James B. Glattfelder: Who controls the world?

541,525 views ใƒป 2013-02-13

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Ido Dekkers
"ื›ืฉื”ืžืฉื‘ืจ ืื™ืจืข,
00:16
"When the crisis came,
1
16260
2237
ื”ืžื’ื‘ืœื•ืช ื”ื—ืžื•ืจื•ืช ืฉืœ ื”ืžื•ื“ืœื™ื
00:18
the serious limitations of existing economic and financial models
2
18521
4686
ื”ื›ืœื›ืœื™ื™ื ื•ื”ืคื™ื ื ืกื™ื™ื ื”ืงื™ื™ืžื™ื ื”ืชื‘ืจืจื• ืžื™ื“."
00:23
immediately became apparent."
3
23231
1896
"ื™ืฉ ื’ื ืืžื•ื ื” ื—ื–ืงื”, ืฉืื ื™ ืฉื•ืชืฃ ืœื”,
00:27
"There is also a strong belief, which I share,
4
27455
4154
00:31
that bad or oversimplistic and overconfident economics
5
31633
4964
ืฉื›ืœื›ืœื” ื’ืจื•ืขื”, ืื• ืคืฉื˜ื ื™ืช ืžื“ื™ ื•ืฉื—ืฆื ื™ืช ืžื“ื™
00:36
helped create the crisis."
6
36621
1905
ืกื™ื™ืขื” ื‘ื™ืฆื™ืจืช ื”ืžืฉื‘ืจ."
00:38
Now, you've probably all heard of similar criticism
7
38550
2557
ื›ื•ืœื›ื ื•ื“ืื™ ืฉืžืขืชื ืขืœ ื“ื‘ืจื™ ื‘ื™ืงื•ืจืช ื“ื•ืžื™ื
ืžืคื™ ืื ืฉื™ื ืฉืžืคืงืคืงื™ื ื‘ืงืคื™ื˜ืœื™ื–ื.
00:41
coming from people who are skeptical of capitalism.
8
41131
3003
00:44
But this is different.
9
44806
1171
ืื‘ืœ ื–ื” ืฉื•ื ื”.
ื–ื” ื”ื’ื™ืข ืžืœื‘ ื”ืžืขืจื›ืช ื”ืคื™ื ื ืกื™ืช.
00:46
This is coming from the heart of finance.
10
46001
3679
00:49
The first quote is from Jean-Claude Trichet
11
49704
2900
ื”ืฆื™ื˜ื˜ื” ื”ืจืืฉื•ื ื” ื”ื™ื ืžืคื™ ื–'ืืŸ ืงืœื•ื“ ื˜ืจื™ืฉื”
00:52
when he was governor of the European Central Bank.
12
52628
2862
ื›ืฉื›ื™ื”ืŸ ื›ื ื’ื™ื“ ื”ื‘ื ืง ื”ืื™ืจื•ืคื™ ื”ืžืจื›ื–ื™.
00:56
The second quote is from the head of the UK Financial Services Authority.
13
56440
4740
ื”ืฆื™ื˜ื˜ื” ื”ืฉื ื™ื” ื”ื™ื ืžืคื™ื• ืฉืœ ืจืืฉ
ืจืฉื•ืช ื”ืฉื™ืจื•ืชื™ื ื”ืคื™ื ื ืกื™ื™ื ืฉืœ ื‘ืจื™ื˜ื ื™ื”.
01:02
Are these people implying
14
62275
1547
ื”ืื ื”ืื ืฉื™ื ื”ืืœื” ืจื•ืžื–ื™ื
01:03
that we don't understand the economic systems
15
63846
2740
ืฉืื™ื ื ื• ืžื‘ื™ื ื™ื ืืช ื”ืžืขืจื›ื•ืช ื”ื›ืœื›ืœื™ื•ืช
01:06
that drive our modern societies?
16
66610
2339
ืฉืžื ื™ืขื•ืช ืืช ื”ื—ื‘ืจื•ืช ื”ืžื•ื“ืจื ื™ื•ืช ืฉืœื ื•?
01:09
It gets worse.
17
69779
1150
ื”ื“ื‘ืจื™ื ืžื—ืžื™ืจื™ื.
01:11
"We spend billions of dollars
18
71704
2189
"ืื ื• ืžื•ืฆื™ืื™ื ืžื™ืœื™ืืจื“ื™ ื“ื•ืœืจื™ื
01:13
trying to understand the origins of the universe,
19
73917
3877
ื‘ื ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ ืื™ืš ื ื•ืฆืจ ื”ื™ืงื•ื
ืืš ืขื“ื™ื™ืŸ ืื™ื ื ื• ืžื‘ื™ื ื™ื ืžื”ื ื”ืชื ืื™ื
01:17
while we still don't understand the conditions for a stable society,
20
77903
5870
ื”ื ื—ื•ืฆื™ื ืœืงื™ื•ื ื—ื‘ืจื” ื™ืฆื™ื‘ื”, ื›ืœื›ืœื” ืžืชืคืงื“ืช, ืื• ืฉืœื•ื."
