Peter van Manen: How can Formula 1 racing help ... babies?

80,795 views ・ 2013-08-01

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Kristina Gottwald Recezent: Senzos Osijek
00:12
Motor racing is a funny old business.
0
12336
2233
Utrke automobila star su i smiješan posao.
00:14
We make a new car every year,
1
14593
2293
Stvaramo nove automobile svake godine,
00:16
and then we spend the rest of the season
2
16910
2164
a ostatak godine provodimo
00:19
trying to understand what it is we've built
3
19098
2752
pokušavajući razumjeti što smo napravili
00:21
to make it better, to make it faster.
4
21874
3197
da bude bolje, da bude brže.
00:25
And then the next year, we start again.
5
25095
3251
A sljedeće godine, počinjemo iz početka.
00:28
Now, the car you see in front of you is quite complicated.
6
28370
4214
Automobil koji vidite ispred sebe prilično je kompliciran.
00:32
The chassis is made up of about 11,000 components,
7
32608
3595
Šasija je izrađena od oko 11.000 komponenti,
00:36
the engine another 6,000,
8
36227
2444
motor od još 6.000,
00:38
the electronics about eight and a half thousand.
9
38695
3069
elektronika od oko 8.500.
00:41
So there's about 25,000 things there that can go wrong.
10
41788
4377
Dakle ovdje je oko 25.000 stvari koje mogu poći po zlu.
00:46
So motor racing is very much about attention to detail.
11
46189
4802
Utrke automobila su uglavnom obraćanje pažnje na detalje.
00:51
The other thing about Formula 1 in particular
12
51015
3239
Druga osobita stvar u Formuli 1
00:54
is we're always changing the car.
13
54278
2100
je da uvijek mijenjamo automobil.
00:56
We're always trying to make it faster.
14
56402
2256
Uvijek ga pokušavamo napraviti da bude brži.
00:58
So every two weeks, we will be making
15
58682
2960
Svaka dva tjedna, napravit ćemo
01:01
about 5,000 new components to fit to the car.
16
61666
4176
oko 5.000 novih komponenti za automobil.
01:05
Five to 10 percent of the race car
17
65866
2154
5 do 10 posto trkaćih automobila
01:08
will be different every two weeks of the year.
18
68044
3728
bit će drugačije svaka dva tjedna tokom godine.
01:11
So how do we do that?
19
71796
2285
Kako to radimo?
01:14
Well, we start our life with the racing car.
20
74105
3720
Započinjemo život sa trkaćim automobilom.
01:17
We have a lot of sensors on the car to measure things.
21
77849
3967
Postoji mnogo senzora u automobilu koji mjere stvari.
01:21
On the race car in front of you here
22
81840
1858
Trkaći automobil ispred vas
01:23
there are about 120 sensors when it goes into a race.
23
83722
3135
ima oko 120 senzora kada se utrkuje.
01:26
It's measuring all sorts of things around the car.
24
86881
3628
Mjere se razne komponente automobila.
01:30
That data is logged. We're logging about
25
90533
2028
Ti podatci se prijavljuju. Dobivamo oko
01:32
500 different parameters within the data systems,
26
92585
3680
500 različitih parametara unutar sustava podataka
01:36
about 13,000 health parameters and events
27
96289
3641
oko 13.000 zdravstvenih parametara i događanja
01:39
to say when things are not working the way they should do,
28
99954
4541
koja nam govore kada nešto ne radi kako bi trebalo,
01:44
and we're sending that data back to the garage
29
104519
2801
i te podatke šaljemo natrag u garažu
01:47
using telemetry at a rate of two to four megabits per second.
30
107344
4955
koristeći telemetriju, brzinom dva do četri megabita u sekundi.
01:52
So during a two-hour race, each car will be sending
31
112323
3103
Tijekom dvosatne utrke, svaki automobil će poslati
01:55
750 million numbers.
32
115450
2251
750 milijuna brojeva.
01:57
That's twice as many numbers as words that each of us
33
117725
3119
To je dvostruko više brojeva nego riječi koje
02:00
speaks in a lifetime.
34
120868
1607
mi izgovorimo tokom života.
02:02
It's a huge amount of data.
35
122499
2594
To je velika količina podataka.
02:05
But it's not enough just to have data and measure it.
36
125117
2621
Ali nije dovoljno samo imati podatke i mjeriti ih.
