The jobs we'll lose to machines -- and the ones we won't | Anthony Goldbloom
608,424 views ・ 2016-08-31
请双击下面的英文字幕来播放视频。
翻译人员: Jing Peng
校对人员: Julia Xu
00:12
So this is my niece.
0
12968
1262
这是我的侄女。
00:14
Her name is Yahli.
1
14644
1535
她叫Yahl。
00:16
She is nine months old.
2
16203
1511
她只有九个月大。
00:18
Her mum is a doctor,
and her dad is a lawyer.
3
18201
2528
她妈妈是一名医生,
爸爸是一名律师。
00:21
By the time Yahli goes to college,
4
21269
2006
等到Yahli上大学的时候,
00:23
the jobs her parents do
are going to look dramatically different.
5
23299
3253
像她父母这样的工作将面目全非。
00:27
In 2013, researchers at Oxford University
did a study on the future of work.
6
27347
5073
2013年,牛津大学的研究人员
做了一项关于未来就业的研究。
00:32
They concluded that almost one
in every two jobs have a high risk
7
32766
4139
他们得出结论:差不多将近
一半的工作都有被机器
00:36
of being automated by machines.
8
36929
1824
自动化取代的危险。
00:40
Machine learning is the technology
9
40388
1905
而机器学习
00:42
that's responsible for most
of this disruption.
10
42317
2278
应对这种颠覆负主要责任。
00:44
It's the most powerful branch
of artificial intelligence.
11
44619
2790
它是人工智能最强大的分支。
00:47
It allows machines to learn from data
12
47433
1882
允许机器从现有数据中学习,
00:49
and mimic some of the things
that humans can do.
13
49339
2592
并模仿人类的所作所为。
00:51
My company, Kaggle, operates
on the cutting edge of machine learning.
14
51955
3415
我的公司Kaggle
专注于尖端的机器学习。
00:55
We bring together
hundreds of thousands of experts
15
55394
2386
我们召集了成千上万的专家
00:57
to solve important problems
for industry and academia.
16
57804
3118
正为工业和学术界
寻找重要问题的答案。
01:01
This gives us a unique perspective
on what machines can do,
17
61279
3222
因此,我们可以从独特的视角来观察,
01:04
what they can't do
18
64525
1235
机器可以做什么,不可以做什么,
01:05
and what jobs they might
automate or threaten.
19
65784
2939
哪些工作可以被自动化或受到威胁。
01:09
Machine learning started making its way
into industry in the early '90s.
20
69316
3550
机器学习是在90年代初
进入人们的视野。
01:12
It started with relatively simple tasks.
21
72890
2124
一开始,它只是执行
一些相对简单的任务。
01:15
It started with things like assessing
credit risk from loan applications,
22
75406
4115
像评估贷款申请的信用风险,
01:19
sorting the mail by reading
handwritten characters from zip codes.
23
79545
4053
通过识别手写的邮政编码来检索邮件。
01:24
Over the past few years, we have made
dramatic breakthroughs.
24
84036
3169
在过去几年里,我们取得了突破性进展。
01:27
Machine learning is now capable
of far, far more complex tasks.
25
87586
3916
现在,机器学习可以
完成非常复杂的任务。
01:31
In 2012, Kaggle challenged its community
26
91860
3231
2012年,Kaggle给当地学校出了个难题,
01:35
to build an algorithm
that could grade high-school essays.
27
95115
3189
设计一个算法来评判高中作文。
01:38
The winning algorithms
were able to match the grades
28
98328
2604
获胜的算法给出的分数居然
01:40
given by human teachers.
29
100956
1665
和真正老师给出的分数相符。
01:43
Last year, we issued
an even more difficult challenge.
30
103092
2984
去年,我们出了一道更难的题。
01:46
Can you take images of the eye
and diagnose an eye disease
31
106100
2953
你能从拍摄出的眼睛图像中
诊断出糖尿病性
01:49
called diabetic retinopathy?
32
109077
1694
视网膜病变吗?
01:51
Again, the winning algorithms
were able to match the diagnoses
33
111164
4040
再一次,获胜的演算法给出的诊断
01:55
given by human ophthalmologists.
34
115228
1825
和眼科医生的诊断相符。
01:57
Now, given the right data,
machines are going to outperform humans
35
117561
3212
类似于这样的任务,
只要给定正确的数据,
02:00
at tasks like this.
36
120797
1165
机器将完全超越人类。
02:01
A teacher might read 10,000 essays
over a 40-year career.
37
121986
3992
一位老师在40年的职业生涯中
可能审阅一万篇作文。
02:06
An ophthalmologist might see 50,000 eyes.
38
126407
2360
一名眼科医生,大概可以检查
5万只眼睛。
02:08
A machine can read millions of essays
or see millions of eyes
39
128791
3913
但在短短几分钟之内,
机器可以审阅百万篇文章
02:12
within minutes.
40
132728
1276
或检查数百万只眼睛。
02:14
We have no chance of competing
against machines
41
134456
2858
对于频繁,大批量的任务
02:17
on frequent, high-volume tasks.
42
137338
2321
我们无法与机器抗衡。
02:20
But there are things we can do
that machines can't do.
