This app makes it fun to pick up litter | Jeff Kirschner

141,601 views ใƒป 2017-03-22

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Sigal Tifferet
00:12
This story starts with these two --
0
12835
2993
ื”ืกื™ืคื•ืจ ืžืชื—ื™ืœ ืขื ืฉื ื™ ืืœื” --
00:15
my kids.
1
15852
1258
ื”ื™ืœื“ื™ื ืฉืœื™.
00:17
We were hiking in the Oakland woods
2
17134
1682
ื˜ื™ืœื ื• ื‘ื™ืขืจื•ืช ืื•ืงืœื ื“
00:18
when my daughter noticed a plastic tub of cat litter in a creek.
3
18840
4134
ื›ืฉื‘ืชื™ ื”ื‘ื—ื™ื ื” ื‘ื›ืœื™ ืœื’ืœืœื™ ื—ืชื•ืœื™ื ื‘ื ื—ืœ.
00:23
She looked at me and said,
4
23467
1662
ื”ื™ื ื”ื‘ื™ื˜ื” ื‘ื™ ื•ืืžืจื”,
00:25
"Daddy?
5
25153
2507
"ืื‘ื?
00:27
That doesn't go there."
6
27684
1650
ื–ื” ืœื ืฉื™ื™ืš ืœืคื”."
00:29
When she said that, it reminded me of summer camp.
7
29358
2422
ื›ืฉื”ื™ื ืืžืจื” ืืช ื–ื”, ื–ื” ื”ื–ื›ื™ืจ ืœื™ ืืช ืžื—ื ื” ื”ืงื™ืฅ.
00:31
On the morning of visiting day,
8
31804
1498
ื‘ื‘ื•ืงืจ ื™ื•ื ื”ื‘ื™ืงื•ืจื™ื,
00:33
right before they'd let our anxious parents come barreling through the gates,
9
33326
3663
ืžืžืฉ ืœืคื ื™ ืฉื”ื ื ืชื ื• ืœื”ื•ืจื™ื ื• ื”ื—ืจื“ื™ื ืœืขื‘ื•ืจ ื‘ื”ืžื•ื ื™ื”ื ื“ืจืš ื”ืฉืขืจื™ื,
00:37
our camp director would say,
10
37013
1369
ืžื ื”ืœ ื”ืžื—ื ื” ืฉืœื ื• ื”ื™ื” ืื•ืžืจ,
00:38
"Quick! Everyone pick up five pieces of litter."
11
38406
2309
"ืžื”ืจ, ื›ื•ืœื ืœืืกื•ืฃ ื—ืžืฉ ืคื™ืกื•ืช ืืฉืคื”."
00:40
You get a couple hundred kids each picking up five pieces,
12
40739
3040
ื™ืฉ ืœื›ื ื›ืžื” ืžืื•ืช ื™ืœื“ื™ื ื›ืœ ืื—ื“ ืื•ืกืฃ ื—ืžื™ืฉื” ืคืจื™ื˜ื™ื,
00:43
and pretty soon, you've got a much cleaner camp.
13
43803
2573
ื•ืžื”ืจ ืžืื•ื“, ื™ืฉ ืœื›ื ืžื—ื ื” ื ืงื™ ื‘ื”ืจื‘ื”.
00:46
So I thought,
14
46400
1159
ืื– ื—ืฉื‘ืชื™,
00:47
why not apply that crowdsourced cleanup model to the entire planet?
15
47583
4537
ืœืžื” ืœื ืœื™ื™ืฉื ืืช ื”ืžื•ื“ืœ ื”ื–ื”, ืฉืœ ืžื™ืงื•ืจ ืงื”ืœ ืœื ื™ืงื•ื™ ื›ืœ ื”ืคืœื ื˜ื”?
00:52
And that was the inspiration for Litterati.
16
52144
2951
ื•ื–ื• ื”ื™ืชื” ื”ื”ืฉืจืื” ืœืœื™ื˜ืจื˜ื™.
00:55
The vision is to create a litter-free world.
