Hans Rosling on HIV: New facts and stunning data visuals

251,897 views ใƒป 2009-05-13

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Bumbae Kim ๊ฒ€ํ† : Haisoo Shin
00:12
(Applause)
0
12160
5000
(๋ฐ•์ˆ˜)
00:18
AIDS was discovered 1981; the virus, 1983.
1
18160
5000
1981๋…„์—” AIDS๊ฐ€, 83๋…„์—” ๊ทธ ๋ฐ”์ด๋Ÿฌ์Šค๊ฐ€ ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
00:23
These Gapminder bubbles show you
2
23160
2000
์ด์ œ "๊ฐญ๋งˆ์ธ๋”"์˜ ์ž‘์€ ์›๋“ค์„ ํ†ตํ•ด ์—ฌ๋Ÿฌ๋ถ„๊ป˜
00:25
how the spread of the virus was in 1983 in the world,
3
25160
4000
1983๋…„ HIV๊ฐ€ ์ „์„ธ๊ณ„์— ์–ผ๋งˆ๋‚˜ ํผ์ ธ์žˆ์—ˆ๋Š”์ง€,
00:29
or how we estimate that it was.
4
29160
2000
์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ถ”์ •ํ–ˆ๋Š”์ง€ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
00:31
What we are showing here is --
5
31160
2000
์šฐ๋ฆฌ๊ฐ€ ์—ฌ๊ธฐ์„œ ๋ณด๋Š” ์ด๊ฒƒ,
00:33
on this axis here, I'm showing percent of infected adults.
6
33160
7000
์„ธ๋กœ์ถ•์€ HIV๊ฐ์—ผ์ž ๋น„์œจ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
00:40
And on this axis, I'm showing dollars per person in income.
7
40160
5000
์ด ๊ฐ€๋กœ์ถ•์€ 1์ธ๋‹น ํ‰๊ท ์ˆ˜์ž…์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
00:45
And the size of these bubbles, the size of the bubbles here,
8
45160
4000
๊ทธ๋ฆฌ๊ณ  ์ด ์ž‘์€ ์›๋“ค์˜ ํฌ๊ธฐ๋Š”
00:49
that shows how many are infected in each country,
9
49160
3000
๊ทธ ๋‚˜๋ผ์˜ HIV๊ฐ์—ผ์ž ์ˆ˜๋ฅผ ์˜๋ฏธํ•˜๊ณ ,
00:52
and the color is the continent.
10
52160
2000
์ƒ‰์ƒ์€ ๊ฐ ๋Œ€๋ฅ™์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
00:54
Now, you can see United States, in 1983,
11
54160
2000
์ด์ œ, 1983๋…„์˜ ๋ฏธ๊ตญ์„ ๋ณด๋„๋ก ํ•˜์ฃ .
00:56
had a very low percentage infected,
12
56160
3000
๋ฏธ๊ตญ์€ ๊ฐ์—ผ์ž ๋น„์œจ์€ ๋งค์šฐ ๋‚ฎ์ง€๋งŒ,
00:59
but due to the big population, still a sizable bubble.
13
59160
4000
์ธ๊ตฌ๊ฐ€ ๋งค์šฐ ๋งŽ๊ธฐ ๋•Œ๋ฌธ์—, ์›์˜ ํฌ๊ธฐ๋„ ์ƒ๋‹นํ•ฉ๋‹ˆ๋‹ค.
01:03
There were quite many people infected in the United States.
14
63160
3000
๊ฒฐ๊ณผ์ ์œผ๋กœ, ๋ฏธ๊ตญ๋‚ด์—๋Š” ์ƒ๋‹น์ˆ˜์˜ HIV๊ฐ์—ผ์ž๊ฐ€ ์กด์žฌํ–ˆ์Šต๋‹ˆ๋‹ค.
01:06
And, up there, you see Uganda.
15
66160
2000
๊ทธ๋Ÿผ ์ด์ œ ์ƒ๋‹จ์˜ ์šฐ๊ฐ„๋‹ค๋ฅผ ํ™•์ธํ•ด๋ณด์ฃ .
01:08
They had almost five percent infected,
16
68160
3000
์šฐ๊ฐ„๋‹ค๋Š” ์•„์ฃผ ์ž‘์€ ๋‚˜๋ผ์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ 
01:11
and quite a big bubble in spite of being a small country, then.
17
71160
3000
์ธ๊ตฌ์˜ 5%์ •๋„๊ฐ€ ๊ฐ์—ผ์ž๋กœ, ๋งค์šฐ ํฐ ์›์œผ๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค.
01:14
And they were probably the most infected country in the world.
18
74160
5000
์•„๋งˆ๋„ ์ „์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ๋งŽ์€ ๊ฐ์—ผ์ž๋ฅผ ๋ณด์œ ํ•œ ๋‚˜๋ผ์˜€์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:19
Now, what has happened?
19
79160
2000
์ดํ›„ ๋ฌด์Šจ ์ผ์ด ๋ฒŒ์–ด์กŒ์„๊นŒ์š”?
01:21
Now you have understood the graph
20
81160
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ๊ทธ๋ž˜ํ”„์˜ ์˜๋ฏธ๋ฅผ ์ดํ•ดํ•˜์…จ์œผ๋‹ˆ,
01:23
and now, in the next 60 seconds,
21
83160
3000
์šฐ๋ฆฌ๋Š”, ์•ž์œผ๋กœ 60์ดˆ๋™์•ˆ,
01:26
we will play the HIV epidemic in the world.
22
86160
3000
์ „์„ธ๊ณ„์— ๊ฑธ์นœ HIV์˜ ์ „์—ผ์„ฑ์„ ํ™•์ธํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:29
But first, I have a new invention here.
23
89160
3000
๊ทธ์ „์—, ๋ฐœ๋ช…ํ’ˆ ํ•˜๋‚˜๋ฅผ ๋จผ์ € ์†Œ๊ฐœํ•ด๋“œ๋ฆฌ์ฃ 
01:34
(Laughter)
24
94160
3000
(์›ƒ์Œ)
01:39
I have solidified the beam of the laser pointer.