02:07
You need to be able to do something with it.
37
127762
2134
Treba moći nešto učiniti s njima.
02:09
So we've spent a lot of time and effort
38
129920
2370
Pa smo potrošili mnogo vremena i truda
02:12
in turning the data into stories
39
132314
1845
kako bismo pretvorili podatke u priče
02:14
to be able to tell, what's the state of the engine,
40
134183
3081
koje nam mogu reći kakvo je stanje motora,
02:17
how are the tires degrading,
41
137288
2248
kako se gume troše,
02:19
what's the situation with fuel consumption?
42
139560
3724
kakva je situacija s potrošnjom goriva.
02:23
So all of this is taking data
43
143308
2764
Dakle, to je prikupljanje i pretvaranje
02:26
and turning it into knowledge that we can act upon.
44
146096
3778
podataka u znanje na koje možemo djelovati.
02:29
Okay, so let's have a look at a little bit of data.
45
149898
2614
U redu, pogledajmo malu količinu podataka.
02:32
Let's pick a bit of data from
46
152536
2006
Prikupimo podatke od
02:34
another three-month-old patient.
47
154566
3055
jednog pacijenta, starog tri mjeseca.
02:37
This is a child, and what you're seeing here is real data,
48
157645
4147
Ovo je dijete, a ovo što vidite pravi su podatci.
02:41
and on the far right-hand side,
49
161816
1953
Na desnoj strani ekrana,
02:43
where everything starts getting a little bit catastrophic,
50
163793
2762
gdje sve postaje pomalo katastrofično,
02:46
that is the patient going into cardiac arrest.
51
166579
3361
vidimo da pacijentu počinje zatajivati srce.
02:49
It was deemed to be an unpredictable event.
52
169964
3208
To smatramo nepredviđenim događajem.
02:53
This was a heart attack that no one could see coming.
53
173196
3765
To je bio srčani udar kojeg nitko nije mogao predvidjeti.
02:56
But when we look at the information there,
54
176985
2526
Kada pogledamo informacije ovdje,
02:59
we can see that things are starting to become
55
179535
2325
možemo vidjeti kako stvari postaju
03:01
a little fuzzy about five minutes or so before the cardiac arrest.
56
181884
4005
pomalo nejasne oko pet minuta prije zastoja srca.
03:05
We can see small changes
57
185913
2013
Možemo vidjeti male promjene
03:07
in things like the heart rate moving.
58
187950
2359
u nekim stvarima poput otkucaja srca.
03:10
These were all undetected by normal thresholds
59
190333
2462
Sve je bilo neotkriveno normalnim pragovima
03:12
which would be applied to data.
60
192819
2384
koji bi bili primijenjeni podatcima.
03:15
So the question is, why couldn't we see it?
61
195227
3119
Pitanje je, zašto to nismo vidjeli?
03:18
Was this a predictable event?
62
198370
2557
Je li ovo bio očekivani događaj?
03:20
Can we look more at the patterns in the data
63
200951
2986
Možemo li pogledati malo više na uzorke u podatcima
03:23
to be able to do things better?
64
203961
3356
da bismo mogli stvari raditi bolje?
03:27
So this is a child,
65
207341
2626
Dakle ovo je dijete,
03:29
about the same age as the racing car on stage,
66
209991
3208
otprilike iste starosti kao i vozilo na pozornici,
03:33
three months old.
67
213223
1606
tri mjeseca staro.
03:34
It's a patient with a heart problem.
68
214853
2581
Ono je pacijent sa srčanim problemom.
03:37
Now, when you look at some of the data on the screen above,
69
217458
3444
Sada, kad pogledate u neke podatke na zaslonu,
03:40
things like heart rate, pulse, oxygen, respiration rates,
70
220926
4878
stvari poput otkucaja srca, pulsa, kisika, udisaja,
03:45
they're all unusual for a normal child,
71
225828
3052
svi su neobičajeni za normalno dijete,
03:48
but they're quite normal for the child there,
72
228904
2618
ali oni su prilično normalni za ono dijete,
03:51
and so one of the challenges you have in health care is,
73
231546
4114
jedan od izazova koje imate u zdravstvu je,
03:55
how can I look at the patient in front of me,
74
235684
2827
kako mogu pogledati pacijenta ispred sebe,
03:58
have something which is specific for her,
75
238535
3023
koji ima nešto specifično,
04:01
and be able to detect when things start to change,
76
241582
2764
kako detektirati kad se pojave promjene,
04:04
when things start to deteriorate?