17
55119
3349
ื”ื—ื–ื•ืŸ ื”ื•ื ืœื™ืฆื•ืจ ืขื•ืœื ื ื˜ื•ืœ ืืฉืคื”.
00:58
Let me show you how it started.
18
58492
1508
ืชื ื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ืื™ืš ื–ื” ื”ืชื—ื™ืœ.
01:00
I took a picture of a cigarette using Instagram.
19
60024
3386
ืฆื™ืœืžืชื™ ืชืžื•ื ื” ืฉืœ ืกื™ื’ืจื™ื” ื‘ืื™ื ืกื˜ื’ืจื.
01:04
Then I took another photo ...
20
64042
1867
ื•ืื– ืฆื™ืœืžืชื™ ืชืžื•ื ื” ื ื•ืกืคืช...
01:05
and another photo ...
21
65933
1557
ื•ืชืžื•ื ื” ื ื•ืกืคืช...
01:07
and another photo.
22
67514
1167
ื•ืขื•ื“ ืื—ืช.
01:08
And I noticed two things:
23
68705
1286
ื•ื”ื‘ื—ื ืชื™ ื‘ืฉื ื™ ื“ื‘ืจื™ื:
01:10
one, litter became artistic and approachable;
24
70015
3472
ืจืืฉื™ืช, ืืฉืคื” ื”ืคื›ื” ืœืืžื ื•ืชื™ืช ื•ื ื’ื™ืฉื”;
01:14
and two,
25
74064
1151
ื•ืฉื ื™ืช,
01:15
at the end of a few days, I had 50 photos on my phone
26
75239
2515
ืื—ืจื™ ื›ืžื” ื™ืžื™ื, ื”ื™ื• ืœื™ 50 ืชืžื•ื ื•ืช ืขืœ ื”ื˜ืœืคื•ืŸ
01:17
and I had picked up each piece,
27
77778
1587
ื•ื”ืจืžืชื™ ื›ืœ ืคื™ืกื”,
01:19
and I realized that I was keeping a record
28
79389
2385
ื•ื”ื‘ื ืชื™ ืฉืฉืžืจืชื™ ืชืขื•ื“
01:21
of the positive impact I was having on the planet.
29
81798
3151
ืฉืœ ื”ื”ืฉืคืขื” ื”ื—ื™ื•ื‘ื™ืช ืฉื”ื™ืชื” ืœื™ ืขืœ ื”ืคืœื ื˜ื”.
01:24
That's 50 less things that you might see,
30
84973
2188
ื–ื” 50 ื“ื‘ืจื™ื ืคื—ื•ืช ืฉืื•ืœื™ ืชืจืื•,
01:27
or you might step on,
31
87185
1243
ืื• ืฉืชื“ืจื›ื• ืขืœื™ื•,
01:28
or some bird might eat.
32
88452
1458
ืื• ืฉืฆื™ืคื•ืจ ืชืื›ืœ.
01:30
So I started telling people what I was doing,
33
90589
2652
ืื– ื”ืชื—ืœืชื™ ืœืกืคืจ ืœืื ืฉื™ื ืžื” ืื ื™ ืขื•ืฉื”,
01:33
and they started participating.
34
93265
2356
ื•ื”ื ื”ืชื—ื™ืœื• ืœื”ืฉืชืชืฃ.
01:36
One day,
35
96651
1693
ื•ื™ื•ื ืื—ื“,
01:38
this photo showed up from China.
36
98368
2528
ื”ืชืžื•ื ื” ื”ื–ื• ื”ื•ืคื™ืขื” ืžืกื™ืŸ.
01:41
And that's when I realized
37
101859
1271
ื•ืื– ื”ื‘ื ืชื™
01:43
that Litterati was more than just pretty pictures;
38
103154
3266
ืฉืœื™ื˜ืจื˜ื™ ื”ื™ื ื™ื•ืชืจ ืžืกืชื ืชืžื•ื ื•ืช ื™ืคื•ืช;
01:46
we were becoming a community that was collecting data.
39
106444
3369
ื”ืคื›ื ื• ืœืงื”ื™ืœื” ืฉืืกืคื” ืžื™ื“ืข.
