Peter van Manen: How can Formula 1 racing help ... babies?

80,918 views ・ 2013-08-01

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Dejan Vicai Lektor: Tatjana Jevdjic
00:12
Motor racing is a funny old business.
0
12336
2233
Trka automobila je zanimljiva stara zabava.
00:14
We make a new car every year,
1
14593
2293
Pravimo nove automobile svake godine
00:16
and then we spend the rest of the season
2
16910
2164
i onda tokom ostatka sezone
00:19
trying to understand what it is we've built
3
19098
2752
pokušavamo da razumemo šta smo to napravili
00:21
to make it better, to make it faster.
4
21874
3197
da bi bili bolji i brži.
00:25
And then the next year, we start again.
5
25095
3251
A naredne godine, počinjemo ispočetka.
00:28
Now, the car you see in front of you is quite complicated.
6
28370
4214
Kola koja vidite ispred vas su dosta komplikovana.
00:32
The chassis is made up of about 11,000 components,
7
32608
3595
Šasija je sastavljena od oko 11.000 komponenti,
00:36
the engine another 6,000,
8
36227
2444
motor od još oko 6.000,
00:38
the electronics about eight and a half thousand.
9
38695
3069
elektronika od oko 8.500.
00:41
So there's about 25,000 things there that can go wrong.
10
41788
4377
Znači, 25.000 stvari može da pođe po zlu.
00:46
So motor racing is very much about attention to detail.
11
46189
4802
U trci automobila se najviše radi o detaljima.
00:51
The other thing about Formula 1 in particular
12
51015
3239
Druga stvar naročito vezana za Formulu 1
00:54
is we're always changing the car.
13
54278
2100
je da uvek menjamo automobil.
00:56
We're always trying to make it faster.
14
56402
2256
Uvek pokušavamo da ga napravimo bržim.
00:58
So every two weeks, we will be making
15
58682
2960
Svake dve nedelje, napravićemo
01:01
about 5,000 new components to fit to the car.
16
61666
4176
oko 5.000 novih komponenti za automobil.
01:05
Five to 10 percent of the race car
17
65866
2154
5 do 10% trkačkih automobila
01:08
will be different every two weeks of the year.
18
68044
3728
biće drugačije svake dve nedelje u godini.
01:11
So how do we do that?
19
71796
2285
Kako to postižemo?
01:14
Well, we start our life with the racing car.
20
74105
3720
Počnemo život sa trkačkim kolima.
01:17
We have a lot of sensors on the car to measure things.
21
77849
3967
Imamo mnogo senzora za merenje na kolima.
01:21
On the race car in front of you here
22
81840
1858
Na trkačkim kolima ispred vas
01:23
there are about 120 sensors when it goes into a race.
23
83722
3135
ima oko 120 senzora kada je u trci.
01:26
It's measuring all sorts of things around the car.
24
86881
3628
Oni mere svakakve stvari.
01:30
That data is logged. We're logging about
25
90533
2028
Podaci se beleže.
01:32
500 different parameters within the data systems,
26
92585
3680
Beležimo oko 500 različitih parametara unutar sistema,
01:36
about 13,000 health parameters and events
27
96289
3641
oko 13.000 zdravstvenih parametara i događaja
01:39
to say when things are not working the way they should do,
28
99954
4541
da nam saopšte kada stvari ne rade kako bi trebalo.
01:44
and we're sending that data back to the garage
29
104519
2801
I šaljemo te podatke nazad u garažu
01:47
using telemetry at a rate of two to four megabits per second.
30
107344
4955
koristeći telemetriju, brzinom od dva do četiri megabita po sekundi.
01:52
So during a two-hour race, each car will be sending
31
112323
3103
Tako da tokom dvosatne trke, svaka kola će poslati
01:55
750 million numbers.
32
115450
2251
750 miliona brojki.
01:57
That's twice as many numbers as words that each of us
33
117725
3119
To je duplo više brojeva od reči koje svaki od nas
02:00
speaks in a lifetime.
34
120868
1607
izgovori tokom života.
02:02
It's a huge amount of data.
35
122499
2594
To je velika količina podataka.
02:05
But it's not enough just to have data and measure it.
36
125117
2621
Ali nije dovoljno samo da imate podatke i da ih merite.
02:07
You need to be able to do something with it.
