The jobs we'll lose to machines -- and the ones we won't | Anthony Goldbloom

604,026 views

2016-08-31 ・ TED


New videos

The jobs we'll lose to machines -- and the ones we won't | Anthony Goldbloom

604,026 views ・ 2016-08-31

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Dorian Antoniazzo Recezent: Danijela Rako
00:12
So this is my niece.
0
12968
1262
Ovo je moja nećakinja.
00:14
Her name is Yahli.
1
14644
1535
Zove se Yahli.
00:16
She is nine months old.
2
16203
1511
Ima devet mjeseci.
00:18
Her mum is a doctor, and her dad is a lawyer.
3
18201
2528
Njezina mama je liječnica, a tata je odvjetnik.
00:21
By the time Yahli goes to college,
4
21269
2006
Kada se Yahli upišše na fakultet,
00:23
the jobs her parents do are going to look dramatically different.
5
23299
3253
poslovi koje njezini roditelji rade izgledat će potpuno drugačije.
00:27
In 2013, researchers at Oxford University did a study on the future of work.
6
27347
5073
2013. godine, znanstvenici sveučilišta u Oxfordu istraživali su budućnost rada.
00:32
They concluded that almost one in every two jobs have a high risk
7
32766
4139
Zaključili su da gotovo svaki drugi posao ima visok rizik
00:36
of being automated by machines.
8
36929
1824
da bude automatiziran strojevima.
00:40
Machine learning is the technology
9
40388
1905
Strojno učenje je tehnologija
00:42
that's responsible for most of this disruption.
10
42317
2278
koja je odgovorna za većinu tog remećenja.
00:44
It's the most powerful branch of artificial intelligence.
11
44619
2790
To je najmoćnija grana umjetne inteligencije.
00:47
It allows machines to learn from data
12
47433
1882
Strojevi mogu učiti iz podataka
00:49
and mimic some of the things that humans can do.
13
49339
2592
i oponaššati neke radnje svojstvene ljudima.
00:51
My company, Kaggle, operates on the cutting edge of machine learning.
14
51955
3415
Moja tvrtka Kaggle bavi se najnaprednijim vidom strojnog učenja.
00:55
We bring together hundreds of thousands of experts
15
55394
2386
Mi povezujemo stotine tisuća stručnjaka
00:57
to solve important problems for industry and academia.
16
57804
3118
radi rješavanja važnih industrijskih i akademskih problema.
01:01
This gives us a unique perspective on what machines can do,
17
61279
3222
To nam daje jedinstveni uvid u sposobnost strojeva,
01:04
what they can't do
18
64525
1235
njihove mogućnosti
01:05
and what jobs they might automate or threaten.
19
65784
2939
i poslove koje bi mogli automatizirati ili ugroziti.
01:09
Machine learning started making its way into industry in the early '90s.
20
69316
3550
Strojno učenje postalo je dio industrije početkom 90-ih godina.
01:12
It started with relatively simple tasks.
21
72890
2124
Počelo je relativno jednostavnim zadacima.
01:15
It started with things like assessing credit risk from loan applications,
22
75406
4115
Počelo je procjenjivanjem kreditnog rizika sa zahtjeva za kredit
01:19
sorting the mail by reading handwritten characters from zip codes.
23
79545
4053
i razvrstavanjem poššte čitanjem ručno napisanih pošštanskih brojeva.
01:24
Over the past few years, we have made dramatic breakthroughs.
24
84036
3169
Kroz proteklih nekoliko godina, postigli smo nevjerojatne stvari.
01:27
Machine learning is now capable of far, far more complex tasks.
25
87586
3916
Strojno učenje sada postižže daleko, daleko naprednije rezultate.
01:31
In 2012, Kaggle challenged its community
26
91860
3231
2012. godine Kaggle je pozvao zajednicu
01:35
to build an algorithm that could grade high-school essays.
27
95115
3189
