The jobs we'll lose to machines -- and the ones we won't | Anthony Goldbloom

609,606 views ใƒป 2016-08-31

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Sigal Tifferet
00:12
So this is my niece.
0
12968
1262
ื–ืืช ืื—ื™ื™ื ื™ืชื™.
00:14
Her name is Yahli.
1
14644
1535
ืฉืžื” ื™ืืœื™.
00:16
She is nine months old.
2
16203
1511
ื”ื™ื ื‘ืช ืชืฉืขื” ื—ื•ื“ืฉื™ื.
00:18
Her mum is a doctor, and her dad is a lawyer.
3
18201
2528
ืื™ืžื” ืจื•ืคืื”, ืื‘ื™ื” ืขื•ืจืš-ื“ื™ืŸ.
00:21
By the time Yahli goes to college,
4
21269
2006
ื›ืฉื™ืืœื™ ืชืœืš ืœืงื•ืœื’',
00:23
the jobs her parents do are going to look dramatically different.
5
23299
3253
ืžืงื•ืžื•ืช ื”ืขื‘ื•ื“ื” ืฉืœ ื”ื•ืจื™ื” ื™ื™ืจืื• ืื—ืจืช ืœื’ืžืจื™.
00:27
In 2013, researchers at Oxford University did a study on the future of work.
6
27347
5073
ื‘-2013, ื—ื•ืงืจื™ื ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืื•ืงืกืคื•ืจื“ ื—ืงืจื• ืืช ืขืชื™ื“ ื”ืขื‘ื•ื“ื”.
00:32
They concluded that almost one in every two jobs have a high risk
7
32766
4139
ื”ื ื”ืกื™ืงื• ืฉื›ืžืขื˜ ืžืฉืจื” ืื—ืช ืžื›ืœ ืฉืชื™ื™ื ืžืฆื•ื™ื” ื‘ืกื™ื›ื•ืŸ ื’ื‘ื•ื”
00:36
of being automated by machines.
8
36929
1824
ืœืขื‘ื•ืจ ืœืื•ื˜ื•ืžืฆื™ื” ืžืžื•ื›ื ืช.
00:40
Machine learning is the technology
9
40388
1905
ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื™ื ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืื—ืจืื™ืช ืœืขื™ืงืจ ื”ืฉื™ื‘ื•ืฉ ื”ื–ื”.
00:42
that's responsible for most of this disruption.
10
42317
2278
00:44
It's the most powerful branch of artificial intelligence.
11
44619
2790
ื–ื” ื”ืขื ืฃ ื‘ืขืœ ื”ืขื•ืฆืžื” ื”ืจื‘ื” ื‘ื™ื•ืชืจ ื‘ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช.
00:47
It allows machines to learn from data
12
47433
1882
ื”ื•ื ืžืืคืฉืจ ืœืžื›ื•ื ื•ืช ืœืœืžื•ื“ ืžืชื•ืš ื ืชื•ื ื™ื
00:49
and mimic some of the things that humans can do.
13
49339
2592
ื•ืœื—ืงื•ืช ื—ืœืง ืžื”ื“ื‘ืจื™ื ืฉืขื•ืฉื™ื ื‘ื ื™-ืื“ื.
00:51
My company, Kaggle, operates on the cutting edge of machine learning.
14
51955
3415
ื”ื—ื‘ืจื” ืฉืœื™, "ืงืื’ืœ", ืคื•ืขืœืช ื‘ื—ื•ื“ ื”ื—ื ื™ืช ืฉืœ ืœืžื™ื“ืช ื”ืžื›ื•ื ื”.
00:55
We bring together hundreds of thousands of experts
15
55394
2386
ืื ื• ืžืงื‘ืฆื™ื ืžืื•ืช ืืœืคื™ ืžื•ืžื—ื™ื
00:57
to solve important problems for industry and academia.
16
57804
3118
ื‘ืžื˜ืจื” ืœืคืชื•ืจ ื‘ืขื™ื•ืช ืขื‘ื•ืจ ื”ืชืขืฉื™ื” ื•ื”ืืงื“ืžื™ื”.