77
244370
2075
kada se počinji stvarati greške?
04:06
Because like a racing car, any patient,
78
246469
3026
Kao i kod trkaćeg automobila, kod svakog pacijenta
04:09
when things start to go bad, you have a short time
79
249519
2952
kada stvari krenu krivo, imate vrlo kratko vrijeme
04:12
to make a difference.
80
252495
1807
za raditi razliku.
04:14
So what we did is we took a data system
81
254326
2730
Mi smo uzeli sustav podataka
04:17
which we run every two weeks of the year in Formula 1
82
257080
3107
s kojim svakih dva tjedna u godini vozimo Formulu 1
04:20
and we installed it on the hospital computers
83
260211
2978
i instalirali ga na bolnička računala
04:23
at Birmingham Children's Hospital.
84
263213
2266
u dječjoj bolnici Birmingham.
04:25
We streamed data from the bedside instruments
85
265503
2415
Prenosili smo podatke s instrumenata koji su bili na krevetu
04:27
in their pediatric intensive care
86
267942
2533
njihovim pedijatrima na intenzivnoj njezi
04:30
so that we could both look at the data in real time
87
270499
3431
mogli smo gledati u podatke u stvarnom vremenu
04:33
and, more importantly, to store the data
88
273954
2848
a što je još važnije, mogli smo pohraniti te podatke
04:36
so that we could start to learn from it.
89
276826
3033
kako bismo mogli učiti iz njih.
04:39
And then, we applied an application on top
90
279883
4360
Tada smo počeli primjenjivati aplikaciju
04:44
which would allow us to tease out the patterns in the data
91
284267
3246
koja nam je dopustila da pročešljamo po obrascima unutar podataka
04:47
in real time so we could see what was happening,
92
287537
2932
u stvarnom vremenu te smo mogli vidjeti što se događa,
04:50
so we could determine when things started to change.
93
290493
3689
mogli smo utvrditi kada su se stvari počele mijenjati.
04:54
Now, in motor racing, we're all a little bit ambitious,
94
294206
3839
Sada, u automobilskim utrkama, svi smo malo ambiciozni,
04:58
audacious, a little bit arrogant sometimes,
95
298069
2525
odvažni, a ponekad pomalo arogantni,
05:00
so we decided we would also look at the children
96
300618
3374
zato smo odlučili da ćemo gledati djecu
05:04
as they were being transported to intensive care.
97
304016
2933
koja su prevezena na intenzivnu njegu.
05:06
Why should we wait until they arrived in the hospital
98
306973
2524
Zašto da čekamo da dođu u bolnicu
05:09
before we started to look?
99
309521
1576
prije nego što ih počnemo pregledavati?
05:11
And so we installed a real-time link
100
311121
2973
Instalirali smo vezu u realnom vremenu
05:14
between the ambulance and the hospital,
101
314118
2812
između kola hitne pomoći i bolnice
05:16
just using normal 3G telephony to send that data
102
316954
3752
koristeći samo normalnu 3G telefoniju za poslati te podatke
05:20
so that the ambulance became an extra bed
103
320730
2463
tako su kola hitne pomoći postala dodatni ležaj
05:23
in intensive care.
104
323217
3112
na intenzivnoj njezi.
05:26
And then we started looking at the data.
105
326353
3678
Počeli smo gledati u podatke.
05:30
So the wiggly lines at the top, all the colors,
106
330055
2897
valovite linije na vrhu, svih boja,
05:32
this is the normal sort of data you would see on a monitor --
107
332976
3170
ovo su normalne vrste podataka koje se vide na zaslonu --
05:36
heart rate, pulse, oxygen within the blood,
108
336170
3748
otkucaji srca, puls, kisik u krvi,
05:39
and respiration.
109
339942
2611
i disanje.
05:42
The lines on the bottom, the blue and the red,
110
342577
2729
Linije na dnu, plava i crvena,
05:45
these are the interesting ones.
111
345330
1477
vrlo su zanimljive.
05:46
The red line is showing an automated version
112
346831
3044
Crvena linija prikazuje automatiziranu verziju
05:49
of the early warning score
113
349899
1573
o ranom upozorenju
05:51
that Birmingham Children's Hospital were already running.