da napravi algoritam koji će ocjenjivati srednjošškolske eseje.
01:38
The winning algorithms were able to match the grades
28
98328
2604
Najbolji algoritmi dali su istu ocjenu
01:40
given by human teachers.
29
100956
1665
kao i profesori.
01:43
Last year, we issued an even more difficult challenge.
30
103092
2984
Prošle smo godine zadali još jedan zahtjevniji zadatak.
01:46
Can you take images of the eye and diagnose an eye disease
31
106100
2953
Možžete li pomoću snimke oka dijagnosticirati očnu bolest
01:49
called diabetic retinopathy?
32
109077
1694
zvanu dijabetička retinopatija?
01:51
Again, the winning algorithms were able to match the diagnoses
33
111164
4040
I ponovno, najbolji algoritmi dali su istu dijagnozu
01:55
given by human ophthalmologists.
34
115228
1825
kao i oftalmolozi.
01:57
Now, given the right data, machines are going to outperform humans
35
117561
3212
Pomoću pravilnih podataka, strojevi mogu prestići ljude
02:00
at tasks like this.
36
120797
1165
u zadacima poput ovih.
02:01
A teacher might read 10,000 essays over a 40-year career.
37
121986
3992
Profesor možže pročitati 10.000 eseja kroz 40-godišnju karijeru.
02:06
An ophthalmologist might see 50,000 eyes.
38
126407
2360
Oftalmolog možže pregledati 50.000 očiju.
02:08
A machine can read millions of essays or see millions of eyes
39
128791
3913
Stroj možže pročitati milijune eseja ili pregledati milijune očiju
02:12
within minutes.
40
132728
1276
u roku od par minuta.
02:14
We have no chance of competing against machines
41
134456
2858
Jednostavno se ne možžemo natjecati protiv strojeva
02:17
on frequent, high-volume tasks.
42
137338
2321
u čestim zadacima s mnogo podataka.
02:20
But there are things we can do that machines can't do.
43
140665
3724
No, postoje stvari koje mi možžemo, a koje strojevi ne mogu.
02:24
Where machines have made very little progress
44
144791
2200
Područje gdje su strojevi vrlo malo napredovali
02:27
is in tackling novel situations.
45
147015
1854
je rješšavanje novonastalih situacija.
02:28
They can't handle things they haven't seen many times before.
46
148893
3899
Oni se ne mogu nositi sa stvarima koje nisu vidjeli puno puta u proššlosti.
02:33
The fundamental limitations of machine learning
47
153321
2584
Osnovno ograničenje strojnog učenja
02:35
is that it needs to learn from large volumes of past data.
48
155929
3394
je to šdo mora učiti iz velike količine prijašnjih podataka.
02:39
Now, humans don't.
49
159347
1754
Ljudi ne moraju.
02:41
We have the ability to connect seemingly disparate threads
50
161125
3030
Mi imamo sposobnost spojiti naizgled nepovezane niti
02:44
to solve problems we've never seen before.
51
164179
2238
i riješšiti novonastale probleme.
02:46
Percy Spencer was a physicist working on radar during World War II,
52
166808
4411
Percy Spencer bio je fizičar koji je radio na radaru tijekom 2. svjetskog rata
02:51
when he noticed the magnetron was melting his chocolate bar.
53
171243
3013
kada je primijetio da mu magnetron otapa čokoladu.
02:54
He was able to connect his understanding of electromagnetic radiation
54
174970
3295
On je povezao svoje razumijevanje elektromagnetske radijacije
02:58
with his knowledge of cooking
55
178289
1484
sa svojim znanjem o kuhanju
02:59
in order to invent -- any guesses? -- the microwave oven.
56
179797
3258
da bi na kraju izumio -- možžete pogoditi? -- mikrovalnu pećnicu.
03:03
Now, this is a particularly remarkable example of creativity.
57
183444
3073
Ovo je jedan izvanredan primjer kreativnosti.
03:06
But this sort of cross-pollination happens for each of us in small ways