25
99160
4000
์ œ๊ฐ€ ๋ ˆ์ด์ €ํฌ์ธํ„ฐ์˜ ๊ด‘์„ ์„ ์‘๊ฒฐ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.
01:43
(Laughter)
26
103160
3000
(์›ƒ์Œ)
01:46
(Applause)
27
106160
3000
(๋ฐ•์ˆ˜)
01:52
So, ready, steady, go!
28
112160
4000
๊ทธ๋Ÿผ, ์ค€๋น„, ์ฐจ๋ ท, ์ถœ๋ฐœ!
01:56
First, we have the fast rise in Uganda and Zimbabwe.
29
116160
4000
๋จผ์ €, ์šฐ๊ฐ„๋‹ค์™€ ์ง๋ฐ”๋ธŒ์›จ๊ฐ€ ๋น ๋ฅด๊ฒŒ ์˜ฌ๋ผ๊ฐ€๊ธฐ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
02:00
They went upwards like this.
30
120160
2000
์ด๋ ‡๊ฒŒ ์ƒ์Šนํ–ˆ์Šต๋‹ˆ๋‹ค.
02:02
In Asia, the first country to be heavily infected was Thailand --
31
122160
4000
์•„์‹œ์•„์—์„œ ๋†’์€ ๊ฐ์—ผ์ž ๋น„์œจ๋กœ ๋‘๊ฐ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์€ ํƒœ๊ตญ์ž…๋‹ˆ๋‹ค,
02:06
they reached one to two percent.
32
126160
2000
1% ์—์„œ 2% ์˜ ์ˆ˜์น˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
02:08
Then, Uganda started to turn back,
33
128160
2000
์ด์ œ ์šฐ๊ฐ„๋‹ค๊ฐ€ ๋„๋กœ ๋‚ด๋ ค๊ฐ€๊ธฐ ์‹œ์ž‘ํ–ˆ๊ณ ,
02:10
whereas Zimbabwe skyrocketed,
34
130160
2000
์ง๋ฐ”๋ธŒ์›จ๋Š” ์—ฌ์ „ํžˆ ์ˆ˜์ง ์ƒ์Šน์ค‘์ž…๋‹ˆ๋‹ค.
02:12
and some years later South Africa had a terrible rise of HIV frequency.
35
132160
4000
๋ช‡๋…„ํ›„ ๋‚จ์•„ํ”„๋ฆฌ์นด์˜ HIV๊ฐ์—ผ์œจ์ด ๊ทน๋‹จ์ ์œผ๋กœ ์˜ค๋ฆ…๋‹ˆ๋‹ค.
02:16
Look, India got many infected,
36
136160
2000
์ด์ชฝ ์ธ๋„๋Š” ๋งŽ์€ ๊ฐ์—ผ์ž์ˆ˜๋ฅผ ๋ณด์œ ํ–ˆ์ง€๋งŒ,
02:18
but had a low level.
37
138160
2000
์—ฌ์ „ํžˆ ๋‚ฎ์€ ๋น„์œจ์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค.
02:20
And almost the same happens here.
38
140160
2000
์ด์ชฝ์—์„œ๋„ ๋น„์Šทํ•œ ์ผ์ด ์ผ์–ด๋‚ฉ๋‹ˆ๋‹ค.
02:22
See, Uganda coming down, Zimbabwe coming down,
39
142160
3000
๋ณด์‹œ์ฃ . ์šฐ๊ฐ„๋‹ค๊ฐ€ ๋‚ด๋ ค์˜ค๊ณ , ์ง๋ฐ”๋ธŒ์›จ๋„ ๋‚ด๋ ค์˜ค๊ณ 
02:25
Russia went to one percent.
40
145160
2000
๋Ÿฌ์‹œ์•„๋„ 1% ์ •๋„๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
02:27
In the last two to three years,
41
147160
3000
์ง€๋‚œ 2 ~ 3๋…„ ๋™์•ˆ, ์šฐ๋ฆฌ๋Š”
02:30
we have reached a steady state of HIV epidemic in the world.
42
150160
4000
์ „์„ธ๊ณ„ HIV์˜ ์ ์—ผ์„ฑ์ด ์•ˆ์ •๊ธฐ์— ๋„๋‹ฌํ–ˆ์Šต๋‹ˆ๋‹ค.
02:34
25 years it took.
43
154160
3000
์—ฌ๊ธฐ๊นŒ์ง€ 25๋…„์ด ๊ฑธ๋ ธ์Šต๋‹ˆ๋‹ค.
02:37
But, steady state doesn't mean that things are getting better,
44
157160
3000
ํ•˜์ง€๋งŒ ์•ˆ์ •๊ธฐ๋ผ๊ณ  ํ•ด์„œ ์ ์ฐจ ๋‚˜์•„์ง„๋‹ค๋Š” ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค.
02:40
it's just that they have stopped getting worse.
45
160160
3000
๋‹จ์ง€ ๋” ๋‚˜๋น ์ง€์ง€ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
02:43
And it has -- the steady state is, more or less,
46
163160
4000
๊ทธ๋ฆฌ๊ณ  ์ง€๊ธˆ ์ด ์•ˆ์ •๊ธฐ์—์„œ๋Š” ์ „์„ธ๊ณ„
02:47
one percent of the adult world population is HIV-infected.
47
167160
4000
์„ฑ์ธ ์ธ๊ตฌ ๊ฐ€์šด๋ฐ ์•ฝ 1% ์ •๋„๊ฐ€ HIV๊ฐ์—ผ์ž์ž…๋‹ˆ๋‹ค.
02:51
It means 30 to 40 million people,
48
171160
3000
๋‹ค์‹œ ๋งํ•ด 3~4์ฒœ๋งŒ ๋ช…์ด HIV๊ฐ์—ผ์ž์ด๋ฉฐ,
02:54
the whole of California -- every person,
49
174160
2000
์ด๋Š” ์บ˜๋ฆฌํฌ๋‹ˆ์•„ ์ „์ฒด ์ธ๊ตฌ์™€ ๋งž๋จน๋Š” ์ˆ˜์น˜์ž…๋‹ˆ๋‹ค.