01:23
a functioning economy, or peace."
21
83797
3649
01:29
What's happening here? How can this be possible?
22
89437
2772
ืžื” ืงื•ืจื” ื›ืืŸ? ืื™ืš ื–ื” ื™ื™ืชื›ืŸ?
01:32
Do we really understand more about the fabric of reality
23
92233
3247
ื”ืื ืื ื• ืžืชืžืฆืื™ื ื™ื•ืชืจ ื‘ืžืจืงื ื”ืžืฆื™ืื•ืช
01:35
than we do about the fabric which emerges from our human interactions?
24
95504
3961
ืžืืฉืจ ื‘ืžืจืงื
ืฉื ื•ืฆืจ ื›ืชื•ืฆืื” ืžื™ื—ืกื™ ื”ื’ื•ืžืœื™ืŸ ื”ืื ื•ืฉื™ื™ื ื‘ื™ื ื™ื ื•?
01:39
Unfortunately, the answer is yes.
25
99990
1802
ืœืžืจื‘ื” ื”ืฆืขืจ, ื”ืชืฉื•ื‘ื” ื”ื™ื "ื›ืŸ".
01:42
But there's an intriguing solution
26
102517
2717
ืื‘ืœ ื™ืฉื ื• ืคืชืจื•ืŸ ืžืกืงืจืŸ ืฉืžื’ื™ืข
01:45
which is coming from what is known as the science of complexity.
27
105258
4238
ืžืžื” ืฉืžื•ื›ืจ ื›"ืžื“ืข ื”ืžื•ืจื›ื‘ื•ืช".
ื›ื“ื™ ืœื”ืกื‘ื™ืจ ืืช ื”ืžืฉืžืขื•ืช ื•ืืช ื”ื“ื‘ืจ ื”ื–ื”,
01:51
To explain what this means and what this thing is,
28
111045
2687
01:53
please let me quickly take a couple of steps back.
29
113756
2613
ื‘ืจืฆื•ื ื™ ืœื—ื–ื•ืจ ื‘ืงืฆืจื” ืืœ ื”ืขื‘ืจ.
ื”ื’ืขืชื™ ืœืคื™ืกื™ืงื” ื‘ื˜ืขื•ืช.
01:57
I ended up in physics by accident.
30
117231
2218
01:59
It was a random encounter when I was young,
31
119473
3114
ื”ื™ื” ืœื™ ืื™ื–ื” ืžืคื’ืฉ ืžืงืจื™, ื›ืฉื”ื™ื™ืชื™ ืฆืขื™ืจ,
02:02
and since then, I've often wondered about the amazing success of physics
32
122611
4594
ื•ืžืื– ื”ืชืคืขืœืชื™ ืœืขืชื™ื ืชื›ื•ืคื•ืช
ื‘ืื™ื–ื• ืžื™ื“ื” ืžืฆืœื™ื—ื” ื”ืคื™ื–ื™ืงื”
ืœืชืืจ ืืช ื”ืžืฆื™ืื•ืช ืฉืื ื• ืžืชืขื•ืจืจื™ื ืืœื™ื” ื‘ื›ืœ ื™ื•ื.
02:07
in describing the reality we wake up in every day.
33
127229
2899
ื‘ืงื™ืฆื•ืจ, ืืคืฉืจ ืœื—ืฉื•ื‘ ืขืœ ื”ืคื™ื–ื™ืงื” ื›ืš:
02:11
In a nutshell, you can think of physics as follows.
34
131401
2739
02:14
So you take a chunk of reality you want to understand
35
134164
3009
ืœื•ืงื—ื™ื ื ืชื— ืžืฆื™ืื•ืช ืฉืจื•ืฆื™ื ืœื”ื‘ื™ื ื•
02:17
and you translate it into mathematics.
36
137782
3160
ื•ืžืชืจื’ืžื™ื ืื•ืชื• ืœืžืชืžื˜ื™ืงื”.
ืžืงื•ื“ื“ื™ื ื–ืืช ืœืžืฉื•ื•ืื•ืช.
02:21
You encode it into equations.
37
141411
1973
02:24
Then, predictions can be made and tested.
38
144402
2402
ื•ืื– ืืคืฉืจ ืœื‘ืฆืข ืชื—ื–ื™ื•ืช ื•ืœื‘ื“ื•ืง ืื•ืชืŸ.