37
127762
2134
Treba da ste sposobni da uradite nešto sa njima.
02:09
So we've spent a lot of time and effort
38
129920
2370
Potrošili smo puno vremena i truda
02:12
in turning the data into stories
39
132314
1845
pretvarajući podatke u priče
02:14
to be able to tell, what's the state of the engine,
40
134183
3081
da bismo mogli da ispričamo kakvo je stanje motora,
02:17
how are the tires degrading,
41
137288
2248
kako se troše gume,
02:19
what's the situation with fuel consumption?
42
139560
3724
kakvo je stanje sa potrošnjom goriva?
02:23
So all of this is taking data
43
143308
2764
Sve ovo meri neke podatke
02:26
and turning it into knowledge that we can act upon.
44
146096
3778
i pretvara u znanje po kojem možemo da postupamo.
02:29
Okay, so let's have a look at a little bit of data.
45
149898
2614
U redu, hajde da pogledamo delić podataka.
02:32
Let's pick a bit of data from
46
152536
2006
Uzmimo delić podatka
02:34
another three-month-old patient.
47
154566
3055
o drugom tromesečnom pacijentu.
02:37
This is a child, and what you're seeing here is real data,
48
157645
4147
Ovo je dete i ono što vidite ovde su pravi podaci
02:41
and on the far right-hand side,
49
161816
1953
i na krajnjoj desnoj strani,
02:43
where everything starts getting a little bit catastrophic,
50
163793
2762
gde sve počinje da bude pomalo katastrofično,
02:46
that is the patient going into cardiac arrest.
51
166579
3361
to pacijent doživljava srčani zastoj.
02:49
It was deemed to be an unpredictable event.
52
169964
3208
Smatralo se da je to bio nepredvidljivi događaj.
02:53
This was a heart attack that no one could see coming.
53
173196
3765
Bio je to srčani udar koji niko nije mogao da predvidi.
02:56
But when we look at the information there,
54
176985
2526
Ali ako tu pogledamo podatke,
02:59
we can see that things are starting to become
55
179535
2325
vidimo da se stvari počinju mutiti
03:01
a little fuzzy about five minutes or so before the cardiac arrest.
56
181884
4005
oko pet minuta pred srčani zastoj.
03:05
We can see small changes
57
185913
2013
Vidimo male promene
03:07
in things like the heart rate moving.
58
187950
2359
u stvarima kao što je promena pulsa.
03:10
These were all undetected by normal thresholds
59
190333
2462
One su bile neprimećene pri normalnim pragovima
03:12
which would be applied to data.
60
192819
2384
koji bi se mogli primeniti na podatke.
03:15
So the question is, why couldn't we see it?
61
195227
3119
Pitanje je, zašto to nismo mogli da primetimo?
03:18
Was this a predictable event?
62
198370
2557
Da li je to bio predvidljiv događaj?
03:20
Can we look more at the patterns in the data
63
200951
2986
Da li možemo bolje da sagledamo obrasce u podacima
03:23
to be able to do things better?
64
203961
3356
da bismo bolje radili?
03:27
So this is a child,
65
207341
2626
Ovo je dete,
03:29
about the same age as the racing car on stage,
66
209991
3208
otprilike iste dobi kao trkački automobili na bini,
03:33
three months old.
67
213223
1606
tri meseca.
03:34
It's a patient with a heart problem.
68
214853
2581
To dete je pacijent sa srčanim problemom.
03:37
Now, when you look at some of the data on the screen above,
69
217458
3444
Ako pogledamo neke od podataka na ekranu iznad,
03:40
things like heart rate, pulse, oxygen, respiration rates,
70
220926
4878
stvari poput otkucaja srca, pulsa, kiseonika, brzine disanja,
03:45
they're all unusual for a normal child,
71
225828
3052
sve su neobične za normalno dete,
03:48
but they're quite normal for the child there,
72
228904
2618
ali su sasvim normalne za ovo dete.
03:51
and so one of the challenges you have in health care is,
73
231546
4114
Jedan od izazova zdravstva
03:55
how can I look at the patient in front of me,
74
235684
2827
je kako mogu da pregledam pacijenta
03:58
have something which is specific for her,
75
238535
3023
za koga je nešto specifično
04:01
and be able to detect when things start to change,
76
241582
2764
i da uočim stvari kada počnu da se menjaju
04:04
when things start to deteriorate?