02:56
that's more or less what we have today in the world.
50
176160
2000
์ด๊ฒƒ์ด ์˜ค๋Š˜ ๋‚  ์šฐ๋ฆฌ์˜ ๋ชจ์Šต์ž…๋‹ˆ๋‹ค.
02:58
Now, let me make a fast replay of Botswana.
51
178160
5000
๊ทธ๋Ÿผ, ๋ณด์ธ ์™€๋‚˜๋ฅผ ๋น ๋ฅด๊ฒŒ ๋‹ค์‹œ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
03:03
Botswana -- upper middle-income country in southern Africa,
52
183160
4000
๋ณด์ธ ์™€๋‚˜๋Š” ๋‚จ์•„ํ”„๋ฆฌ์นด์˜ ์ค‘์ƒ์œ„์†Œ๋“๊ตญ์œผ๋กœ,
03:07
democratic government, good economy,
53
187160
3000
๋ฏผ์ฃผ ์ •๋ถ€์™€ ์ข‹์€ ๊ฒฝ์ œ์‹œ์Šคํ…œ์„ ์ง€๋…”์Šต๋‹ˆ๋‹ค.
03:10
and this is what happened there.
54
190160
2000
์ด๊ฒƒ์ด ์ด๊ณณ์—์„œ ๋ฐœ์ƒ๋œ ์ผ์ž…๋‹ˆ๋‹ค.
03:12
They started low, they skyrocketed,
55
192160
2000
๋‚ฎ์€ ์œ„์น˜์—์„œ ์‹œ์ž‘ํ•ด ๊ธ‰์ƒ์Šนํ•˜๋‹ค๊ฐ€,
03:14
they peaked up there in 2003,
56
194160
3000
2003๋…„์— ์ •์ ์„ ์ฐ๊ณ 
03:17
and now they are down.
57
197160
2000
ํ˜„์žฌ ๋‚ด๋ ค์˜ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:19
But they are falling only slowly,
58
199160
2000
๊ทธ๋Ÿฌ๋‚˜ ์•„์ฃผ ์ฒœ์ฒœํžˆ ๋‚ด๋ ค์˜ต๋‹ˆ๋‹ค.
03:21
because in Botswana, with good economy and governance,
59
201160
2000
ํ›Œ๋ฅญํ•œ ๊ฒฝ์ œ์‹œ์Šคํ…œ๊ณผ ์ •๋ถ€๋ฅผ ์ง€๋‹Œ ๋ณด์ธ ์™€๋‚˜๋Š”
03:23
they can manage to treat people.
60
203160
3000
HIV ํ™˜์ž๋ฅผ ์น˜๋ฃŒํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
03:26
And if people who are infected are treated, they don't die of AIDS.
61
206160
3000
์ œ๋Œ€๋กœ ์น˜๋ฃŒ๋ฅผ ๋ฐ›๋Š”๋‹ค๋ฉด, AIDS๋กœ ์ฃฝ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
03:29
These percentages won't come down
62
209160
3000
๋ณด์ธ ์™€๋‚˜์˜ HIV๊ฐ์—ผ์ž๋“ค์€ ์•ž์œผ๋กœ๋„ 10~20๋…„์€
03:32
because people can survive 10 to 20 years.
63
212160
2000
๋” ์‚ด ๊ฒƒ์ด๊ธฐ์— ๊ฐ์—ผ์œจ์€ ๋‚ฎ์•„์ง€์ง€ ์•Š์„๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:34
So there's some problem with these metrics now.
64
214160
3000
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ด ํ†ต๊ณ„์—๋Š” ๋ฌธ์ œ๊ฐ€ ์ข€ ์žˆ์Šต๋‹ˆ๋‹ค.
03:37
But the poorer countries in Africa, the low-income countries down here,
65
217160
4000
๋ณด์ธ ์™€๋‚˜์•„ ๋‹ฌ๋ฆฌ, ์—ฌ๊ธฐ ๊ฐ€๋‚œํ•œ ์•„ํ”„๋ฆฌ์นด ๊ตญ๊ฐ€๋“ค์€
03:41
there the rates fall faster, of the percentage infected,
66
221160
6000
HIV๊ฐ์—ผ์ž ๋น„์œจ์ด ๊ธ‰๊ฒฉํžˆ ๋–จ์–ด์ง‘๋‹ˆ๋‹ค.
03:47
because people still die.
67
227160
2000
์—ฌ์ „ํžˆ HIV๊ฐ์—ผ์ž๋“ค์ด ์ฃฝ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
03:49
In spite of PEPFAR, the generous PEPFAR,
68
229160
3000
ํ›Œ๋ฅญํ•œ PEPFAR์˜ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ ,
03:52
all people are not reached by treatment,
69
232160
3000
๋ชจ๋“  ์‚ฌ๋žŒ๋“ค์ด ์น˜๋ฃŒ๋ฅผ ๋ฐ›์ง€๋Š” ๋ชปํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:55
and of those who are reached by treatment in the poor countries,
70
235160
2000
๊ฐ€๋‚œํ•œ ๊ตญ๊ฐ€์—์„œ ์น˜๋ฃŒ๋ฅผ ๋ฐ›๊ณ  ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค๋„
03:57
only 60 percent are left on treatment after two years.
71
237160
3000
2๋…„ ํ›„์—” ๊ฒจ์šฐ 60%๋งŒ์ด ์น˜๋ฃŒ๋ฅผ ๊ณ„์† ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:00
It's not realistic with lifelong treatment
72
240160
4000
์ตœ๋นˆ๊ตญ์˜ ๋ชจ๋“  ๊ตญ๋ฏผ๋“ค์—๊ฒŒ ํ‰์ƒ๋™์•ˆ ์น˜๋ฃŒ๋ฅผ
04:04
for everyone in the poorest countries.