02:28
We're actually really lucky that this works,
39
148384
2488
ืœืžืขืŸ ื”ืืžืช, ื™ืฉ ืœื ื• ืžื–ืœ ืฉื–ื” ืžืฆืœื™ื—,
02:30
because no one really knows why the thoughts in our heads
40
150896
2888
ื›ื™ ืื™ืฉ ืื™ื ื• ื™ื•ื“ืข ื‘ืืžืช ืžื“ื•ืข ื”ืžื—ืฉื‘ื•ืช ืฉื‘ืจืืฉื™ื ื•
02:33
should actually relate to the fundamental workings of the universe.
41
153808
3807
ืฆืจื™ื›ื•ืช ื‘ื›ืœืœ ืœื”ื™ื•ืช ืงืฉื•ืจื•ืช ืœืžื ื’ื ื•ื ื™ ื”ื™ืกื•ื“ ืฉืœ ื”ื™ืงื•ื.
02:39
Despite the success, physics has its limits.
42
159538
2870
ื—ืจืฃ ื”ืฆืœื—ืชื”, ืœืคื™ื–ื™ืงื” ื™ืฉ ืžื’ื‘ืœื•ืช ืžืฉืœื”.
02:42
As Dirk Helbing pointed out in the last quote,
43
162948
3050
ื›ืคื™ ืฉื“ื™ืจืง ื”ืœื‘ื™ื ื’ ืฆื™ื™ืŸ ื‘ืฆื™ื˜ื˜ื” ื”ืื—ืจื•ื ื”,
ืื™ืŸ ืื ื• ื‘ืืžืช ืžื‘ื™ื ื™ื ืืช ื”ืžื•ืจื›ื‘ื•ืช
02:46
we don't really understand the complexity that relates to us, that surrounds us.
44
166022
4858
ืฉื ื•ื’ืขืช ืœื ื•, ืฉืžืงื™ืคื” ืื•ืชื ื•.
02:51
This paradox is what got me interested in complex systems.
45
171861
4104
ื”ืกืชื™ืจื” ื”ื–ื• ื”ื™ื ืฉื’ืจืžื” ืœื™ ืœื”ืชืขื ื™ื™ืŸ ื‘ืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช.
02:55
So these are systems which are made up
46
175989
1876
ืžื“ื•ื‘ืจ ื‘ืžืขืจื›ื•ืช ืฉื‘ื ื•ื™ื•ืช
02:57
of many interconnected or interacting parts:
47
177889
3460
ืžื”ืจื‘ื” ื—ืœืงื™ื ื‘ืขืœื™ ืงื™ืฉื•ืจื™ื•ืช ื•ื™ื—ืกื™-ื’ื•ืžืœื™ืŸ ืคื ื™ืžื™ื™ื:
03:01
swarms of birds or fish,
48
181373
2809
ืœื”ืงื•ืช ืฆื™ืคื•ืจื™ื ืื• ื“ื’ื™ื, ืžื•ืฉื‘ื•ืช ื ืžืœื™ื,
03:04
ant colonies, ecosystems, brains, financial markets.
49
184206
4551
ืžืขืจื›ื•ืช ืืงื•ืœื•ื’ื™ื•ืช, ืžื•ื—ื•ืช, ืฉื•ื•ืงื™ื ืคื™ื ื ืกื™ื™ื.
03:08
These are just a few examples.
50
188781
1749
ื•ืืœื” ืจืง ื›ืžื” ื“ื•ื’ืžืื•ืช.
03:12
Interestingly, complex systems are very hard to map
51
192947
5219
ืžืขื ื™ื™ืŸ ืฉืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช ืงืฉื•ืช ืžืื“ ืœืžื™ืคื•ื™
03:18
into mathematical equations,
52
198190
1999
ื‘ืžืฉื•ื•ืื•ืช ืžืชืžื˜ื™ื•ืช.
03:20
so the usual physics approach doesn't really work here.
53
200213
3635
ืœื›ืŸ ื”ื’ื™ืฉื” ื”ืจื’ื™ืœื” ืฉืœ ื”ืคื™ื–ื™ืงื” ืื™ื ื” ืžืžืฉ ืขื•ื‘ื“ืช ื›ืืŸ.
03:24
So what do we know about complex systems?
54
204543
2169
ืžื” ื™ื“ื•ืข ืœื ื• ืขืœ ืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช?
03:26
Well, it turns out that what looks like complex behavior from the outside
55
206736
6032
ืžืกืชื‘ืจ ืฉืžื” ืฉื ืจืื” ื›ืžื• ื”ืชื ื”ื’ื•ืช ืžื•ืจื›ื‘ืช
ื‘ืžื‘ื˜ ืžื‘ื—ื•ืฅ, ื”ื•ื ืœืžืขืฉื” ื”ืชื•ืฆืื”
03:32
is actually the result of a few simple rules of interaction.