58
186541
3664
No, ovakva se povezivanja, u malim omjerima, kod svakoga od nas
03:10
thousands of times per day.
59
190229
1828
događaju tisućama puta dnevno.
03:12
Machines cannot compete with us
60
192501
1661
Strojevi se ne mogu mjeriti s nama
03:14
when it comes to tackling novel situations,
61
194186
2251
u rješavanju tih novonastalih situacija,
03:16
and this puts a fundamental limit on the human tasks
62
196461
3117
i to uvelike ograničava broj poslova u kojima
03:19
that machines will automate.
63
199602
1717
strojevi mogu zamijeniti ljude.
03:22
So what does this mean for the future of work?
64
202041
2405
I ššto to onda znači za budućnost rada?
03:24
The future state of any single job lies in the answer to a single question:
65
204804
4532
Budućnost bilo kojeg posla ovisi o odgovoru na pitanje:
03:29
To what extent is that job reducible to frequent, high-volume tasks,
66
209360
4981
Do koje se mjere taj posao možže svesti na ponavljajuće zadatke s mnogo podataka,
03:34
and to what extent does it involve tackling novel situations?
67
214365
3253
a koliko uključuje rješšavanje novonastalih situacija.
03:37
On frequent, high-volume tasks, machines are getting smarter and smarter.
68
217975
4035
U čestim zadacima s mnogo podataka, strojevi postaju sve pametniji.
03:42
Today they grade essays. They diagnose certain diseases.
69
222034
2714
Danas oni ocjenjuju eseje. Dijagnosticiraju neke bolesti.
03:44
Over coming years, they're going to conduct our audits,
70
224772
3157
S godinama će biti u stanju vrššiti revizije
03:47
and they're going to read boilerplate from legal contracts.
71
227953
2967
i čitati standardne tekstove na ugovorima.
03:50
Accountants and lawyers are still needed.
72
230944
1997
Računovođe i odvjetnici jošš su potrebni.
03:52
They're going to be needed for complex tax structuring,
73
232965
2682
Oni će biti potrebni za složžene porezne sustave
03:55
for pathbreaking litigation.
74
235671
1357
i u pravnim sporovima.
03:57
But machines will shrink their ranks
75
237052
1717
Međutim, strojevi će to promijeniti
03:58
and make these jobs harder to come by.
76
238793
1872
i smanjiti dostupnost tih poslova.
04:00
Now, as mentioned,
77
240689
1151
Kao ššto sam spomenuo,
04:01
machines are not making progress on novel situations.
78
241864
2949
strojevi ne napreduju u rješšavanju novonastalih situacija.
04:04
The copy behind a marketing campaign needs to grab consumers' attention.
79
244837
3457
Marketinšška kampanja mora privući pažžnju potroššača.
04:08
It has to stand out from the crowd.
80
248318
1715
Mora se isticati.
04:10
Business strategy means finding gaps in the market,
81
250057
2444
Poslovna strategija uključuje nalažženje rupa,
04:12
things that nobody else is doing.
82
252525
1756
stvari koje nitko drugi ne radi.
04:14
It will be humans that are creating the copy behind our marketing campaigns,
83
254305
4118
Ljudi će biti ti koji će stvarati marketinšške kampanje
04:18
and it will be humans that are developing our business strategy.
84
258447
3517
i ljudi će biti ti koji će razvijati poslovne strategije.
04:21
So Yahli, whatever you decide to do,
85
261988
2817
Tako da, Yahli, ššto god odlučila raditi,
04:24
let every day bring you a new challenge.
86
264829
2361
neka ti svaki dan donese neki novi izazov.
04:27
If it does, then you will stay ahead of the machines.
87
267587
2809
Ako tako bude, uvijek ćešš biti ispred strojeva.
04:31
Thank you.
88
271126
1176
Hvala.
04:32
(Applause)
89
272326
3104
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7