73
244160
2000
์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ๋น„ํ˜„์‹ค์ ์ด๊ธด ํ•˜์ง€๋งŒ,
04:06
But it's very good that what is done is being done.
74
246160
3000
๊ทธ๋ž˜๋„ ์น˜๋ฃŒ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹จ๊ฑด ๋งค์šฐ ์ข‹์€ ์ผ์ž…๋‹ˆ๋‹ค.
04:09
But focus now is back on prevention.
75
249160
4000
ํ•˜์ง€๋งŒ ์ด์ œ ๊ด€์‹ฌ์‚ฌ๋Š” ์˜ˆ๋ฐฉ์œผ๋กœ ๋Œ์•„์„ฐ์Šต๋‹ˆ๋‹ค.
04:13
It is only by stopping the transmission
76
253160
3000
๋ฒ”์„ธ๊ณ„์  HIV ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”
04:16
that the world will be able to deal with it.
77
256160
3000
๋” ์ด์ƒ์˜ ์ „์—ผ์„ ๋ง‰๋Š” ๊ฒƒ์ด ์œ ์ผํ•œ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
04:19
Drugs is too costly -- had we had the vaccine,
78
259160
2000
์•ฝ์€ ๊ฐ€๊ฒฉ์ด ๋„ˆ๋ฌด ๋น„์Œ‰๋‹ˆ๋‹ค. ๋ฐฑ์‹ ์ด ์žˆ๋”๋ผ๋„,
04:21
or when we will get the vaccine, that's something more effective --
79
261160
3000
์•ž์œผ๋กœ ์ข€ ๋” ํšจ๊ณผ์ ์ธ ๋ฐฑ์‹ ์ด ๋‚˜์˜ค๋”๋ผ๋„,
04:24
but the drugs are very costly for the poor.
80
264160
2000
๋นˆ๋ฏผ์ธต์—๊ฒ ๋„ˆ๋ฌด ๋น„์Œ‰๋‹ˆ๋‹ค.
04:26
Not the drug in itself, but the treatment
81
266160
2000
์•ฝ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ™˜์ž์—๊ฒŒ ํ•„์š”ํ•œ ์น˜๋ฃŒ์™€
04:28
and the care which is needed around it.
82
268160
2000
๋ณด์‚ดํ•Œ๊นŒ์ง€ ์ œ๊ณตํ•˜๊ธฐ์—” ๋„ˆ๋ฌด ๋น„์Œ‰๋‹ˆ๋‹ค.
04:32
So, when we look at the pattern,
83
272160
3000
์šฐ๋ฆฌ๊ฐ€ ์ด๋Ÿฐ ํŒจํ„ด์„ ๋ดค์„๋•Œ,
04:35
one thing comes out very clearly:
84
275160
2000
๋‹ค์Œ ํ•œ๊ฐ€์ง€๊ฐ€ ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚ฉ๋‹ˆ๋‹ค.
04:37
you see the blue bubbles
85
277160
2000
์‚ฌ๋žŒ๋“ค์€ ์ € ํŒŒ๋ž€ ์›๋“ค์„ ๋ณด๊ณ 
04:39
and people say HIV is very high in Africa.
86
279160
2000
์•„ํ”„๋ฆฌ์นด์˜ HIV๋น„์œจ์ด ๋งค์šฐ ๋†’๋‹ค๊ณ  ๋งํ•œ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
04:41
I would say, HIV is very different in Africa.
87
281160
3000
ํ•˜์ง€๋งŒ ์ €๋Š” ์•„ํ”„๋ฆฌ์นด์˜ HIV๊ฐ€ ์•„์ฃผ ๋‹ค๋ฅด๋‹ค๊ณ  ๋งํ•ฉ๋‹ˆ๋‹ค.
04:44
You'll find the highest HIV rate in the world
88
284160
4000
์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ๊ฐ€์žฅ ๋†’์€ HIV๊ฐ์—ผ์ž ๋ณด์œ ๊ตญ๋“ค์„
04:48
in African countries,
89
288160
2000
์•„ํ”„๋ฆฌ์นด์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๊ฒ ์ง€๋งŒ,
04:50
and yet you'll find Senegal, down here --
90
290160
2000
์„ธ๋„ค๊ฐˆ์€ ์ด ์•„๋ž˜์— ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
04:52
the same rate as United States.
91
292160
2000
๋ฏธ๊ตญ๊ณผ ๋™์ผํ•œ ๊ฐ์—ผ์œจ์ž…๋‹ˆ๋‹ค.
04:54
And you'll find Madagascar,
92
294160
2000
๊ทธ๋ฆฌ๊ณ  ๋งˆ๋‹ค๊ฐ€์Šค์นด๋ฅผ ๋น„๋กฏํ•ด,
04:56
and you'll find a lot of African countries
93
296160
2000
์ˆ˜๋งŽ์€ ์•„ํ”„๋ฆฌ์นด ๋‚˜๋ผ๋“ค์„ ๋‹ค๋ฅธ ์„ธ๊ณ„๋“ค๊ณผ ์œ ์‚ฌํ•œ
04:58
about as low as the rest of the world.
94
298160
3000
๋งค์šฐ ๋‚ฎ์€ ์œ„์น˜์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:01
It's this terrible simplification that there's one Africa
95
301160
4000
์•„ํ”„๋ฆฌ์นด๋ฅผ ํ•˜๋‚˜๋กœ ์ƒ๊ฐํ•˜๊ณ  ๋ชจ๋“  ์•„ํ”„๋ฆฌ์นด ์ƒํ™ฉ์ด
05:05
and things go on in one way in Africa.
96
305160
2000
๋˜‘๊ฐ™๋‹ค๊ณ  ์—ฌ๊ธฐ๋Š” ๊ฒƒ์€ ์‹ฌ๊ฐํ•œ ์ผ๋ฐ˜ํ™” ์˜ค๋ฅ˜์ž…๋‹ˆ๋‹ค.
05:07
We have to stop that.
97
307160
2000
์šฐ๋ฆฌ๋Š” ์ด๋ ‡๊ฒŒ ์ƒ๊ฐํ•ด์„œ๋Š” ์•ˆ๋ฉ๋‹ˆ๋‹ค.