77
244370
2075
i da se pogoršavaju?
04:06
Because like a racing car, any patient,
78
246469
3026
Isto kao i trkački automobil, za svakog pacijenta
04:09
when things start to go bad, you have a short time
79
249519
2952
kada se stvari pogoršaju, imate malo vremena
04:12
to make a difference.
80
252495
1807
da napravite razliku.
04:14
So what we did is we took a data system
81
254326
2730
Uzeli smo sistem podataka
04:17
which we run every two weeks of the year in Formula 1
82
257080
3107
koji koristimo svake dve nedelje tokom godine za Formulu 1
04:20
and we installed it on the hospital computers
83
260211
2978
i instalirali smo ih u bolničke kompjutere
04:23
at Birmingham Children's Hospital.
84
263213
2266
u dečijoj bolnici u Birmingemu.
04:25
We streamed data from the bedside instruments
85
265503
2415
Pratili smo podatke sa instrumenata pored kreveta
04:27
in their pediatric intensive care
86
267942
2533
u intenzivnoj nezi pedijatrije
04:30
so that we could both look at the data in real time
87
270499
3431
kako bismo mogli da sagledamo podatke u stvarnom vremenu
04:33
and, more importantly, to store the data
88
273954
2848
i što je važnije, da sačuvamo podatke
04:36
so that we could start to learn from it.
89
276826
3033
kako bismo mogli da učimo iz njih.
04:39
And then, we applied an application on top
90
279883
4360
Tada smo primenili aplikaciju
04:44
which would allow us to tease out the patterns in the data
91
284267
3246
koja bi nam omogućila da izvučemo obrasce iz podataka
04:47
in real time so we could see what was happening,
92
287537
2932
u stvarnom vremenu, da bismo videli šta se dešava
04:50
so we could determine when things started to change.
93
290493
3689
i kako bismo odredili kada su stvari počele da se menjaju.
04:54
Now, in motor racing, we're all a little bit ambitious,
94
294206
3839
U trkama automobila svi smo pomalo ambiciozni,
04:58
audacious, a little bit arrogant sometimes,
95
298069
2525
drski, ponekad pomalo arogantni,
05:00
so we decided we would also look at the children
96
300618
3374
pa smo odlučili da posmatramo decu
05:04
as they were being transported to intensive care.
97
304016
2933
dok se prenose u intenzivnu negu.
05:06
Why should we wait until they arrived in the hospital
98
306973
2524
Zašto da čekamo da stignu u bolnicu pre nego što počnemo
05:09
before we started to look?
99
309521
1576
da ih posmatramo?
05:11
And so we installed a real-time link
100
311121
2973
Tako da smo postavili vezu u stvarnom vremenu
05:14
between the ambulance and the hospital,
101
314118
2812
između ambulantnih kola i bolnice,
05:16
just using normal 3G telephony to send that data
102
316954
3752
koristeći samo normalnu 3G telefoniju da šaljemo podatke,
05:20
so that the ambulance became an extra bed
103
320730
2463
pa bi ambulantna kola postala dodatni krevet
05:23
in intensive care.
104
323217
3112
u intenzivnoj nezi.
05:26
And then we started looking at the data.
105
326353
3678
Zatim smo počeli da pregledamo podatke.
05:30
So the wiggly lines at the top, all the colors,
106
330055
2897
Krivudave linije na vrhu, sve boje,
05:32
this is the normal sort of data you would see on a monitor --
107
332976
3170
to je normalna vrsta podataka koju biste videli na monitoru –
05:36
heart rate, pulse, oxygen within the blood,
108
336170
3748
otkucaji srca, puls, kiseonik u krvi
05:39
and respiration.
109
339942
2611
i disanje.
05:42
The lines on the bottom, the blue and the red,
110
342577
2729
Linije da dnu, plave i crvene,
05:45
these are the interesting ones.
111
345330
1477
te su zanimljive.
05:46
The red line is showing an automated version
112
346831
3044
Crvena pokazuje automatizovanu verziju
05:49
of the early warning score
113
349899
1573
ranog upozoravajućeg rezultata
05:51
that Birmingham Children's Hospital were already running.
114
351496
2715
koju dečija bolnica u Birmingemu već koristi.