01:01
This gives us a unique perspective on what machines can do,
17
61279
3222
ื–ื” ืžืงื ื” ืœื ื• ื ืงื•ื“ืช ืžื‘ื˜ ื™ื™ื—ื•ื“ื™ืช ืขืœ ืžื” ืฉืžื›ื•ื ื•ืช ืžืกื•ื’ืœื•ืช ืœืขืฉื•ืช,
01:04
what they can't do
18
64525
1235
ืžื” ืฉื”ืŸ ืœื ืžืกื•ื’ืœื•ืช ืœืขืฉื•ืช
01:05
and what jobs they might automate or threaten.
19
65784
2939
ื•ืื™ืœื• ืžืงื•ืžื•ืช ืขื‘ื•ื“ื” ื™ืขื‘ืจื• ืื•ื˜ื•ืžืฆื™ื” ืื• ื™ื™ืžืฆืื• ื‘ืกื™ื›ื•ืŸ.
01:09
Machine learning started making its way into industry in the early '90s.
20
69316
3550
ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ื”ื—ืœื” ืœื—ื“ื•ืจ ืœืชืขืฉื™ื” ื‘ืชื—ื™ืœืช ืฉื ื•ืช ื”-90 ืฉืœ ื”ืžืื” ื”-20.
01:12
It started with relatively simple tasks.
21
72890
2124
ืชื—ื™ืœื” ื‘ืžื˜ืœื•ืช ืคืฉื•ื˜ื•ืช ื™ื—ืกื™ืช,
01:15
It started with things like assessing credit risk from loan applications,
22
75406
4115
ื“ื‘ืจื™ื ื›ืžื• ื”ืขืจื›ืช ืกื™ื›ื•ื ื™ ืืฉืจืื™ ื‘ื‘ืงืฉื•ืช ืœื”ืœื•ื•ืื•ืช,
01:19
sorting the mail by reading handwritten characters from zip codes.
23
79545
4053
ืžื™ื•ืŸ ื“ื•ืืจ ืข"ื™ ืงืจื™ืืช ืžื™ืงื•ื“ ื›ืชื•ื‘ ื‘ื™ื“.
01:24
Over the past few years, we have made dramatic breakthroughs.
24
84036
3169
ื‘ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื”ืฉื’ื ื• ืคืจื™ืฆื•ืช-ื“ืจืš ื“ืจืžื˜ื™ื•ืช.
01:27
Machine learning is now capable of far, far more complex tasks.
25
87586
3916
ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ืžืกื•ื’ืœืช ื›ื™ื•ื ืœืžื˜ืœื•ืช ืžื•ืจื›ื‘ื•ืช ื‘ื”ืจื‘ื”.
01:31
In 2012, Kaggle challenged its community
26
91860
3231
ื‘-2012, "ืงืื’ืœ" ื”ืฆื™ื‘ื” ืœืงื”ื™ืœื” ืฉืœื” ืืชื’ืจ:
01:35
to build an algorithm that could grade high-school essays.
27
95115
3189
ืœื‘ื ื•ืช ืืœื’ื•ืจื™ืชื ืฉื™ื›ื•ืœ ืœืชืช ืฆื™ื•ื ื™ื ืœื—ื™ื‘ื•ืจื™ื ื‘ืจืžืช ื‘ื™"ืก ืชื™ื›ื•ืŸ.
01:38
The winning algorithms were able to match the grades
28
98328
2604
ื”ืืœื’ื•ืจื™ืชืžื™ื ื”ื–ื•ื›ื™ื ื”ืฆืœื™ื—ื• ืœืชืช ืฆื™ื•ื ื™ื ืžืงื‘ื™ืœื™ื
01:40
given by human teachers.
29
100956
1665
ืœืืœื• ืฉืœ ืžื•ืจื™ื ืื ื•ืฉื™ื™ื.
01:43
Last year, we issued an even more difficult challenge.