05:09
It's not respectful, and it's not very clever
98
309160
3000
์ด๋Ÿฐ ์‚ฌ๊ณ ๋Š” ๊ทธ๋“ค์„ ์กด์ค‘ํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์ด๋ฉฐ,
05:12
to think that way.
99
312160
2000
ํ˜„๋ช…ํ•˜์ง€ ๋ชปํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:14
(Applause)
100
314160
4000
(๋ฐ•์ˆ˜)
05:18
I had the fortune to live and work for a time in the United States.
101
318160
3000
์ €๋Š” ๋ฏธ๊ตญ์—์„œ ์‚ด์•˜๋˜ ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
05:21
I found out that Salt Lake City and San Francisco were different.
102
321160
4000
์†”ํŠธ๋ ˆ์ดํฌ์‹œํ‹ฐ์™€ ์ƒŒํ”„๋ž€์‹œ์Šค์ฝ”๊ฐ€ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•˜์Šต๋‹ˆ๋‹ค.
05:25
(Laughter)
103
325160
2000
(์›ƒ์Œ)
05:27
And so it is in Africa -- it's a lot of difference.
104
327160
3000
์•„ํ”„๋ฆฌ์นด๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค. ๋งŽ์€ ๊ฒƒ์ด ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
05:30
So, why is it so high? Is it war?
105
330160
2000
๊ทธ๋Ÿผ ๊ฐ์—ผ์œจ์ด ์™œ ๋†’์„๊นŒ์š”? ์ „์Ÿ๋•Œ๋ฌธ์ผ๊นŒ์š”?
05:32
No, it's not. Look here.
106
332160
2000
์•„๋‹™๋‹ˆ๋‹ค. ์—ฌ๊ธฐ๋ฅผ ๋ณด์‹œ์ฃ .
05:34
War-torn Congo is down there -- two, three, four percent.
107
334160
3000
์ „์Ÿํํ—ˆ์ธ ์ฝฉ๊ณ ๋Š” ์ด ์•„๋ž˜ 2~4%์— ์žˆ์Šต๋‹ˆ๋‹ค.
05:37
And this is peaceful Zambia, neighboring country -- 15 percent.
108
337160
4000
๊ทธ๋ฆฌ๊ณ  ํ‰ํ™”๋กœ์šด ์ด์›ƒ๋‚˜๋ผ ์ž ๋น„์•„๋Š” 15% ๊ทผ๋ฐฉ์ž…๋‹ˆ๋‹ค.
05:41
And there's good studies of the refugees coming out of Congo --
109
341160
3000
์ฝฉ๊ณ ์—์„œ ํƒˆ์ถœํ•œ ํ”ผ๋‚œ๋ฏผ๋“ค์— ๋Œ€ํ•œ ์ข‹์€ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
05:44
they have two, three percent infected,
110
344160
2000
๊ฐ์—ผ์œจ์€ 2~3%์ •๋„์˜€๊ณ ,
05:46
and peaceful Zambia -- much higher.
111
346160
2000
ํ‰ํ™”๋กœ์šด ์ž ๋น„์•„๋Š” ํ›จ์”ฌ ๋†’์Šต๋‹ˆ๋‹ค.
05:48
There are now studies clearly showing
112
348160
2000
์ตœ๊ทผ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด
05:50
that the wars are terrible, that rapes are terrible,
113
350160
3000
์ „์Ÿ๊ณผ ๊ฐ•๊ฐ„์€ ๋น„๋ก ๋”์ฐํ•œ ์ผ์ด์ง€๋งŒ
05:53
but this is not the driving force for the high levels in Africa.
114
353160
3000
๋†’์€ HIV๋น„์œจ์„ ์•ผ๊ธฐ์‹œํ‚ค๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋ž€๊ฑธ ์•Œ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:56
So, is it poverty?
115
356160
2000
๊ทธ๋Ÿผ, ๊ฐ€๋‚œ๋•Œ๋ฌธ์ธ๊ฐ€์š”?
05:58
Well if you look at the macro level,
116
358160
2000
์•„๋งˆ๋„ ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ๊ฑฐ์‹œ์ ์œผ๋กœ๋งŒ ๋ณธ๋‹ค๋ฉด,
06:00
it seems more money, more HIV.
117
360160
2000
์ˆ˜์ž…์ด ๋†’์„์ˆ˜๋ก HIV๊ฐ์—ผ์œจ์ด ๋†’์•„ ๋ณด์ผ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
06:02
But that's very simplistic,
118
362160
3000
๊ทธ๋Ÿฌ๋‚˜ ๊ทธ๊ฑด ์ง€๋‚˜์นœ ๋‹จ์ˆœํ™”์ž…๋‹ˆ๋‹ค.
06:05
so let's go down and look at Tanzania.
119
365160
2000
์•„๋ž˜ ํƒ„์ž๋‹ˆ์•„๋กœ ๋‚ด๋ ค์™€ ๋ณด๋„๋ก ํ•˜์ฃ .
06:07
I will split Tanzania in five income groups,
120
367160
4000
ํƒ„์ž๋‹ˆ์•„๋ฅผ ํ‰๊ท  ์ˆ˜์ž…์— ๋”ฐ๋ผ
06:11
from the highest income to the lowest income,
121
371160
2000
5๊ฐœ์˜ ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
06:13
and here we go.
122
373160
2000
ํ™•์ธํ•ด๋ณด์‹œ์ฃ .
06:15
The ones with the highest income, the better off -- I wouldn't say rich --
123
375160
3000
๋ถ€์ž๋ผ๊ณ ๋Š” ํ•  ์ˆ˜ ์—†๊ฒ ์ง€๋งŒ, ์ˆ˜์ž…์ด ๋†’์„ ์ˆ˜๋ก
06:18
they have higher HIV.
124
378160
2000
HIV ๊ฐ์—ผ์œจ๋„ ๋†’์Šต๋‹ˆ๋‹ค.