43
140665
3724
但有些事情机器却无能为力。
02:24
Where machines have made
very little progress
44
144791
2200
机器在解决新情况方面
进展甚微。
02:27
is in tackling novel situations.
45
147015
1854
02:28
They can't handle things
they haven't seen many times before.
46
148893
3899
它们还不能处理未曾反复接触的事情。
02:33
The fundamental limitations
of machine learning
47
153321
2584
机器学习致命的局限性在于
02:35
is that it needs to learn
from large volumes of past data.
48
155929
3394
它需要从大量已知的数据中总结经验。
02:39
Now, humans don't.
49
159347
1754
人类则不然。
02:41
We have the ability to connect
seemingly disparate threads
50
161125
3030
我们有一种能把看似毫不相关的事物
联系起来的能力,
02:44
to solve problems we've never seen before.
51
164179
2238
从而解决从未见过的问题
02:46
Percy Spencer was a physicist
working on radar during World War II,
52
166808
4411
Percy Spencer是一个物理学家,
在二战期间从事雷达的研究工作,
02:51
when he noticed the magnetron
was melting his chocolate bar.
53
171243
3013
他注意到磁控管融化了他的巧克力。
02:54
He was able to connect his understanding
of electromagnetic radiation
54
174970
3295
他从对电磁辐射的理解
02:58
with his knowledge of cooking
55
178289
1484
联想到烹饪,
02:59
in order to invent -- any guesses? --
the microwave oven.
56
179797
3258
因此发明了——猜猜是什么?——
微波炉。
03:03
Now, this is a particularly remarkable
example of creativity.
57
183444
3073
这是个非常杰出的创新例子。
03:06
But this sort of cross-pollination
happens for each of us in small ways
58
186541
3664
但这种跨界转型,每天正以
难以察觉的方式在我们身边
03:10
thousands of times per day.
59
190229
1828
发生成千上百次。
03:12
Machines cannot compete with us
60
192501
1661
在创新方面
03:14
when it comes to tackling
novel situations,
61
194186
2251
机器无法与我们抗衡。
03:16
and this puts a fundamental limit
on the human tasks
62
196461
3117
这将使机器自动化取代人工
03:19
that machines will automate.
63
199602
1717
受到限制。
03:22
So what does this mean
for the future of work?
64
202041
2405
那么这对未来的工作意味着什么呢?
03:24
The future state of any single job lies
in the answer to a single question:
65
204804
4532
未来工作的状态
完全取决于一个问题:
03:29
To what extent is that job reducible
to frequent, high-volume tasks,
66
209360
4981
这种工作在多大程度上可以简化为
频繁,大批量的任务,
03:34
and to what extent does it involve
tackling novel situations?
67
214365
3253
又涉及多少对创新能力的要求?
03:37
On frequent, high-volume tasks,
machines are getting smarter and smarter.
68
217975
4035
对于那些频繁,大批量的任务,
机器变得越来越智能。
03:42
Today they grade essays.
They diagnose certain diseases.
69
222034
2714
如今, 它们可以评判作文,
诊断某些疾病。
03:44
Over coming years,
they're going to conduct our audits,
70
224772
3157
再过几年,它们将可以进行审计,
03:47
and they're going to read boilerplate
from legal contracts.
71
227953
2967
将能审阅法律合同样本。
03:50
Accountants and lawyers are still needed.
72
230944
1997
尽管会计师和律师还是需要的。
03:52
They're going to be needed
for complex tax structuring,
73
232965
2682
但他们只需要研究复杂的税收结构,
或无先例的诉讼过程。
03:55
for pathbreaking litigation.
74
235671
1357
但机器将会挤占他们的位置,
03:57
But machines will shrink their ranks
75
237052
1717
03:58
and make these jobs harder to come by.
76
238793
1872
增加就业难度。
04:00
Now, as mentioned,
77
240689
1151
如上所述,
04:01
machines are not making progress
on novel situations.
78
241864
2949
在创新方面机器没有取得太大进展。
04:04
The copy behind a marketing campaign
needs to grab consumers' attention.
79
244837
3457
营销文案需要抓住消费者的心理。
04:08
It has to stand out from the crowd.
80
248318
1715
脱颖而出是关键。
商业策略需要找到市场上
04:10
Business strategy means
finding gaps in the market,
81
250057
2444
04:12
things that nobody else is doing.
82
252525
1756
还无人问津的空白。
04:14
It will be humans that are creating
the copy behind our marketing campaigns,
83
254305
4118
人类将是营销文案的创造者,
04:18
and it will be humans that are developing
our business strategy.
84
258447
3517
人类才能推动商业战略发展。
04:21
So Yahli, whatever you decide to do,
85
261988
2817
所以Yahli,无论你将来决定做什么,
04:24
let every day bring you a new challenge.
86
264829
2361
让每一天都带给你新的挑战。
04:27
If it does, then you will stay
ahead of the machines.
87
267587
2809
如果是那样,
你的未来将无法被机器取代。
04:31
Thank you.
88
271126
1176
谢谢。
04:32
(Applause)
89
272326
3104
(掌声 )
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。