30
103092
2984
ื‘ืฉื ื” ื”ืงื•ื“ืžืช ื”ืฆื‘ื ื• ืืชื’ืจ ืขื•ื“ ื™ื•ืชืจ ืงืฉื”.
01:46
Can you take images of the eye and diagnose an eye disease
31
106100
2953
ื”ืื ืืคืฉืจ ืœืงื—ืช ืฆื™ืœื•ืžื™ ืขื™ื ื™ื™ื ื•ืœืื‘ื—ืŸ ืžื—ืœืช ืขื™ื ื™ื™ื
01:49
called diabetic retinopathy?
32
109077
1694
ื‘ืฉื ืจื˜ื™ื ื•ืคืชื™ื” ืกื•ื›ืจืชื™ืช?
01:51
Again, the winning algorithms were able to match the diagnoses
33
111164
4040
ืฉื•ื‘, ื”ืืœื’ื•ืจื™ืชืžื™ื ื”ื–ื•ื›ื™ื ื”ืฆืœื™ื—ื• ืœื”ืงื‘ื™ืœ ื‘ืื‘ื—ื•ื ื™ื”ื
01:55
given by human ophthalmologists.
34
115228
1825
ืœืืœื• ืฉืœ ืจื•ืคืื™-ืขื™ื ื™ื™ื ืื ื•ืฉื™ื™ื.
01:57
Now, given the right data, machines are going to outperform humans
35
117561
3212
ื›ื™ื•ื, ืขื ื”ื ืชื•ื ื™ื ื”ื ื›ื•ื ื™ื,
ื”ืžื›ื•ื ื•ืช ืžืกื•ื’ืœื•ืช ืœืขืœื•ืช ื‘ื‘ื™ืฆื•ืขื™ื”ืŸ ืขืœ ื‘ื ื™-ืื“ื ื‘ืžื˜ืœื•ืช ื›ืืœื”.
02:00
at tasks like this.
36
120797
1165
02:01
A teacher might read 10,000 essays over a 40-year career.
37
121986
3992
ืžื•ืจื” ืขืฉื•ื™ ืœืงืจื•ื 10,000 ื—ื™ื‘ื•ืจื™ื ื‘ืงืจื™ื™ืจื” ื‘ืช 40 ืฉื ื”.
02:06
An ophthalmologist might see 50,000 eyes.
38
126407
2360
ืจื•ืคื-ืขื™ื ื™ื™ื ื™ื›ื•ืœ ืื•ืœื™ ืœื‘ื“ื•ืง 50,000 ืขื™ื ื™ื™ื.
02:08
A machine can read millions of essays or see millions of eyes
39
128791
3913
ืžื›ื•ื ื” ืžืกื•ื’ืœืช ืœืงืจื•ื ืžื™ืœื™ื•ื ื™ ื—ื™ื‘ื•ืจื™ื ืื• ืœื‘ื“ื•ืง ืžื™ืœื™ื•ื ื™ ืขื™ื ื™ื™ื
02:12
within minutes.
40
132728
1276
ืชื•ืš ื“ืงื•ืช.
02:14
We have no chance of competing against machines
41
134456
2858
ืื™ืŸ ืœื ื• ืกื™ื›ื•ื™ ืœื”ืชื—ืจื•ืช ื ื’ื“ ื”ืžื›ื•ื ื•ืช
02:17
on frequent, high-volume tasks.
42
137338
2321
ื‘ื‘ื™ืฆื•ืข ืžื˜ืœื•ืช ืชื›ื•ืคื•ืช ื‘ืขืœื•ืช ื ืคื— ื’ื‘ื•ื”.
02:20
But there are things we can do that machines can't do.
43
140665
3724
ืื‘ืœ ื™ืฉ ื“ื‘ืจื™ื ืฉืื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื•ื”ืžื›ื•ื ื•ืช - ืœื.
02:24
Where machines have made very little progress
44
144791
2200
ื”ืžื›ื•ื ื•ืช ื”ืชืงื“ืžื• ืžืขื˜ ืžืื“ ื‘ื”ืชืžื•ื“ื“ื•ืช ืขื ืžืฆื‘ื™ื ื—ื“ืฉื™ื.
