The jobs we'll lose to machines -- and the ones we won't | Anthony Goldbloom

608,348 views ・ 2016-08-31

TED


Za predvajanje videoposnetka dvakrat kliknite na spodnje angleške podnapise.

Translator: Nika Kotnik Reviewer: Tilen Pigac - EFZG
00:12
So this is my niece.
0
12968
1262
To je moja nečakinja.
00:14
Her name is Yahli.
1
14644
1535
Ime ji je Yahli.
00:16
She is nine months old.
2
16203
1511
Stara je devet mesecev.
00:18
Her mum is a doctor, and her dad is a lawyer.
3
18201
2528
Njena mama je zdravnica in njen oče je odvetnik.
00:21
By the time Yahli goes to college,
4
21269
2006
Ko bo šla Yahli na fakulteto,
00:23
the jobs her parents do are going to look dramatically different.
5
23299
3253
bodo poklici, ki jih opravljata njena starša, izgledali zelo drugače.
00:27
In 2013, researchers at Oxford University did a study on the future of work.
6
27347
5073
2013 so raziskovalci Oxfordske univerze naredili študijo o prihodnosti dela.
00:32
They concluded that almost one in every two jobs have a high risk
7
32766
4139
Ugotovili so, da ima skoraj ena od dveh služb visoko tveganje,
00:36
of being automated by machines.
8
36929
1824
da jo zamenja stroj.
00:40
Machine learning is the technology
9
40388
1905
Strojno učenje je tehnologija,
ki je najbolj zaslužna za to motnjo.
00:42
that's responsible for most of this disruption.
10
42317
2278
00:44
It's the most powerful branch of artificial intelligence.
11
44619
2790
Je najbolj uspešna veja umetne inteligence.
00:47
It allows machines to learn from data
12
47433
1882
Strojem omogoča, da se učijo iz podatkov
00:49
and mimic some of the things that humans can do.
13
49339
2592
in posnemajo stvari, ki jih ljudje lahko počnejo.
00:51
My company, Kaggle, operates on the cutting edge of machine learning.
14
51955
3415
Moje podjetje, Kaggle, je najbolj napredno v strojnem učenju.
00:55
We bring together hundreds of thousands of experts
15
55394
2386
Združujemo sto tisoče strokovnjakov,
00:57
to solve important problems for industry and academia.
16
57804
3118
da rešujejo pomembne probleme za industrijo in znanost.
01:01
This gives us a unique perspective on what machines can do,
17
61279
3222
To nam daje edinstveno perspektivo o tem, kaj stroji zmorejo,
01:04
what they can't do
18
64525
1235
česa ne,
01:05
and what jobs they might automate or threaten.
19
65784
2939
in katere službe bodo avtomatizirali ali ogrozili.
01:09
Machine learning started making its way into industry in the early '90s.
20
69316
3550
Strojno učenje je začelo prodirati v industrijo v zgodnjih 90-ih.
01:12
It started with relatively simple tasks.
21
72890
2124
Začelo se je z relativno preprostimi nalogami.
01:15
It started with things like assessing credit risk from loan applications,
22
75406
4115
Začelo se je z ocenjevanjem tveganja pri prosilcih za kredite,
01:19
sorting the mail by reading handwritten characters from zip codes.
23
79545
4053
sortiranje pošte, tako da so brali na roke napisane poštne številke.
V zadnjih nekaj letih smo naredili nekaj dramatičnih prebojev.
01:24
Over the past few years, we have made dramatic breakthroughs.
24
84036
3169
01:27
Machine learning is now capable of far, far more complex tasks.
25
87586
3916
Strojno učenje je sedaj sposobno veliko, veliko bolj kompleksnih nalog.
01:31
In 2012, Kaggle challenged its community
26
91860
3231
Leta 2012 je Kaggle izzval svojo skupnost,
naj zgradi algoritem, ki bo lahko ocenjeval srednješolske eseje.
01:35
to build an algorithm that could grade high-school essays.
27
95115
3189
01:38
The winning algorithms were able to match the grades
28
98328
2604
Ocene zmagovalnih algoritmov so se ujemale