56
212792
3711
ืฉืœ ืžืกืคืจ ื›ืœืœื™ื ืคืฉื•ื˜ื™ื ืฉืœ ื™ื—ืกื™-ื’ื•ืžืœื™ืŸ.
ื›ืœื•ืžืจ ืฉืืคืฉืจ ืœืขื–ื•ื‘ ืืช ื”ืžืฉื•ื•ืื•ืช
03:38
This means you can forget about the equations
57
218255
3840
03:42
and just start to understand the system
58
222119
2726
ื•ืคืฉื•ื˜ ืœื”ืชื—ื™ืœ ืœื”ื‘ื™ืŸ ืืช ื”ืžืขืจื›ืช
ืข"ื™ ื‘ื“ื™ืงืช ื™ื—ืกื™ ื”ื’ื•ืžืœื™ืŸ,
03:44
by looking at the interactions,
59
224869
1719
03:46
so you can actually forget about the equations
60
226612
2370
ืืคืฉืจ ื‘ืืžืช ืœื•ื•ืชืจ ืขืœ ื”ืžืฉื•ื•ืื•ืช
03:49
and you just start to look at the interactions.
61
229006
2552
ื•ืคืฉื•ื˜ ืœื”ืชื—ื™ืœ ืœื”ืชื‘ื•ื ืŸ ื‘ื™ื—ืกื™ ื”ื’ื•ืžืœื™ืŸ.
03:51
And it gets even better, because most complex systems
62
231582
3334
ื•ื–ื” ืืคื™ืœื• ืžืฉืชืคืจ, ื›ื™ ืœืจื•ื‘ ื”ืžืขืจื›ื•ืช ื”ืžื•ืจื›ื‘ื•ืช
03:54
have this amazing property called emergence.
63
234940
2480
ื™ืฉ ืชื›ื•ื ื” ืžื•ืคืœืื” ื‘ืฉื "ื ืกื™ืงื”".
03:57
So this means that the system as a whole suddenly starts to show a behavior
64
237958
4191
ื›ืœื•ืžืจ, ืฉื”ืžืขืจื›ืช ื›ื›ืœืœ
ืžืชื—ื™ืœื” ืœืคืชืข ืœื”ืคื’ื™ืŸ ื”ืชื ื”ื’ื•ืช
ืฉืื™ื ื ื” ื ื™ืชื ืช ืœื”ื‘ื ื” ืื• ืœื—ื™ื–ื•ื™
04:02
which cannot be understood or predicted
65
242173
2872
04:05
by looking at the components of the system.
66
245069
2553
ืžืชื•ืš ื”ืชื‘ื•ื ื ื•ืช ื‘ืจื›ื™ื‘ื™ื” ืฉืœ ื”ืžืขืจื›ืช.
04:07
So the whole is literally more than the sum of its parts.
67
247646
3301
ื›ืš ืฉื”ืฉืœื ื”ื•ื ืื›ืŸ ื’ื“ื•ืœ ืžืกื›ื•ื ื—ืœืงื™ื•.
04:11
And all of this also means
68
251919
1274
ื•ื›ืœ ื–ื” ื’ื ืื•ืžืจ ืฉืืคืฉืจ ืœื”ืชืขืœื
04:13
that you can forget about the individual parts of the system,
69
253217
4864
ืžื—ืœืงื™ ื”ืžืขืจื›ืช ื”ืฉื•ื ื™ื ื•ืžืžื™ื“ืช ืžื•ืจื›ื‘ื•ืชื.
04:18
how complex they are.
70
258105
1321
04:19
So if it's a cell or a termite or a bird,
71
259450
4988
ื›ืš ืฉืื ืžื“ื•ื‘ืจ ื‘ืชื, ืื• ื‘ื˜ืจืžื™ื˜ ืื• ื‘ืฆื™ืคื•ืจ,
04:24
you just focus on the rules of interaction.
72
264462
2241
ื”ืžื™ืงื•ื“ ื ื•ืชืจ ืขืœ ื›ืœืœื™ ื™ื—ืกื™ ื”ื’ื•ืžืœื™ืŸ.
ืขืงื‘ ื›ืš, ืจืฉืชื•ืช ื”ืŸ ื”ื™ื™ืฆื•ื’ ื”ืื™ื“ื™ืืœื™
04:29
As a result, networks are ideal representations of complex systems.
73
269210
5667
ืฉืœ ืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช.