01:50
Each photo tells a story.
40
110689
1890
ื›ืœ ืชืžื•ื ื” ืžืกืคืจืช ืกื™ืคื•ืจ.
01:53
It tells us who picked up what,
41
113099
2193
ื”ื™ื ืžืกืคืจืช ืœื ื• ืžื™ ื”ืจื™ื ืžื”,
01:55
a geotag tells us where
42
115316
2011
ืชื’ ื’ืื•ื’ืจืคื™ ืžืกืคืจ ืœื ื• ืื™ืคื”
01:57
and a time stamp tells us when.
43
117351
2030
ื•ื—ื•ืชืžืช ื–ืžืŸ ืžืกืคืจืช ืœื ื• ืžืชื™.
01:59
So I built a Google map,
44
119826
2429
ืื– ื‘ื ื™ืชื™ ืžืคืช ื’ื•ื’ืœ,
02:02
and started plotting the points where pieces were being picked up.
45
122279
4053
ื•ื”ืชื—ืœืชื™ ืœืกืžืŸ ืืช ื”ื ืงื•ื“ื•ืช ื‘ื”ืŸ ืคื™ืกื•ืช ื ืืกืคื•.
02:06
And through that process, the community grew
46
126356
3918
ื•ื“ืจืš ื”ืชื”ืœื™ืš ื”ื–ื”, ื”ืงื”ื™ืœื” ื’ื“ืœื”
02:10
and the data grew.
47
130298
1639
ื•ื”ืžื™ื“ืข ื’ื“ืœ.
02:12
My two kids go to school right in that bullseye.
48
132626
3461
ืฉื ื™ ื™ืœื“ื™ ื”ื•ืœื›ื™ื ืœื‘ื™ืช ื”ืกืคืจ ืžืžืฉ ื‘ืžืจื›ื– ื”ื–ื”.
02:16
Litter:
49
136945
1211
ืืฉืคื”:
02:18
it's blending into the background of our lives.
50
138180
2704
ื–ื” ืžืชืžื–ื’ ืœืชื•ืš ื”ืจืงืข ืฉืœ ื—ื™ื™ื ื•.
02:20
But what if we brought it to the forefront?
51
140908
2099
ืื‘ืœ ืžื” ืื ื ื‘ื™ื ืืช ื–ื” ืœื—ื–ื™ืช?
02:23
What if we understood exactly what was on our streets,
52
143031
2912
ืžื” ืื ื ื‘ื™ืŸ ื‘ื“ื™ื•ืง ืžื” ื™ืฉ ื‘ืจื—ื•ื‘ื•ืชื™ื ื•,
02:25
our sidewalks
53
145967
1389
ื”ืžื“ืจื›ื•ืช ืฉืœื ื•
02:27
and our school yards?
54
147380
1538
ื•ื—ืฆืจื•ืช ื‘ืชื™ ื”ืกืคืจ ืฉืœื ื•?
02:28
How might we use that data to make a difference?
55
148942
3247
ืื™ืš ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ืžื™ื“ืข ื”ื–ื” ื›ื“ื™ ืœื™ืฆื•ืจ ืฉื™ื ื•ื™?
02:33
Well, let me show you.
56
153009
1198
ื•ื‘ื›ืŸ, ืชื ื• ืœื™ ืœืกืคืจ ืœื›ื.
02:34
The first is with cities.
57
154231
1385
ื”ืจืืฉื•ืŸ ื”ื•ื ืขื ืขืจื™ื.
02:36
San Francisco wanted to understand what percentage of litter was cigarettes.
58
156238
4639
ืกืŸ ืคืจื ืกื™ืกืงื• ืจืฆืชื” ืœื”ื‘ื™ืŸ ืื™ื–ื” ืื—ื•ื– ืฉืœ ืืฉืคื” ื”ื™ืชื” ืกื™ื’ืจื™ื•ืช.
02:40
Why?
59
160901
1162
ืœืžื”?
02:42
To create a tax.