06:20
The difference goes from 11 percent down to four percent,
125
380160
3000
11%๋ถ€ํ„ฐ 4%๊นŒ์ง€ ํฐ ์ฐจ์ด๋ฅผ ๋ณด์ด๊ณ  ์žˆ์œผ๋ฉฐ,
06:23
and it is even bigger among women.
126
383160
2000
์ด ์ฐจ์ด๋Š” ์—ฌ์„ฑ ์‚ฌ์ด์—์„œ ๋” ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
06:25
There's a lot of things that we thought, that now, good research,
127
385160
4000
์ด ๊ฒฐ๊ณผ๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ–ˆ๋˜ ๊ฒƒ๋“ค์€,
06:29
done by African institutions and researchers
128
389160
3000
์•„ํ”„๋ฆฌ์นด ๊ธฐ๊ด€๊ณผ ๊ตญ๋‚ด์™ธ ์—ฐ๊ตฌ์ž๋“ค์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๊ฐ€
06:32
together with the international researchers, show that that's not the case.
129
392160
3000
์ž˜๋ชป๋œ ์ƒ๊ฐ์ด๋ผ๋Š” ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:35
So, this is the difference within Tanzania.
130
395160
2000
์ด๊ฒƒ์ด ํƒ„์ž๋‹ˆ์•„ ๋‚ด์—์„œ์˜ ์ฐจ์ด์ž…๋‹ˆ๋‹ค.
06:37
And, I can't avoid showing Kenya.
131
397160
2000
์ผ€๋ƒ๋ฅผ ๋ณด์—ฌ๋“œ๋ฆฌ์ง€ ์•Š์„ ์ˆ˜๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
06:39
Look here at Kenya.
132
399160
2000
์ผ€๋ƒ๋ฅผ ํ•œ๋ฒˆ ๋ณด์‹œ์ฃ .
06:41
I've split Kenya in its provinces.
133
401160
2000
์ผ€๋ƒ๋Š” ๊ฐ ์ง€์—ญ์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:43
Here it goes.
134
403160
2000
๋ณด์‹œ์ฃ .
06:45
See the difference within one African country --
135
405160
3000
ํ•œ ์•„ํ”„๋ฆฌ์นด ๋‚˜๋ผ ๋‚ด์—์„œ๋„ ์•„์ฃผ ๋‚ฎ์€ ๋น„์œจ์—์„œ
06:48
it goes from very low level to very high level,
136
408160
3000
๋งค์šฐ ๋†’์€ ๋น„์œจ๊นŒ์ง€ ์ฐจ์ด๊ฐ€ ๋‚˜๋Š” ๊ฒƒ์„ ๋ณด์„ธ์š”.
06:51
and most of the provinces in Kenya is quite modest.
137
411160
3000
๋˜ ๋Œ€๋‹ค์ˆ˜์˜ ์ผ€๋ƒ ์ง€์—ญ์€ ๊ฝค ๊ดœ์ฐฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
06:54
So, what is it then?
138
414160
2000
๊ทธ๋Ÿผ ๋ฌด์—‡๋•Œ๋ฌธ์ผ๊นŒ์š”?
06:56
Why do we see this extremely high levels in some countries?
139
416160
4000
์™œ ๋ช‡๋ช‡ ๋‚˜๋ผ์—์„œ ๊ทน๋‹จ์ ์œผ๋กœ ๋†’์€ ๋น„์œจ์ด ๋‚˜ํƒ€๋‚ ๊นŒ์š”?
07:00
Well, it is more common with multiple partners,
140
420160
3000
๋‹ค์ˆ˜์˜ ํŒŒํŠธ๋„ˆ์™€ ๊ด€๊ณ„๋ฅผ ๋งบ๊ฑฐ๋‚˜
07:03
there is less condom use,
141
423160
3000
์ฝ˜๋” ํ•„์š”์„ฑ์— ๋Œ€ํ•œ ์ธ์ง€๊ฐ€ ๋–จ์–ด์ง€๊ฑฐ๋‚˜,
07:06
and there is age-disparate sex --
142
426160
3000
๋‚˜์ด์ฐจ๊ฐ€ ๋งŽ์ด ๋‚˜๋Š”
07:09
that is, older men tend to have sex with younger women.
143
429160
3000
์ฆ‰ ์–ด๋ฆฐ ์—ฌ์„ฑ์„ ์„ ํ˜ธํ•˜๋Š” ํ˜„์ƒ์ด ๋ณดํŽธํ™”๋˜์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
07:12
We see higher rates in younger women than younger men
144
432160
3000
๊ฐ์—ผ์œจ์ด ๋†’์€ ๋‚˜๋ผ์—์„œ, ์ Š์€ ๋‚จ์„ฑ๋ณด๋‹ค ์ Š์€ ์—ฌ์„ฑ๋“ค์ด
07:15
in many of these highly affected countries.
145
435160
2000
๋†’์€ ๊ฐ์—ผ์œจ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:17
But where are they situated?
146
437160
2000
๊ทธ๋Ÿผ ๊ทธ๋“ค์€ ์–ด๋””์— ์žˆ์„๊นŒ์š”?
07:19
I will swap the bubbles to a map.
147
439160
2000
์ด ์›๋“ค์„ ์ง€๋„์— ์˜ฎ๊ฒจ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
07:21
Look, the highly infected are four percent of all population
148
441160
4000
๋†’์€ ๊ฐ์—ผ์œจ์„ ์ง€๋‹Œ ๊ตญ๊ฐ€๋Š” ์ „์ฒด ์ธ๊ตฌ์˜ 4%๊ฐ€ ๊ฐ์—ผ์ž์ด๊ณ 
07:25
and they hold 50 percent of the HIV-infected.
149
445160
3000
์ „์„ธ๊ณ„ HIV๊ฐ์—ผ์ž์˜ 50%๊ฐ€ ์ด๋“ค ๊ตญ๊ฐ€์— ์žˆ์Šต๋‹ˆ๋‹ค.
07:28
HIV exists all over the world.