02:27
is in tackling novel situations.
45
147015
1854
02:28
They can't handle things they haven't seen many times before.
46
148893
3899
ื”ืŸ ืœื ื™ื›ื•ืœื•ืช ืœื˜ืคืœ ื‘ื“ื‘ืจื™ื ืฉืœื ื”ืจื‘ื• ืœืจืื•ืช ื‘ืขื‘ืจ.
02:33
The fundamental limitations of machine learning
47
153321
2584
ืžื’ื‘ืœื•ืช ื”ื™ืกื•ื“ ืฉืœ ืœืžื™ื“ืช ื”ืžื›ื•ื ื”
02:35
is that it needs to learn from large volumes of past data.
48
155929
3394
ื ืขื•ืฆื•ืช ื‘ืฆื•ืจืš ืฉืœื” ืœืœืžื•ื“ ืžื ืคื—ื™ื ื’ื“ื•ืœื™ื ืฉืœ ื ืชื•ื ื™ื ืงื•ื“ืžื™ื.
02:39
Now, humans don't.
49
159347
1754
ืœื ื›ืš ื‘ื ื™ ื”ืื“ื.
02:41
We have the ability to connect seemingly disparate threads
50
161125
3030
ืื ื• ืžืกื•ื’ืœื™ื ืœืงืฉืจ ื‘ื™ืŸ ืจืขื™ื•ื ื•ืช ื ื˜ื•ืœื™ ืงืฉืจ, ืœื›ืื•ืจื”,
02:44
to solve problems we've never seen before.
51
164179
2238
ื›ื“ื™ ืœืคืชื•ืจ ื‘ืขื™ื•ืช ืฉื˜ืจื ืคื’ืฉื ื•.
02:46
Percy Spencer was a physicist working on radar during World War II,
52
166808
4411
ืคืจืกื™ ืกืคื ืกืจ ื”ื™ื” ืคื™ื–ื™ืงืื™ ืฉืคื™ืชื— ืžื›"ื ื‘ืžืœื—ื”"ืข ื”-1,
02:51
when he noticed the magnetron was melting his chocolate bar.
53
171243
3013
ื•ื”ื•ื ืจืื” ืฉื”ืžื’ื ื˜ืจื•ืŸ ืžืžื™ืก ืืช ื”ืฉื•ืงื•ืœื“ ืฉืœื•.
02:54
He was able to connect his understanding of electromagnetic radiation
54
174970
3295
ื”ื•ื ื™ื“ืข ืœืงืฉืจ ื‘ื™ืŸ ื”ื‘ื ืชื• ื‘ืงืจื™ื ื” ืืœืงื˜ืจื•ืžื’ื ื˜ื™ืช
02:58
with his knowledge of cooking
55
178289
1484
ืœื‘ื™ืŸ ื”ื™ื“ืข ืฉืœื• ื‘ื‘ื™ืฉื•ืœ
02:59
in order to invent -- any guesses? -- the microwave oven.
56
179797
3258
ื›ื“ื™ ืœื”ืžืฆื™ื -- ืžื™ืฉื”ื• ื™ื•ื“ืข? ืืช ืชื ื•ืจ ื”ืžื™ืงืจื•ื’ืœ.
03:03
Now, this is a particularly remarkable example of creativity.
57
183444
3073
ื–ืืช ื“ื•ื’ืžื” ื™ื•ืฆืืช-ื“ื•ืคืŸ ื‘ืžื™ื•ื—ื“ ืœื™ืฆื™ืจืชื™ื•ืช.
03:06
But this sort of cross-pollination happens for each of us in small ways
58
186541
3664
ืื‘ืœ ื”ืคืจื™ื” ื”ื“ื“ื™ืช ื›ื–ื• ืงื•ืจื” ืœื›ื•ืœื ื• ื‘ืืจื•ืขื™ื ืงื˜ื ื™ื
03:10
thousands of times per day.
59
190229
1828
ืืœืคื™ ืคืขืžื™ื ื‘ื™ื•ื.