60
162087
1209
ื›ื“ื™ ืœื™ืฆื•ืจ ืžืก.
02:43
So they put a couple of people in the streets
61
163893
2135
ืื– ื”ื ืฉืžื• ื›ืžื” ืื ืฉื™ื ื‘ืจื—ื•ื‘ื•ืช
02:46
with pencils and clipboards,
62
166052
1361
ืขื ืขืคืจื•ื ื•ืช ื•ืคื“ื™ื,
02:47
who walked around collecting information
63
167437
2063
ืฉื”ืœื›ื• ืกื‘ื™ื‘ ื•ืืกืคื• ืžื™ื“ืข
02:49
which led to a 20-cent tax on all cigarette sales.
64
169524
3111
ืžื” ืฉื”ื•ื‘ื™ืœ ืœืžืก ืฉืœ 20 ืกื ื˜ ืขืœ ืžื›ื™ืจืช ืกื™ื’ืจื™ื•ืช.
02:53
And then they got sued
65
173607
2153
ื•ืื– ื”ื ื ืชื‘ืขื•
02:55
by big tobacco,
66
175784
1176
ืขืœ ื™ื“ื™ ื—ื‘ืจื•ืช ื”ื˜ื‘ืง ื”ื’ื“ื•ืœื•ืช,
02:56
who claimed that collecting information with pencils and clipboards
67
176984
3216
ืฉื˜ืขื ื• ืฉืื™ืกื•ืฃ ืžื™ื“ืข ืขื ืขืคืจื•ื ื•ืช ื•ืคื“ื™ื
03:00
is neither precise nor provable.
68
180224
2331
ื”ื•ื ืœื ืžื“ื•ื™ื™ืง ื•ืœื ื‘ืจ ื”ื•ื›ื—ื”.
03:03
The city called me and asked if our technology could help.
69
183274
3680
ื”ืขื™ืจ ืงืจืื” ืœื™ ื•ืฉืืœื” ืื ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœื ื• ืชื•ื›ืœ ืœืขื–ื•ืจ.
03:06
I'm not sure they realized
70
186978
1249
ืื ื™ ืœื ื‘ื˜ื•ื— ืฉื”ื ื”ื‘ื™ื ื•
03:08
that our technology was my Instagram account --
71
188251
2248
ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœื ื• ื”ื™ืชื” ื—ืฉื‘ื•ืŸ ื”ืื™ื ืกื˜ื’ืจื ืฉืœื™ --
03:10
(Laughter)
72
190523
1039
(ืฆื—ื•ืง)
03:11
But I said, "Yes, we can."
73
191586
1266
ืื‘ืœ ืืžืจืชื™, "ื›ืŸ, ืื ื—ื ื• ื™ื›ื•ืœื™ื."
03:12
(Laughter)
74
192876
1016
(ืฆื—ื•ืง)
03:13
"And we can tell you if that's a Parliament or a Pall Mall.
75
193916
3908
"ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืกืคืจ ืœื›ื ืื ื–ื” ืคืจืœืžื ื˜ ืื• ืคืืœ ืžืืœ.
03:17
Plus, every photograph is geotagged and time-stamped,
76
197848
3425
ื•ื’ื, ื›ืœ ืชืžื•ื ื” ืžืชื•ื™ื™ื’ืช ื’ืื•ื’ืจืคื™ืช ื•ืขื ื—ื•ืชืžืช ื–ืžืŸ,
03:21
providing you with proof."
77
201297
1381
ื•ืžืกืคืงืช ืœื›ื ื”ื•ื›ื—ื”."
03:23
Four days and 5,000 pieces later,
78
203659
3220
ืืจื‘ืขื” ื™ืžื™ื ื•-5,000 ืคื™ืกื•ืช ืžืื•ื—ืจ ื™ื•ืชืจ,
03:26
our data was used in court to not only defend but double the tax,
79
206903
4938
ื”ืฉืชืžืฉื• ื‘ืžื™ื“ืข ืฉืœื ื• ื‘ื‘ื™ืช ืžืฉืคื˜ ืœื ืจืง ื›ื“ื™ ืœื”ื’ืŸ ืืœื ืœื”ื›ืคื™ืœ ืืช ื”ืžืก,
03:31
generating an annual recurring revenue of four million dollars
80
211865
4323
ื•ื–ื” ื™ืฆืจ ื”ื›ื ืกื” ืฉื ืชื™ืช ื—ื•ื–ืจืช ืฉืœ ืืจื‘ืขื” ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ
03:36
for San Francisco to clean itself up.