150
448160
3000
HIV๋Š” ์ „์„ธ๊ณ„์— ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
07:31
Look, you have bubbles all over the world here.
151
451160
2000
๋ณด์‹œ๋Š”๋ฐ”์™€ ๊ฐ™์ด, ์ „์„ธ๊ณ„์— ๊ฑธ์ณ ๊ฐ ์›์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
07:33
Brazil has many HIV-infected.
152
453160
3000
๋ธŒ๋ผ์งˆ์—๋„ ๋งŽ์€ HIV๊ฐ์—ผ์ž๊ฐ€ ์žˆ๊ณ ,
07:36
Arab countries not so much, but Iran is quite high.
153
456160
3000
๋‹ค์ˆ˜์˜ ์•„๋ž ๊ตญ๊ฐ€๋“ค์€ ์•„๋‹ˆ์ง€๋งŒ, ์ด๋ž€์€ ๊ฝค ๋†’์Šต๋‹ˆ๋‹ค.
07:39
They have heroin addiction and also prostitution in Iran.
154
459160
4000
์ด๋ž€์—๋Š” ํ—ค๋กœ์ธ ์ค‘๋…๊ณผ ๋งค์ถ˜๋„ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
07:43
India has many because they are many.
155
463160
2000
์ธ๋„ ์—ญ์‹œ ์ธ๊ตฌ๊ฐ€ ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ์—ผ์ž๋„ ๋งŽ์Šต๋‹ˆ๋‹ค.
07:45
Southeast Asia, and so on.
156
465160
2000
๋™๋‚จ์•„์‹œ์•„ ๋“ฑ์—๋„ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
07:47
But, there is one part of Africa --
157
467160
2000
ํ•˜์ง€๋งŒ ์•„ํ”„๋ฆฌ์นด์˜ ํ•œ ๋ถ€๋ถ„์ด ์žˆ์Šต๋‹ˆ๋‹ค.
07:49
and the difficult thing is, at the same time,
158
469160
2000
์–ด๋ ค์šด ์ ์€ ์šฐ๋ฆฌ๊ฐ€ ํ•œํŽธ์œผ๋กœ๋Š”
07:51
not to make a uniform statement about Africa,
159
471160
4000
์•„ํ”„๋ฆฌ์นด ์ „์ฒด๋ฅผ ์ผ๋ฐ˜ํ™”ํ•ด์„œ๋Š” ์•ˆ๋˜๋ฉฐ,
07:55
not to come to simple ideas of why it is like this, on one hand.
160
475160
4000
์ด ํ˜„์ƒ์˜ ์›์ธ์„ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ƒ๊ฐํ•ด์„œ๋Š” ์•ˆ๋˜์ง€๋งŒ,
07:59
On the other hand, try to say that this is not the case,
161
479160
3000
๋™์‹œ์— ์ด ๊ฒƒ์ด ์‹ฌ๊ฐํ•œ ์ƒํ™ฉ์ด๋ž€ ๊ฒƒ์„ ์ธ์ •ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:02
because there is a scientific consensus about this pattern now.
162
482160
4000
์ด ํŒจํ„ด์— ๋Œ€ํ•ด์„  ๊ณผํ•™์ ์œผ๋กœ ์ผ์น˜๋œ ์˜๊ฒฌ์ด ์žˆ์œผ๋‹ˆ๊นŒ์š”.
08:06
UNAIDS have done good data available, finally,
163
486160
3000
๋งˆ์นจ๋‚ด UNAIDS๋Š” HIV ํ™•์‚ฐ์— ๋Œ€ํ•œ
08:09
about the spread of HIV.
164
489160
3000
์–‘์งˆ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ณต๊ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
08:12
It could be concurrency.
165
492160
3000
๋‹จ๊ธฐ๊ฐ„์— ๋งŽ์€ ์‚ฌ๋žŒ๊ณผ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๋Š” "๋™์‹œ์„ฑ" ๋•Œ๋ฌธ์ผ ์ˆ˜๋„ ์žˆ๊ณ 
08:15
It could be some virus types.
166
495160
3000
๋ฐ”์ด๋Ÿฌ์Šค์˜ ํŠน์ •ํ•œ ํ˜•ํƒœ ๋•Œ๋ฌธ์ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
08:18
It could be that there is other things
167
498160
4000
์ „์—ผ์ด ๋” ์ž˜๋˜๊ฒŒ ๋งŒ๋“œ๋Š”
08:22
which makes transmission occur in a higher frequency.
168
502160
3000
๋˜ ๋‹ค๋ฅธ ์ด์œ ๊ฐ€ ์žˆ์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
08:25
After all, if you are completely healthy and you have heterosexual sex,
169
505160
3000
์–ด์จŒ๋“ , ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ๊ฑด๊ฐ•ํ•˜๊ณ  ์ด์„ฑ์• ์ž๋ผ๋ฉด
08:28
the risk of infection in one intercourse is one in 1,000.
170
508160
5000
ํ•œ๋ฒˆ ๊ด€๊ณ„๋กœ ๊ฐ์—ผ๋  ํ™•๋ฅ ์€ ์ฒœ ๋ถ„์˜ ์ผ์ž…๋‹ˆ๋‹ค.
08:33
Don't jump to conclusions now on how to
171
513160
2000
๋„ˆ๋ฌด ์†๋‹จํ•˜์ง€ ๋งˆ์‹ญ์‹œ์˜ค.
08:35
behave tonight and so on.
172
515160
2000
์˜ค๋Š˜ ๋ฐค ํ–‰์‹ค์„ ์กฐ์‹ฌํ•˜์‹œ๊ณ ์š”.
08:37
(Laughter)
173
517160
2000
(์›ƒ์Œ)
08:39
But -- and if you are in an unfavorable situation,
174
519160
3000
ํ•˜์ง€๋งŒ, ์—ฌ๋Ÿฌ๋ถ„๋“ค์˜ ์ƒํ™ฉ์— ๋”ฐ๋ผ
08:42
more sexually transmitted diseases, it can be one in 100.