01:40
given by human teachers.
29
100956
1665
s tistimi, ki so jih dali učitelji.
Lani smo dali še težji izziv.
01:43
Last year, we issued an even more difficult challenge.
30
103092
2984
Lahko slikaš oko in diagnosticiraš očesno bolezen,
01:46
Can you take images of the eye and diagnose an eye disease
31
106100
2953
imenovano diabetična retinopatija?
01:49
called diabetic retinopathy?
32
109077
1694
Spet so se diagnoze najboljših algoritmov ujemale
01:51
Again, the winning algorithms were able to match the diagnoses
33
111164
4040
01:55
given by human ophthalmologists.
34
115228
1825
z diagnozami oftalmologov.
01:57
Now, given the right data, machines are going to outperform humans
35
117561
3212
S pravimi podatki bi lahko bili stroji boljši od ljudi
02:00
at tasks like this.
36
120797
1165
pri takih nalogah.
02:01
A teacher might read 10,000 essays over a 40-year career.
37
121986
3992
Učitelj, v svoji 40-letni karieri prebere morda 10.000 esejev.
02:06
An ophthalmologist might see 50,000 eyes.
38
126407
2360
Oftalmolog vidi 50.000 oči.
02:08
A machine can read millions of essays or see millions of eyes
39
128791
3913
Stroj lahko prebere na milijone esejev ali vidi milijone oči
02:12
within minutes.
40
132728
1276
v nekaj minutah.
02:14
We have no chance of competing against machines
41
134456
2858
Ne moremo tekmovati s stroji
02:17
on frequent, high-volume tasks.
42
137338
2321
na pogostih, obsežnih nalogah.
02:20
But there are things we can do that machines can't do.
43
140665
3724
A mi lahko počnemo stvari, ki jih stroji ne morejo.
02:24
Where machines have made very little progress
44
144791
2200
Področje, na katerem so stroji le malo napredovali,
je obvladovanje novih situacij.
02:27
is in tackling novel situations.
45
147015
1854
02:28
They can't handle things they haven't seen many times before.
46
148893
3899
Ne obvladajo stvari, ki jih niso videli že večkrat.
02:33
The fundamental limitations of machine learning
47
153321
2584
Osnovna omejitev strojnega učenja
02:35
is that it needs to learn from large volumes of past data.
48
155929
3394
je, da se mora učiti iz velike količine preteklih podatkov.
02:39
Now, humans don't.
49
159347
1754
Tega ljudem ni treba.
Imamo sposobnost, da povežemo na videz različne konce,
02:41
We have the ability to connect seemingly disparate threads
50
161125
3030
da rešimo nove probleme.
02:44
to solve problems we've never seen before.
51
164179
2238
02:46
Percy Spencer was a physicist working on radar during World War II,
52
166808
4411
Percy Spencer je bil fizik, ki je delal na radarju med drugo svetovno vojno,
02:51
when he noticed the magnetron was melting his chocolate bar.
53
171243
3013
ko je opazil, da magnetron topi njegovo čokoladico.
02:54
He was able to connect his understanding of electromagnetic radiation
54
174970
3295
Zmožen je bil povezati svoje znanje o elektromagnetni radiaciji
02:58
with his knowledge of cooking
55
178289
1484
s svojim znanjem o kuhanju,
02:59
in order to invent -- any guesses? -- the microwave oven.
56
179797
3258
da je izumil - uganete kaj? - mikrovalovno pečico.
03:03
Now, this is a particularly remarkable example of creativity.
57
183444
3073
No, to je res neverjeten primer ustvarjalnosti.
03:06
But this sort of cross-pollination happens for each of us in small ways
58
186541
3664
A tako navzkrižno opraševanje se dogaja vsakemu od nas po malem
03:10
thousands of times per day.
59
190229
1828
tisočkrat na dan.
03:12
Machines cannot compete with us
60
192501
1661
Stroji z nami ne morejo tekmovati,
03:14
when it comes to tackling novel situations,
61
194186
2251