03:12
Machines cannot compete with us
60
192501
1661
ื”ืžื›ื•ื ื•ืช ืœื ืžืกื•ื’ืœื•ืช ืœื”ืชื—ืจื•ืช ื‘ื ื•
03:14
when it comes to tackling novel situations,
61
194186
2251
ื›ืฉืžื“ื•ื‘ืจ ื‘ื”ืชืžื•ื“ื“ื•ืช ืขื ืžืฆื‘ื™ื ื—ื“ืฉื™ื,
03:16
and this puts a fundamental limit on the human tasks
62
196461
3117
ื•ื–ื” ืžื’ื‘ื™ืœ ืžื™ืกื•ื“ื• ืืช ื”ืžื˜ืœื•ืช ื”ืื ื•ืฉื™ื•ืช
03:19
that machines will automate.
63
199602
1717
ืฉื”ืžื›ื•ื ื•ืช ืขืชื™ื“ื•ืช ืœื‘ืฆืข ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™.
03:22
So what does this mean for the future of work?
64
202041
2405
ืื– ืžื” ื–ื” ืื•ืžืจ ืžื‘ื—ื™ื ืช ืขืชื™ื“ ื”ืขื‘ื•ื“ื”?
03:24
The future state of any single job lies in the answer to a single question:
65
204804
4532
ืขืชื™ื“ื” ืฉืœ ื›ืœ ืžืฉืจื” ื•ืžืฉืจื” ื˜ืžื•ืŸ ื‘ืชืฉื•ื‘ื” ืœืฉืืœื” ืื—ืช:
03:29
To what extent is that job reducible to frequent, high-volume tasks,
66
209360
4981
ื‘ืื™ื–ื• ืžื™ื“ื” ืžืฉืจื” ื–ื• ื ื™ืชื ืช ืœืคื™ืจื•ืง ืœืžื˜ืœื•ืช ืชื›ื•ืคื•ืช ื‘ื ืคื— ื’ื‘ื•ื”,
03:34
and to what extent does it involve tackling novel situations?
67
214365
3253
ื•ื‘ืื™ื–ื• ืžื™ื“ื” ื”ื™ื ื›ืจื•ื›ื” ื‘ื”ืชืžื•ื“ื“ื•ืช ืขื ืžืฆื‘ื™ื ื—ื“ืฉื™ื?
03:37
On frequent, high-volume tasks, machines are getting smarter and smarter.
68
217975
4035
ื‘ืžื˜ืœื•ืช ืชื›ื•ืคื•ืช ื‘ื ืคื— ื’ื‘ื•ื”, ื”ืžื›ื•ื ื•ืช ื”ื•ืœื›ื•ืช ื•ืžื—ื›ื™ืžื•ืช.
ื”ื™ื•ื ื”ืŸ ื ื•ืชื ื•ืช ืฆื™ื•ื ื™ื ืœื—ื™ื‘ื•ืจื™ื, ืžืื‘ื—ื ื•ืช ืžื—ืœื•ืช ืžืกื•ื™ืžื•ืช.
03:42
Today they grade essays. They diagnose certain diseases.
69
222034
2714
03:44
Over coming years, they're going to conduct our audits,
70
224772
3157
ื‘ืฉื ื™ื ื”ื‘ืื•ืช ื”ืŸ ืชื ื”ืœื ื” ืืช ื‘ื™ืงื•ืจื•ืช ื”ื›ืกืคื™ื ืฉืœื ื•,
03:47
and they're going to read boilerplate from legal contracts.
71
227953
2967
ื•ืชื•ื›ืœื ื” ืœืงืจื•ื ืงื•ื“ื™ื ืฉืœ ื—ื•ื–ื™ื ืžืฉืคื˜ื™ื™ื.
03:50
Accountants and lawyers are still needed.
72
230944
1997
ืขื“ื™ื™ืŸ ื™ืฉ ืฆื•ืจืš ื‘ืจื•ืื™-ื—ืฉื‘ื•ืŸ ื•ื‘ืขื•ืจื›ื™-ื“ื™ืŸ.