ืฆืžืชื™ ื”ืจืฉืช
04:36
The nodes in the network are the system's components,
74
276362
4518
ื”ื ืจื›ื™ื‘ื™ ื”ืžืขืจื›ืช,
ื•ื”ืงื™ืฉื•ืจื™ื ื ื•ื‘ืขื™ื ืžื™ื—ืกื™ ื”ื’ื•ืžืœื™ืŸ.
04:42
and the links are given by the interactions.
75
282109
2414
04:45
So what equations are for physics,
76
285874
2279
ืื– ื”ืชืคืงื™ื“ ืฉื”ืžืฉื•ื•ืื•ืช ืžืžืœืื•ืช ื‘ืคื™ื–ื™ืงื”
04:48
complex networks are for the study of complex systems.
77
288177
3480
ื”ื•ื ื”ืชืคืงื™ื“ ืฉื”ืจืฉืชื•ืช ื”ืžื•ืจื›ื‘ื•ืช ืžืžืœืื•ืช ื‘ื—ืงืจ ื”ืžืขืจื›ื•ืช ื”ืžื•ืจื›ื‘ื•ืช.
04:52
This approach has been very successfully applied
78
292924
3210
ื’ื™ืฉื” ื–ื• ื™ื•ืฉืžื” ื‘ื”ืฆืœื—ื” ืจื‘ื” ืžืื“
04:56
to many complex systems in physics, biology,
79
296158
3594
ื‘ืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช ืจื‘ื•ืช ื‘ืคื™ื–ื™ืงื”, ื‘ื‘ื™ื•ืœื•ื’ื™ื”,
04:59
computer science, the social sciences,
80
299776
2720
ื‘ืžื“ืขื™ ื”ืžื—ืฉื‘, ื‘ืžื“ืขื™ ื”ื—ื‘ืจื”,
05:02
but what about economics?
81
302520
1258
ืื‘ืœ ืžื” ืขื ื”ื›ืœื›ืœื”?
05:04
Where are economic networks?
82
304817
1802
ื”ื™ื›ืŸ ื”ืŸ ื”ืจืฉืชื•ืช ื”ื›ืœื›ืœื™ื•ืช?
05:07
This is a surprising and prominent gap in the literature.
83
307373
3611
ื–ื”ื• ื—ืœืœ ืžืคืชื™ืข ื•ื‘ื•ืœื˜ ื‘ืกืคืจื•ืช.
ื”ืžื—ืงืจ ืฉืคื™ืจืกืžื ื• ืœืคื ื™ ืฉื ื” ื ืงืจื,
05:12
The study we published last year, called "The Network of Global Corporate Control,"
84
312243
5830
"ืจืฉืช ื”ืฉืœื™ื˜ื” ืฉืœ ื”ืชืื’ื™ื“ ื”ื’ืœื•ื‘ืœื™"
ื•ื”ื™ื” ื”ื ื™ืชื•ื— ื”ืžืงื™ืฃ ื”ืจืืฉื•ืŸ ืฉืœ ืจืฉืชื•ืช ื›ืœื›ืœื™ื•ืช.
05:18
was the first extensive analysis of economic networks.
85
318097
4637
05:23
The study went viral on the Internet
86
323914
2562
ื”ืžื—ืงืจ ื”ืชืคืฉื˜ ื‘ืžื”ื™ืจื•ืช ื‘ืื™ื ื˜ืจื ื˜
05:26
and it attracted a lot of attention from the international media.
87
326500
3391
ื•ืžืฉืš ืชืฉื•ืžืช-ืœื‘ ืจื‘ื” ืžืฆื“ ื”ืชืงืฉื•ืจืช ื”ืขื•ืœืžื™ืช.
05:31
This is quite remarkable, because, again, why did no one look at this before?
88
331506
4219
ื•ื–ื” ืจืื•ื™ ืœืฆื™ื•ืŸ, ื›ื™, ืฉื•ื‘,
ืžื“ื•ืข ืœื ื‘ื“ืงื• ื–ืืช ืœืคื ื™ ื›ืŸ?
05:35
Similar data has been around for quite some time.
89
335749
3059
ื ืชื•ื ื™ื ื“ื•ืžื™ื ืงื™ื™ืžื™ื ื›ื‘ืจ ืœื ืžืขื˜ ื–ืžืŸ.
05:38
What we looked at in detail was ownership networks.
90
338832
3179
ืžื” ืฉื‘ื“ืงื ื• ื‘ืคืจื•ื˜ืจื•ื˜ ื”ื•ื ืจืฉืชื•ืช ืฉืœ ื‘ืขืœื•ืช.
ื”ืฆืžืชื™ื ื›ืืŸ ื”ื ื—ื‘ืจื•ืช, ืื ืฉื™ื, ืžืžืฉืœื•ืช,
05:44
So here the nodes are companies, people, governments, foundations, etc.