ko pride do ubadanja z novimi situacijami
03:16
and this puts a fundamental limit on the human tasks
62
196461
3117
in to da temeljno omejitev na človeške naloge,
03:19
that machines will automate.
63
199602
1717
ki jih bodo stroji avtomatizirali.
Kaj torej to pomeni za prihodnost dela?
03:22
So what does this mean for the future of work?
64
202041
2405
03:24
The future state of any single job lies in the answer to a single question:
65
204804
4532
Prihodnost katerekoli službe leži v odgovoru na eno vprašanje:
03:29
To what extent is that job reducible to frequent, high-volume tasks,
66
209360
4981
do katere mere lahko to službo zreduciramo na pogoste, obsežne naloge
03:34
and to what extent does it involve tackling novel situations?
67
214365
3253
in do katere mere vsebuje obvladovanje novih situacij?
03:37
On frequent, high-volume tasks, machines are getting smarter and smarter.
68
217975
4035
Na pogostih, obsežnih nalogah stroji postajajo vse pametnejši.
Danes ocenjujejo eseje. Diagnosticirajo določene bolezni.
03:42
Today they grade essays. They diagnose certain diseases.
69
222034
2714
03:44
Over coming years, they're going to conduct our audits,
70
224772
3157
Čez leta bodo delali revizije
03:47
and they're going to read boilerplate from legal contracts.
71
227953
2967
in brali šablonska besedila na pogodbah.
03:50
Accountants and lawyers are still needed.
72
230944
1997
Računovodje in odvetnike še potrebujemo.
03:52
They're going to be needed for complex tax structuring,
73
232965
2682
Potrebni bodo za kompleksno davčno strukturiranje,
za prelomne sodne postopke.
03:55
for pathbreaking litigation.
74
235671
1357
A stroji bodo zožili njihove vrste in težje bo dobiti te službe.
03:57
But machines will shrink their ranks
75
237052
1717
03:58
and make these jobs harder to come by.
76
238793
1872
04:00
Now, as mentioned,
77
240689
1151
Kot sem omenil, stroji pri novih situacijah ne napredujejo.
04:01
machines are not making progress on novel situations.
78
241864
2949
04:04
The copy behind a marketing campaign needs to grab consumers' attention.
79
244837
3457
Reklamno besedilo za marketinško kampanjo mora pritegniti potrošnika.
Izstopati mora iz množice.
04:08
It has to stand out from the crowd.
80
248318
1715
Poslovna strategija je iskanje tržnih niš,
04:10
Business strategy means finding gaps in the market,
81
250057
2444
04:12
things that nobody else is doing.
82
252525
1756
stvari, ki jih nihče drug ne dela.
04:14
It will be humans that are creating the copy behind our marketing campaigns,
83
254305
4118
Ljudje bodo ustvarjali reklamna besedila v marketinških kampanjah
04:18
and it will be humans that are developing our business strategy.
84
258447
3517
in ljudje bodo razvijali naše poslovne strategije.
04:21
So Yahli, whatever you decide to do,
85
261988
2817
Yahli, karkoli se odločiš početi,
04:24
let every day bring you a new challenge.
86
264829
2361
naj ti vsak dan prinese nov izziv.
04:27
If it does, then you will stay ahead of the machines.
87
267587
2809
Če ti bo, boš imela prednost pred stroji.
Hvala.
04:31
Thank you.
88
271126
1176
04:32
(Applause)
89
272326
3104
(Aplavz)
O tej spletni strani

Na tem mestu boste našli videoposnetke na YouTubu, ki so uporabni za učenje angleščine. Ogledali si boste lekcije angleščine, ki jih poučujejo vrhunski učitelji z vsega sveta. Z dvoklikom na angleške podnapise, ki so prikazani na vsaki strani z videoposnetki, lahko predvajate videoposnetek od tam. Podnapisi se pomikajo sinhronizirano s predvajanjem videoposnetka. Če imate kakršne koli pripombe ali zahteve, nam pišite prek tega obrazca za stike.

https://forms.gle/WvT1wiN1qDtmnspy7