81
216212
2295
ืœืกืŸ ืคืจื ืกื™ืกืงื• ื›ื“ื™ ืœื ืงื•ืช ืืช ืขืฆืžื”.
03:39
Now, during that process I learned two things:
82
219821
2235
ืขื›ืฉื™ื•, ื‘ืžื”ืœืš ื”ืชื”ืœื™ืš ื”ื–ื” ืœืžื“ืชื™ ืฉื ื™ ื“ื‘ืจื™ื:
03:42
one, Instagram is not the right tool --
83
222080
2554
ืื—ื“, ืื™ื ืกื˜ื’ืจื ื”ื•ื ืœื ื”ื›ืœื™ ื”ื ื›ื•ืŸ --
03:44
(Laughter)
84
224658
1031
(ืฆื—ื•ืง)
03:45
so we built an app.
85
225713
1503
ืื– ื‘ื ื™ื ื• ืืคืœื™ืงืฆื™ื”.
03:47
And two, if you think about it,
86
227240
1633
ื•ืฉืชื™ื™ื, ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”,
03:48
every city in the world has a unique litter fingerprint,
87
228897
3617
ืœื›ืœ ืขื™ืจ ื‘ืขื•ืœื ื™ืฉ ืชื‘ื™ืขืช ืืฆื‘ืข ื™ื—ื•ื“ื™ืช ืฉืœ ื–ื‘ืœ,
03:52
and that fingerprint provides both the source of the problem
88
232538
3836
ื•ื˜ื‘ื™ืขืช ื”ืืฆื‘ืข ื”ื–ื• ืžืกืคืงืช ืืช ื”ืžืงื•ืจ ืœื‘ืขื™ื”
03:56
and the path to the solution.
89
236398
1921
ื•ื’ื ืืช ื”ื ืชื™ื‘ ืœืคืชืจื•ืŸ.
03:59
If you could generate a revenue stream
90
239466
2378
ืื ืชื•ื›ืœื• ืœื™ื™ืฆืจ ื–ืจื ื”ื›ื ืกื•ืช
04:01
just by understanding the percentage of cigarettes,
91
241868
2463
ืจืง ืขืœ ื™ื“ื™ ื”ื‘ื ืช ืื—ื•ื– ื”ืกื™ื’ืจื™ื•ืช,
04:04
well, what about coffee cups
92
244355
2096
ื•ื‘ื›ืŸ, ืžื” ืขื ื›ื•ืกื•ืช ืงืคื”,
04:06
or soda cans
93
246475
1706
ืื• ืคื—ื™ื•ืช ืžืฉืงื”,
04:08
or plastic bottles?
94
248205
1414
ืื• ื‘ืงื‘ื•ืงื™ ืคืœืกื˜ื™ืง?
04:10
If you could fingerprint San Francisco, well, how about Oakland
95
250321
3201
ื•ืื ืชื•ื›ืœื• ืœืงื—ืช ืชื‘ื™ืขืช ืืฆื‘ืข ืฉืœ ืกืŸ ืคืจื ืกื™ืกืงื•, ื•ื‘ื›ืŸ, ืžื” ืขื ืื•ืงืœื ื“,
04:13
or Amsterdam
96
253546
1696
ืื• ืืžืกื˜ืจื“ื,
04:15
or somewhere much closer to home?
97
255266
2970
ืื• ืžืงื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืงืจื•ื‘ ืœื‘ื™ืช?
04:19
And what about brands?
98
259228
1234
ื•ืžื” ืขื ืžื•ืชื’ื™ื?