91
344330
5649
ืžื•ืกื“ื•ืช ื•ื›ื“'.
05:51
And the links represent the shareholding relations,
92
351384
2884
ื•ื”ืงื™ืฉื•ืจื™ื ืžื™ื™ืฆื’ื™ื ืืช ื”ื™ื—ืกื™ื ืขื ื‘ืขืœื™ ื”ืžื ื™ื•ืช,
05:54
so shareholder A has x percent of the shares in company B.
93
354292
5164
ืœืžืฉืœ, ืœื‘ืขืœ-ืžื ื™ื•ืช ื' ื™ืฉ ืื™ืงืก ืื—ื•ื–ื™ื ื‘ื—ื‘ืจื” ื‘'.
05:59
And we also assign a value to the company given by the operating revenue.
94
359480
4175
ื•ืื ื• ื’ื ืžืงืฆื™ื ืขืจืš ืœื›ืœ ื—ื‘ืจื”
ืœืคื™ ื”ื”ื›ื ืกื” ื”ืชืคืขื•ืœื™ืช.
ื›ืš ืฉืจืฉืชื•ืช-ื‘ืขืœื•ืช ื—ื•ืฉืคื•ืช ืืช ื”ืชื‘ื ื™ื•ืช
06:05
So ownership networks reveal the patterns of shareholding relations.
95
365038
4544
ืฉืœ ื”ื™ื—ืกื™ื ื‘ื™ืŸ ื‘ืขืœื™ ื”ืžื ื™ื•ืช.
ื‘ื“ื•ื’ืžื” ืงื˜ื ื” ื–ื• ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช
06:11
In this little example, you can see a few financial institutions
96
371305
4125
ืžืกืคืจ ืžื•ืกื“ื•ืช ืคื™ื ื ืกื™ื™ื
ื›ืฉื›ืžื” ืžื”ืงื™ืฉื•ืจื™ื ื”ืจื‘ื™ื ืžื•ื“ื’ืฉื™ื.
06:15
with some of the many links highlighted.
97
375454
2330
06:19
Now, you may think that no one looked at this before
98
379105
2845
ืื•ืœื™ ื ืจืื” ืœื›ื ืฉืื™ืฉ ืœื ื‘ื“ืง ืืช ื–ื” ืขื“ ื›ื”
06:21
because ownership networks are really, really boring to study.
99
381974
4487
ื›ื™ ืจืฉืชื•ืช-ื‘ืขืœื•ืช
ื”ืŸ ื ื•ืฉื ืžืื“-ืžืื“ ืžืฉืขืžื ืœืžื—ืงืจ.
06:27
Well, as ownership is related to control,
100
387201
4066
ื›ื™ื•ื•ืŸ ืฉื‘ืขืœื•ืช ืงืฉื•ืจื” ืœืฉืœื™ื˜ื”,
06:31
as I shall explain later,
101
391291
1533
ื›ืคื™ ืฉืืกื‘ื™ืจ ืžื™ื“,
06:32
looking at ownership networks
102
392848
1417
ื”ืจื™ ืฉื‘ื—ื™ื ืช ืจืฉืชื•ืช ื”ื‘ืขืœื•ืช
06:34
actually can give you answers to questions like,
103
394289
2678
ื‘ืขืฆื ืžืกืคืงืช ืชืฉื•ื‘ื•ืช ืœืฉืืœื•ืช ื›ื’ื•ืŸ,
06:36
who are the key players?
104
396991
1449
ืžื™ื”ื ื”ืฉื—ืงื ื™ื ื”ืขื™ืงืจื™ื™ื?
06:38
How are they organized? Are they isolated?
105
398464
2326
ืื™ืš ื”ื ืžืื•ืจื’ื ื™ื? ื”ืื ื”ื ืžื‘ื•ื“ื“ื™ื?
06:40
Are they interconnected?
106
400814
1645
ื”ื ื™ืฉ ื‘ื™ื ื™ื”ื ืงืฉืจื™-ื’ื•ืžืœื™ืŸ?
06:42
And what is the overall distribution of control?
107
402483
2726
ื•ืžื”ื™ ื”ื”ืชืคืœื’ื•ืช ื”ื›ื•ืœืœืช ืฉืœ ื”ืฉืœื™ื˜ื”?
06:46
In other words, who controls the world?
108
406413
3238
ื‘ืžืœื™ื ืื—ืจื•ืช, ืžื™ ืฉื•ืœื˜ ื‘ืขื•ืœื?
06:49
I think this is an interesting question.