175
522160
3000
์„ฑ๋ณ‘์— ๊ฐ์—ผ๋  ํ™•๋ฅ ์ด ๋ฐฑ ๋ถ„์˜ ์ผ์ด ๋  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
08:45
But what we think is that it could be concurrency.
176
525160
3000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ๋™์‹œ์„ฑ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
08:48
And what is concurrency?
177
528160
2000
๋™์‹œ์„ฑ์ด ๋ฌด์—‡์ธ๊นŒ์š”?
08:50
In Sweden, we have no concurrency.
178
530160
2000
์Šค์›จ๋ด์—๋Š” ๋™์‹œ์„ฑ์ด ์—†์Šต๋‹ˆ๋‹ค.
08:52
We have serial monogamy.
179
532160
2000
์šฐ๋ฆฌ๋Š” ์—ฐ์‡„์  ์ผ๋ถ€์ผ์ฒ˜์ œ์ด๊ฑฐ๋“ ์š”.
08:54
Vodka, New Year's Eve -- new partner for the spring.
180
534160
2000
์ƒˆํ•ด ์ „๋‚  ๋ณด๋“œ์นดํ•œ์ž”, ๊ทธ๋ฆฌ๊ณ  ๋ด„์„ ์œ„ํ•œ ์ƒˆ ํŒŒํŠธ๋„ˆ.
08:56
Vodka, Midsummer's Eve -- new partner for the fall.
181
536160
2000
ํ•œ ์—ฌ๋ฆ„๋ฐค์˜ ๋ณด๋“œ์นด ํ•œ์ž”, ๊ฐ€์„์„ ์œ„ํ•œ ์ƒˆ ํŒŒํŠธ๋„ˆ.
08:58
Vodka -- and it goes on like this, you know?
182
538160
2000
๋ณด๋“œ์นด ํ•œ์ž”, ๊ณ„์† ์ด๋ ‡๊ฒŒ ๊ฐ€๋Š”๊ฑฐ์ฃ .
09:00
And you collect a big number of exes.
183
540160
3000
๊ทธ๋ ‡๊ฒŒ ์—ฌ๋Ÿฌ๋ถ„๋“ค์—๊ฒŒ๋Š” ํ˜๋Ÿฌ๊ฐ„ ์˜› ์• ์ธ๋“ค์ด ๋„˜์นฉ๋‹ˆ๋‹ค.
09:03
And we have a terrible chlamydia epidemic --
184
543160
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๋ช‡ ๋…„ ๋™์•ˆ ๋ชธ ์†์— ๋จธ๋ฌด๋Š”
09:05
terrible chlamydia epidemic which sticks around for many years.
185
545160
4000
์‹ฌ๊ฐํ•œ ์„ฑ๋ณ‘์ธ ํด๋ผ๋ฏธ๋””์•„์— ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค.
09:09
HIV has a peak three to six weeks after infection
186
549160
3000
HIV๋Š” ๊ฐ์—ผํ›„ 3~6์ฃผ ํ›„ ๊ฐ€์žฅ ์™•์„ฑํ•œ ํ™œ๋™์„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์—
09:12
and therefore, having more than one partner in the same month
187
552160
3000
ํ•œ ๋‹ฌ ์ด๋‚ด์— ์—ฌ๋Ÿฌ ํŒŒํŠธ๋„ˆ์™€ ๊ด€๊ณ„๋ฅผ ๋งบ๋Š” ๊ฒƒ์€
09:15
is much more dangerous for HIV than others.
188
555160
3000
๋‹ค๋ฅธ ์ „์—ผ๋ณ‘์— ๋น„ํ•ด HIV๊ฐ€ ์ „์—ผ๋˜๊ธฐ ํ›จ์”ฌ ์ข‹์Šต๋‹ˆ๋‹ค.
09:18
Probably, it's a combination of this.
189
558160
2000
์•„๋งˆ๋„, ์ด๋Ÿฐ ๊ฒƒ๋“ค์ด ์กฐํ•ฉ๋œ ๊ฒฐ๊ณผ์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:20
And what makes me so happy is that we are moving now
190
560160
3000
์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์ด ์ฐจํŠธ๋ฅผ ๋ณด๊ณ  ์‚ฌ์‹ค์„ ํ–ฅํ•ด
09:23
towards fact when we look at this.
191
563160
2000
ํ•œ๋ฐœ ๋‚˜์•„๊ฐˆ ๊ฒƒ์ด๊ธฐ์— ๊ธฐ์ฉ๋‹ˆ๋‹ค.
09:25
You can get this chart, free.
192
565160
2000
์ด ์ฐจํŠธ๋Š” ๋ฌด๋ฃŒ๋กœ ์ด์šฉํ•  ์ˆ˜ ์žˆ๊ณ ,
09:27
We have uploaded UNAIDS data on the Gapminder site.
193
567160
3000
Gapmider.org์— UNAIDS ๋ฐ์ดํ„ฐ๋ฅผ ์—…๋กœ๋“œํ•ด ๋†“์•˜์Šต๋‹ˆ๋‹ค.
09:30
And we hope that when we act on global problems in the future
194
570160
4000
๊ทธ๋ฆฌ๊ณ  ์•ž์œผ๋กœ ์šฐ๋ฆฌ๊ฐ€ ๋ฒ”์„ธ๊ณ„์ ์ธ ๋ฌธ์ œ์— ์ง๋ฉดํ–ˆ์„๋•Œ๋Š”
09:34
we will not only have the heart,
195
574160
3000
์šฐ๋ฆฌ์˜ ๋”ฐ๋œปํ•œ ๋งˆ์Œ๊ณผ,
09:37
we will not only have the money,
196
577160
2000
๋ฌผ์งˆ์  ๊ฐ€์น˜, ๋ˆ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ,
09:39
but we will also use the brain.
197
579160
3000
์šฐ๋ฆฌ์˜ ์ง€์‹๋„ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๊ธฐ๋ฅผ ํฌ๋งํ•ฉ๋‹ˆ๋‹ค.
09:42
Thank you very much.
198
582160
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
09:44
(Applause)
199
584160
6000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7