03:52
They're going to be needed for complex tax structuring,
73
232965
2682
ื”ื ืขื“ื™ื™ืŸ ื™ื”ื™ื• ื ื—ื•ืฆื™ื ืœืฆืจื›ื™ ืžื™ืกื•ื™ ืžื•ืจื›ื‘ ื•ื—ืงื™ืงื” ื—ื“ืฉื ื™ืช.
03:55
for pathbreaking litigation.
74
235671
1357
ืื‘ืœ ื”ืžื›ื•ื ื•ืช ืขืชื™ื“ื•ืช ืœืฆืžืฆื ืืช ืฉื•ืจื•ืชื™ื”ื
03:57
But machines will shrink their ranks
75
237052
1717
ื•ืœื”ืงื˜ื™ืŸ ืืช ืžืฆืื™ ืžืงื•ืžื•ืช ื”ืขื‘ื•ื“ื” ืฉืœื”ื.
03:58
and make these jobs harder to come by.
76
238793
1872
04:00
Now, as mentioned,
77
240689
1151
ื›ืคื™ ืฉืฆื™ื™ื ืชื™,
04:01
machines are not making progress on novel situations.
78
241864
2949
ื”ืžื›ื•ื ื•ืช ืœื ื”ืชืงื“ืžื• ืžืื“ ื‘ื˜ื™ืคื•ืœ ื‘ืžืฆื‘ื™ื ื—ื“ืฉื™ื.
04:04
The copy behind a marketing campaign needs to grab consumers' attention.
79
244837
3457
ื”ื›ืจื–ื” ืฉืœ ืžืกืข ื”ืฉื™ื•ื•ืง ืฆืจื™ื›ื” ืœืžืฉื•ืš ืืช ืชืฉื•ืžืช ืœื‘ ื”ืฆืจื›ืŸ.
ืขืœื™ื” ืœื‘ืœื•ื˜.
04:08
It has to stand out from the crowd.
80
248318
1715
ืื™ืกื˜ืจื˜ื’ื™ื” ืขืกืงื™ืช ืžืฉืžืขื” ื–ื™ื”ื•ื™ ืคืขืจื™ื ื‘ืฉื•ืง,
04:10
Business strategy means finding gaps in the market,
81
250057
2444
04:12
things that nobody else is doing.
82
252525
1756
ืื™ืชื•ืจ ื“ื‘ืจื™ื ืฉืื™ืฉ ืื™ื ื ื• ืขื•ืฉื”.
04:14
It will be humans that are creating the copy behind our marketing campaigns,
83
254305
4118
ื‘ื ื™-ืื“ื ื”ื ืฉืขืชื™ื“ื™ื ืœื™ืฆื•ืจ ืืช ื›ืจื–ืช ืžืกืข ื”ืฉื™ื•ื•ืง,
04:18
and it will be humans that are developing our business strategy.
84
258447
3517
ื•ื”ื ื’ื ืฉื™ืคืชื—ื• ืืช ื”ืื™ืกื˜ืจื˜ื’ื™ื” ื”ืขืกืงื™ืช ืฉืœื ื•.
04:21
So Yahli, whatever you decide to do,
85
261988
2817
ืื– ื™ืืœื™, ืžื” ืฉืœื ืชื—ืœื™ื˜ื™ ืœืขืฉื•ืช,
04:24
let every day bring you a new challenge.
86
264829
2361
ื”ื ื™ื—ื™ ืœื›ืœ ื™ื•ื ืœื”ื‘ื™ื ืขื™ืžื• ืืชื’ืจ ื—ื“ืฉ.
04:27
If it does, then you will stay ahead of the machines.
87
267587
2809
ืื ื›ืš ื™ื”ื™ื”, ื™ื”ื™ื” ืœืš ื™ืชืจื•ืŸ ืขืœ ื”ืžื›ื•ื ื•ืช.
04:31
Thank you.
88
271126
1176
ืชื•ื“ื” ืœื›ื.
04:32
(Applause)
89
272326
3104
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7