109
409675
2342
ืœื“ืขืชื™, ื–ื• ืฉืืœื” ืžืขื ื™ื™ื ืช.
ื™ืฉ ืœื” ื”ืฉืœื›ื•ืช ืžื‘ื—ื™ื ืช ืกื™ื›ื•ื ื™ื ืžืขืจื›ืชื™ื™ื.
06:52
And it has implications for systemic risk.
110
412041
2979
ื–ื”ื• ืžื“ื“ ื”ืžืจืื” ื›ืžื” ื”ืžืขืจื›ืช ื‘ื›ืœืœื•ืชื” ืคื’ื™ืขื”.
06:56
This is a measure of how vulnerable a system is overall.
111
416608
4220
ืจืžื” ื’ื‘ื•ื”ื” ืฉืœ ืงื™ืฉื•ืจื™ื•ืช ืคื ื™ืžื™ืช
07:02
A high degree of interconnectivity can be bad for stability,
112
422122
3672
ืขืœื•ืœื” ืœื”ื–ื™ืง ืœื™ืฆื™ื‘ื•ืช,
07:06
because then the stress can spread through the system like an epidemic.
113
426784
4729
ื›ื™ ืื– ื”ืœื—ืฆื™ื ื™ื›ื•ืœื™ื ืœื”ืชืคืฉื˜ ื‘ื›ืœ ื”ืžืขืจื›ืช
ื›ืžื• ืžื’ืคื”.
07:13
Scientists have sometimes criticized economists
114
433592
2533
ืžื“ืขื ื™ื ืžืชื—ื• ืžื™ื“ื™ ืคืขื ื‘ื™ืงื•ืจืช ืขืœ ื›ืœื›ืœื ื™ื
ืฉืžืืžื™ื ื™ื ืฉืจืขื™ื•ื ื•ืช ื•ืชืคื™ืฉื•ืช
07:16
who believe ideas and concepts are more important than empirical data,
115
436149
4856
ื—ืฉื•ื‘ื™ื ื™ื•ืชืจ ืžื ืชื•ื ื™ื ืืžืคื™ืจื™ื™ื,
07:21
because a foundational guideline in science is:
116
441680
2688
ื›ื™ ื›ืœืœ-ื™ืกื•ื“ ื‘ืžื“ืข ื”ื•ื ื–ื”:
ื”ื ื™ื—ื• ืœื ืชื•ื ื™ื ืœื“ื‘ืจ. ื‘ืกื“ืจ. ื”ื‘ื” ื ืขืฉื” ื–ืืช.
07:25
Let the data speak. OK. Let's do that.
117
445218
2633
07:27
So we started with a database containing 13 million ownership relations from 2007.
118
447875
6235
ื”ืชื—ืœื ื• ืขื ื‘ืกื™ืก-ื ืชื•ื ื™ื ืฉืžื›ื™ืœ
13 ืžื™ืœื™ื•ืŸ ื™ื—ืกื™-ื‘ืขืœื•ืช ืžืฉื ืช 2007.
07:34
This is a lot of data, and because we wanted to find out
119
454841
3287
ื–ื” ื”ืžื•ืŸ ื ืชื•ื ื™ื, ื•ื”ื™ื•ืช ืฉืจืฆื™ื ื• ืœื’ืœื•ืช
ืžื™ ืฉื•ืœื˜ ื‘ืขื•ืœื,
07:38
"who rules the world,"
120
458152
2108
ื”ื—ืœื˜ื ื• ืœื”ืชืžืงื“ ื‘ืืจื’ื•ื ื™ื ืจื‘-ืœืื•ืžื™ื™ื,
07:40
we decided to focus on transnational corporations,
121
460284
3404
07:43
or "TNCs," for short.
122
463712
1324
ื•ื‘ืงื™ืฆื•ืจ, ืืจ"ืœ.
07:45
These are companies that operate in more than one country,
123
465060
3572
ืžื“ื•ื‘ืจ ื‘ื—ื‘ืจื•ืช ืฉืคื•ืขืœื•ืช ื‘ื™ื•ืชืจ ืžืืจืฅ ืื—ืช,
07:48
and we found 43,000.
124
468656
1841
ื•ืžืฆืื ื• 43,000.