04:20
How might they use this data
99
260486
1901
ืื™ืš ื”ื ืžืฉืชืžืฉื™ื ื‘ืžื™ื“ืข ื”ื–ื”
04:22
to align their environmental and economic interests?
100
262411
4212
ื›ื“ื™ ืœื™ื™ืฉืจ ืงื• ื‘ื™ืŸ ื”ืื™ื ื˜ืจืกื™ื ื”ืกื‘ื™ื‘ืชื™ื™ื ื•ื”ื›ืœื›ืœื™ื™ื ืฉืœื”ื?
04:27
There's a block in downtown Oakland that's covered in blight.
101
267466
3212
ื™ืฉ ื‘ืœื•ืง ื‘ืžืจื›ื– ืื•ืงืœื ื“ ืฉืžื›ื•ืกื” ื‘ืคืกื•ืœืช.
04:31
The Litterati community got together and picked up 1,500 pieces.
102
271145
4104
ืงื”ื™ืœืช ื”ืœื™ื˜ืจื˜ื™ ื”ืชืื—ื“ื” ื•ืืกืคื” 1500 ืคื™ืกื•ืช.
04:35
And here's what we learned:
103
275632
1340
ื•ื–ื” ืžื” ืฉื’ื™ืœื™ื ื•:
04:36
most of that litter came from a very well-known taco brand.
104
276996
3210
ืจื•ื‘ ื”ืืฉืคื” ื”ื’ื™ืขื” ืžืžื•ืชื’ ื˜ืืงื• ืžืื•ื“ ืžื•ื›ืจ.
04:41
Most of that brand's litter were their own hot sauce packets,
105
281558
3577
ืจื•ื‘ ื”ืืฉืคื” ืฉืœ ื”ืžื•ืชื’ ื”ื™ืชื” ื—ืคื™ืกื•ืช ื”ืจื•ื˜ื‘ ื”ื—ืจื™ืฃ ืฉืœื”ื,
04:46
and most of those hot sauce packets hadn't even been opened.
106
286258
3626
ื•ืจื•ื‘ ื—ื‘ื™ืœื•ืช ื”ืจื•ื˜ื‘ ื”ื—ืจื™ืฃ ืืคื™ืœื• ืœื ื ืคืชื—ื•.
04:51
The problem and the path to the solution --
107
291785
2715
ื”ื‘ืขื™ื” ื•ื”ื ืชื™ื‘ ืœืคืชืจื•ืŸ --
04:54
well, maybe that brand only gives out hot sauce upon request
108
294524
3961
ื•ื‘ื›ืŸ, ืื•ืœื™ ื”ืžื•ืชื’ ืจืง ื™ืชืŸ ืืจื™ื–ื•ืช ืจื•ื˜ื‘ ื—ืจื™ืฃ ืœืคื™ ื“ืจื™ืฉื”,
04:58
or installs bulk dispensers
109
298509
2009
ืื• ื™ืชืงื™ืŸ ื“ื™ืกืคื ืกืจื™ื ื’ื“ื•ืœื™ื
05:00
or comes up with more sustainable packaging.
110
300542
2552
ืื• ื™ืกืคืง ืืจื™ื–ื•ืช ื™ื•ืชืจ ื‘ื ื•ืช ืงื™ื™ืžื.
05:03
How does a brand take an environmental hazard,
111
303118
2969
ืื™ืš ื”ืžื•ืชื’ ืœื•ืงื— ืžืคื’ืข ืกื‘ื™ื‘ืชื™,
05:06
turn it into an economic engine
112
306111
2006
ื•ื”ื•ืคืš ืื•ืชื• ืœืžื ื•ืข ื›ืœื›ืœื™
05:08
and become an industry hero?
113
308141
1768
ื›ื“ื™ ืœื”ืคื•ืš ืœื’ื™ื‘ื•ืจื™ ื”ืชืขืฉื™ื™ื”?
05:11
If you really want to create change,
114
311112
2202
ืื ืืชื ื‘ืืžืช ืจื•ืฆื™ื ืœื™ืฆื•ืจ ืฉื™ื ื•ื™,
05:13
there's no better place to start than with our kids.
