each of us in small ways
58
186541
3664
Ali ovakva plodna ukrštanja nam se dešavaju na mikroplanu
03:10
thousands of times per day.
59
190229
1828
hiljadama puta tokom dana.
03:12
Machines cannot compete with us
60
192501
1661
Mašine ne mogu da se takmiče s nama
03:14
when it comes to tackling novel situations,
61
194186
2251
kad je u pitanju bavljenje novim situacijama,
03:16
and this puts a fundamental limit on the human tasks
62
196461
3117
a ovo postavlja temeljno ograničenje na ljudske zadatke
03:19
that machines will automate.
63
199602
1717
koje mašine mogu da automatizuju.
03:22
So what does this mean for the future of work?
64
202041
2405
Pa, šta ovo znači za budućnost rada?
03:24
The future state of any single job lies in the answer to a single question:
65
204804
4532
Budućnost svakog posla počiva u odgovoru na samo jedno pitanje:
03:29
To what extent is that job reducible to frequent, high-volume tasks,
66
209360
4981
do koje mere je taj posao svodiv na učestale zadatke velikog obima
03:34
and to what extent does it involve tackling novel situations?
67
214365
3253
i u kojoj meri uključuje bavljenje novim situacijama?
03:37
On frequent, high-volume tasks, machines are getting smarter and smarter.
68
217975
4035
Kod učestalih zadataka velikog obima mašine postaju sve pametnije i pametnije.
03:42
Today they grade essays. They diagnose certain diseases.
69
222034
2714
Danas one ocenjuju eseje. Dijagnostikuju određene bolesti.
03:44
Over coming years, they're going to conduct our audits,
70
224772
3157
U narednim godinama radiće revizije poreza
03:47
and they're going to read boilerplate from legal contracts.
71
227953
2967
i čitaće opšta mesta u pravnim ugovorima.
03:50
Accountants and lawyers are still needed.
72
230944
1997
I dalje ćemo trebati računovođe i advokate.
03:52
They're going to be needed for complex tax structuring,
73
232965
2682
Trebaće nam za složeno struktuiranje poreza,
03:55
for pathbreaking litigation.
74
235671
1357
za pionirske parnice.
03:57
But machines will shrink their ranks
75
237052
1717
No, mašine će suziti njihovo zvanje
03:58
and make these jobs harder to come by.
76
238793
1872
i učiniće ove poslove težim za nalaženje.
04:00
Now, as mentioned,
77
240689
1151
Sad, kao što sam pomenuo
04:01
machines are not making progress on novel situations.
78
241864
2949
mašine ne postižu napredak kod novih situacija.
04:04
The copy behind a marketing campaign needs to grab consumers' attention.
79
244837
3457
Poruka marketinške kampanje mora da zgrabi pažnju potrošača.
04:08
It has to stand out from the crowd.
80
248318
1715
Mora da se ističe u gomili.
Poslovna strategija znači nalaženje rupa u tržištu,
04:10
Business strategy means finding gaps in the market,
81
250057
2444
04:12
things that nobody else is doing.
82
252525
1756
stvari koje niko drugi ne radi.
04:14
It will be humans that are creating the copy behind our marketing campaigns,
83
254305
4118
Ljudi su ti koji će da stvaraju poruke marketinških kampanja,
04:18
and it will be humans that are developing our business strategy.
84
258447
3517
i ljudi su ti koji će razvijati naše poslovne strategije.
04:21
So Yahli, whatever you decide to do,
85
261988
2817
Pa, Jali, čime god odlučiš da se baviš,
04:24
let every day bring you a new challenge.
86
264829
2361
neka ti svaki dan donese novi izazov.
04:27
If it does, then you will stay ahead of the machines.
87
267587
2809
Ako bude tako, bićeš ispred mašina.
04:31
Thank you.
88
271126
1176
Hvala vam.
04:32
(Applause)
89
272326
3104
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7