114
351496
2715
koje dječja bolnica Birmingham već vidi.
Oni to pokreću od 2008,
05:54
They'd been running that since 2008,
115
354235
2062
05:56
and already have stopped cardiac arrests
116
356321
2232
i već su zaustavili zastoje srca
05:58
and distress within the hospital.
117
358577
2733
i nevolje unutar bolnice.
06:01
The blue line is an indication
118
361334
2408
Plava linija pokazuje
06:03
of when patterns start to change,
119
363766
2476
kada se uzorak počinje mijenjati,
06:06
and immediately, before we even started
120
366266
2285
i trenutno, prije nego počne
06:08
putting in clinical interpretation,
121
368575
1684
klinička obrada,
06:10
we can see that the data is speaking to us.
122
370283
2846
možemo vidjeti što nam taj podatak govori.
06:13
It's telling us that something is going wrong.
123
373153
3512
Govori da nešto nije uredu.
06:16
The plot with the red and the green blobs,
124
376689
3792
grafički podaci s crvenom i zelenom mrljom,
06:20
this is plotting different components
125
380505
2781
to su grafički podaci različitih komponenti
06:23
of the data against each other.
126
383310
2523
od međusobnih podataka.
06:25
The green is us learning what is normal for that child.
127
385857
3816
Zelena nas uči što je normalno za to dijete.
06:29
We call it the cloud of normality.
128
389697
2586
To zovemo oblak normalnosti.
06:32
And when things start to change,
129
392307
2217
A kada se stvari počinju mijenjati,
06:34
when conditions start to deteriorate,
130
394548
2540
kada se uvijeti počinju mijenjati,
06:37
we move into the red line.
131
397112
2214
prelazimo u crvenu liniju.
06:39
There's no rocket science here.
132
399350
1633
Ovdje nema raketne tehnologije.
06:41
It is displaying data that exists already in a different way,
133
401007
4089
To prikazuje podatke koji već postoje u drugom obliku,
06:45
to amplify it, to provide cues to the doctors,
134
405120
3367
za pojačati ih, osigurati signale doktorima,
06:48
to the nurses, so they can see what's happening.
135
408511
2714
sestrama, kako bi vidjeli što se događa.
06:51
In the same way that a good racing driver
136
411249
3106
Na isti način dobar vozač automobilskih utrka
06:54
relies on cues to decide when to apply the brakes,
137
414379
4020
oslanja se na signale da odluči kada će početi kočiti,
06:58
when to turn into a corner,
138
418423
1452
kada će skrenuti u zavoj,
06:59
we need to help our physicians and our nurses
139
419899
2894
mi moramo pomoći svojim doktorima i sestrama
07:02
to see when things are starting to go wrong.
140
422817
3596
da vide kada stvari krenu u krivom smjeru.
07:06
So we have a very ambitious program.
141
426437
2922
Stoga imamo vrlo ambiciozan program.
07:09
We think that the race is on to do something differently.
142
429383
4712
Mislimo da je utrka mjesto gdje možemo učiniti nešto drukčije.
07:14
We are thinking big. It's the right thing to do.
143
434119
2880
Razmišljamo na veliko. To je ispravna stvar za učiniti.
07:17
We have an approach which, if it's successful,
144
437023
3388
Imamo pristup koji je uspješan,
07:20
there's no reason why it should stay within a hospital.
145
440435
2620
nema razloga zašto bi stajalo unutar bolnice.
Može se smjestiti iza zidova.
07:23
It can go beyond the walls.
146
443079
1704
07:24
With wireless connectivity these days,
147
444807
2047
Bežičnom vezom,
07:26
there is no reason why patients, doctors and nurses
148
446878
3420
nema razloga da su pacijenti, doktori i sestre
07:30
always have to be in the same place
149
450322
2147
uvijek na istom mjestu,
07:32
at the same time.
150
452493
1969
u isto vrijeme.
07:34
And meanwhile, we'll take our little three-month-old baby,
151
454486
3971
U međuvremenu, mi ćemo našu tri mjeseca staru bebu,
07:38
keep taking it to the track, keeping it safe,
152
458481
3733
nastaviti pratiti, čuvati sigurnom,
07:42
and making it faster and better.
153
462238
2309
i raditi da bude brže i bolje.
07:44
Thank you very much.
154
464571
1381
Hvala vam puno.
07:45
(Applause)
155
465976
4954
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7