Koriste to već od 2008. godine
05:54
They'd been running that since 2008,
115
354235
2062
05:56
and already have stopped cardiac arrests
116
356321
2232
i već su zaustavili srčane zastoje
05:58
and distress within the hospital.
117
358577
2733
i uznemirenost u bolnici.
06:01
The blue line is an indication
118
361334
2408
Plava linija je pokazatelj
06:03
of when patterns start to change,
119
363766
2476
kada obrasci počinju da se menjaju,
06:06
and immediately, before we even started
120
366266
2285
i momentalno, pre nego što smo i počeli
06:08
putting in clinical interpretation,
121
368575
1684
kliničku interpretaciju,
06:10
we can see that the data is speaking to us.
122
370283
2846
možemo videti da nam podaci govore.
06:13
It's telling us that something is going wrong.
123
373153
3512
Govore nam da nešto nije u redu.
06:16
The plot with the red and the green blobs,
124
376689
3792
Crtež sa crvenim i zelenim mrljama,
06:20
this is plotting different components
125
380505
2781
ovo zapliće različite komponente podataka
06:23
of the data against each other.
126
383310
2523
jedne protiv drugih.
06:25
The green is us learning what is normal for that child.
127
385857
3816
Zeleno je ono što nam pokazuje šta je normalno za to dete.
06:29
We call it the cloud of normality.
128
389697
2586
To zovemo oblakom normalnosti.
06:32
And when things start to change,
129
392307
2217
A kada stvari počnu da se menjaju,
06:34
when conditions start to deteriorate,
130
394548
2540
kada uslovi počnu da se pogoršavaju,
06:37
we move into the red line.
131
397112
2214
dolazimo do crvene linije.
06:39
There's no rocket science here.
132
399350
1633
Nije nuklearna fizika.
06:41
It is displaying data that exists already in a different way,
133
401007
4089
Pokazuje podatke koji već postoje na različite načine,
06:45
to amplify it, to provide cues to the doctors,
134
405120
3367
da ih pojača, da obezbedi naznake lekarima,
06:48
to the nurses, so they can see what's happening.
135
408511
2714
medicinskim sestrama, kako bi videli šta se dešava.
06:51
In the same way that a good racing driver
136
411249
3106
Na isti način kao što se dobar vozač
06:54
relies on cues to decide when to apply the brakes,
137
414379
4020
oslanja na naznake da odluči kada da koristi kočnice,
06:58
when to turn into a corner,
138
418423
1452
kada da skrene u krivinu,
06:59
we need to help our physicians and our nurses
139
419899
2894
treba da pomognemo našim lekarima i medicinskim sestrama
07:02
to see when things are starting to go wrong.
140
422817
3596
da uoče stvari kada počnu da budu loše.
07:06
So we have a very ambitious program.
141
426437
2922
Tako da imamo jako ambiciozan program.
07:09
We think that the race is on to do something differently.
142
429383
4712
Mislimo da je trka počela da bi se uradilo nešto drugačije.
07:14
We are thinking big. It's the right thing to do.
143
434119
2880
Mislimo veliko. To je prava stvar da se uradi.
07:17
We have an approach which, if it's successful,
144
437023
3388
Imamo pristup koji, ako je uspešan,
07:20
there's no reason why it should stay within a hospital.
145
440435
2620
nema razloga zašto da ostane unutar bolnica.
Može da ide van zidova.
07:23
It can go beyond the walls.
146
443079
1704
07:24
With wireless connectivity these days,
147
444807
2047
Sa bežičnim povezivanjem današnjice,
07:26
there is no reason why patients, doctors and nurses
148
446878
3420
nema razloga zašto pacijenti, lekari i medicinske sestre
07:30
always have to be in the same place
149
450322
2147
uvek moraju da budu na istom mestu,
07:32
at the same time.
150
452493
1969
u isto vreme.
07:34
And meanwhile, we'll take our little three-month-old baby,
151
454486
3971
U međuvremenu, uzećemo našu tromesečnu bebu,
07:38
keep taking it to the track, keeping it safe,
152
458481
3733
nosićemo je na stazu, čuvaćemo je
07:42
and making it faster and better.
153
462238
2309
i učinićemo da bude brža i bolja.
07:44
Thank you very much.
154
464571
1381
Hvala vam najlepše.
07:45
(Applause)
155
465976
4954
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7