115
313338
2874
ืื™ืŸ ื“ืจืš ื˜ื•ื‘ื” ื™ื•ืชืจ ืœื”ืชื—ื™ืœ ืžืืฉืจ ืขื ื”ื™ืœื“ื™ื ืฉืœื ื•.
05:16
A group of fifth graders picked up 1,247 pieces of litter
116
316236
3403
ืงื‘ื•ืฆื” ืฉืœ ื™ืœื“ื™ ื›ื™ืชื” ื”' ืืกืคื• 1247 ืคื™ืกื•ืช ืืฉืคื”
05:19
just on their school yard.
117
319663
1848
ืจืง ื‘ื—ืฆืจ ื‘ื™ืช ื”ืกืคืจ.
05:21
And they learned that the most common type of litter
118
321535
2532
ื•ื”ื ื’ื™ืœื• ืฉืกื•ื’ ื”ืืฉืคื” ื”ื ืคื•ืฅ ื‘ื™ื•ืชืจ
05:24
were the plastic straw wrappers from their own cafeteria.
119
324091
3234
ื”ื™ื” ืขื˜ื™ืคื•ืช ืงืฉื™ ืคืœืกื˜ื™ืง ืžื”ืงืคื™ื˜ืจื™ื” ืฉืœื”ื.
05:27
So these kids went to their principal and asked,
120
327767
2529
ืื– ื”ื™ืœื“ื™ื ื”ืœื›ื• ืœืžื ื”ืœ ื•ืฉืืœื•,
05:30
"Why are we still buying straws?"
121
330320
1660
"ืœืžื” ืื ื—ื ื• ืขื“ื™ื™ืŸ ืงื•ื ื™ื ืงืฉื™ื?"
05:32
And they stopped.
122
332986
1755
ื•ื”ื ื”ืคืกื™ืงื•.
05:34
And they learned that individually they could each make a difference,
123
334765
3654
ื•ื”ื ื’ื™ืœื• ืฉืœื‘ื“, ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœื”ืฉืคื™ืข,
05:38
but together they created an impact.
124
338443
2338
ืื‘ืœ ื™ื—ื“ ื”ื ื™ืฆืจื• ื”ืฉืคืขื” ืžืฉืžืขื•ืชื™ืช.
05:41
It doesn't matter if you're a student or a scientist,
125
341323
4012
ื–ื” ืœื ืžืฉื ื” ืื ืืชื ืชืœืžื™ื“ื™ื ืื• ืžื“ืขื ื™ื,
05:45
whether you live in Honolulu or Hanoi,
126
345359
3135
ื‘ื™ืŸ ืื ืืชื ื—ื™ื™ื ื‘ื”ื•ื ืœื•ืœื• ืื• ื”ืื ื•ื™,
05:48
this is a community for everyone.
127
348518
2441
ื–ื• ืงื”ื™ืœื” ืœื›ื•ืœื.
05:51
It started because of two little kids in the Northern California woods,
128
351794
4679
ื–ื” ื”ืชื—ื™ืœ ื‘ื’ืœืœ ืฉื ื™ ื™ืœื“ื™ื ืงื˜ื ื™ื ื‘ื™ืขืจื•ืช ืฆืคื•ืŸ ืงืœื™ืคื•ืจื ื™ื”,
05:56
and today it's spread across the world.
129
356497
2814
ื•ื”ื™ื•ื ื”ื™ื ืคืจื•ืฉื” ื‘ืจื—ื‘ื™ ื”ืขื•ืœื.
05:59
And you know how we're getting there?
130
359758
1783
ื•ืืชื ื™ื•ื“ืขื™ื ืื™ืš ืื ื—ื ื• ืžื’ื™ืขื™ื ืœืฉื?
06:01
One piece at a time.
131
361887
1878
ืคื™ืกืช ืืฉืคื” ืื—ืช ื›ืœ ืคืขื.
06:04
Thank you.
132
364328
1215
ืชื•ื“ื” ืœื›ื.
06:05
(Applause)
133
365567
3618
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7