ื‘ืฉืœื‘ ื”ื‘ื ืฉืจื˜ื˜ื ื• ืืช ื”ืจืฉืช ืกื‘ื™ื‘ ืื•ืชืŸ ื—ื‘ืจื•ืช,
07:52
In the next step, we built the network around these companies,
125
472408
2961
07:55
so we took all the TNCs' shareholders,
126
475393
2356
ื•ืœืฉื ื›ืš ืœืงื—ื ื• ืืช ื›ืœ ื‘ืขืœื™ ื”ืžื ื™ื•ืช,
07:57
and the shareholders' shareholders, etc.,
127
477773
1959
ื•ืืช ื‘ืขืœื™ ื”ืžื ื™ื•ืช ืฉืœ ื‘ืขืœื™ ื”ืžื ื™ื•ืช, ื•ื›ื•',
07:59
all the way upstream, and we did the same downstream,
128
479756
2852
ื›ืœ ื”ื“ืจืš ืขื“ ืœืคืกื’ื”, ื•ื›ืœ ื”ื“ืจืš ืขื“ ืœืชื—ืชื™ืช,
08:02
and ended up with a network containing 600,000 nodes
129
482632
4128
ื•ืงื™ื‘ืœื ื• ืจืฉืช ืฉืžื›ื™ืœื” 600,000 ืฆืžืชื™ื
08:06
and one million links.
130
486784
1294
ื•ืžื™ืœื™ื•ืŸ ืงื™ืฉื•ืจื™ื.
08:08
This is the TNC network which we analyzed.
131
488570
2491
ื–ืืช ืจืฉืช ื”ืืจ"ืœ ืฉื ื™ืชื—ื ื•.
ื•ื”ืชื‘ืจืจ ืฉื”ื™ื ื‘ื ื•ื™ื” ื›ืš:
08:12
And it turns out to be structured as follows.
132
492511
2109
08:14
So you have a periphery and a center
133
494644
2527
ื™ืฉ ืฉื•ืœื™ื™ื ื•ื™ืฉ ืžืจื›ื–
08:17
which contains about 75 percent of all the players,
134
497195
4453
ืฉืžื›ื™ืœ ื›-75% ืžื›ืœ ื”ืฉื—ืงื ื™ื,
ื•ื‘ืžืจื›ื– ื™ืฉ ืœื™ื‘ื” ืงื˜ื ื” ืืš ื“ื•ืžื™ื ื ื˜ื™ืช
08:22
and in the center, there's this tiny but dominant core
135
502199
4051
ืฉื›ื•ืœืœืช ื—ื‘ืจื•ืช ืขื ืงื™ืฉื•ืจื™ื•ืช ืคื ื™ืžื™ืช ืจื‘ื” ื‘ื™ื•ืชืจ.
08:26
which is made up of highly interconnected companies.
136
506274
3139
08:30
To give you a better picture,
137
510376
2266
ื›ื“ื™ ืœื”ืžื—ื™ืฉ ื–ืืช ืœื›ื ื˜ื•ื‘ ื™ื•ืชืจ,
08:32
think about a metropolitan area.
138
512666
1641
ื—ื™ืฉื‘ื• ืขืœ ืื–ื•ืจ ืฉืœ ื›ืจืš ืขื™ืจื•ื ื™.
08:34
So you have the suburbs and the periphery,
139
514331
2006
ื™ืฉ ืคืจื‘ืจื™ื ื•ืื–ื•ืจื™ื ื”ื™ืงืคื™ื™ื,
08:36
you have a center, like a financial district,
140
516361
2833
ื™ืฉ ืžืจื›ื–, ืœืžืฉืœ ืื–ื•ืจ ื”ืขืกืงื™ื,
08:39
then the core will be something like
141
519218
1726
ื•ื™ืฉื ื” ืœื™ื‘ื”, ืฉืœืขืชื™ื ืžื•ืคื™ืขื” ื‘ื“ืžื•ืช
08:40
the tallest high-rise building in the center.
142
520968
2569
ื”ื‘ื ื™ื™ืŸ ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ื‘ืžืจื›ื–.
08:44
And we already see signs of organization going on here.
143
524992
3457
ื•ื™ืฉ ืœื ื• ื›ื‘ืจ ืกื™ืžื ื™ื ืฉืœ ืืจื’ื•ื ื™ื ื›ืืœื” ื›ืืŸ.
08:49
36 percent of the TNCs are in the core only,
144
529610
5214
ืฉืฉื™ื ื•ืฉืœื•ืฉื” ืื—ื•ื– ืžื”ืืจ"ืœื™ื ื ืžืฆืื™ื ื‘ืœื™ื‘ื” ื‘ืœื‘ื“,
08:54
but they make up 95 percent of the total operating revenue of all TNCs.
145
534848
6084
ืืš ื”ื ืžื™ื™ืฆื’ื™ื 95% ืžืกืš ื›ืœ ื”ื”ื›ื ืกื” ื”ืชืคืขื•ืœื™ืช
ืฉืœ ื›ืœ ื”ืืจ"ืœื™ื.
ื•ืžืฉื ื™ืชื—ื ื• ืืช ื”ืžื‘ื ื”,
09:02
OK, so now we analyzed the structure,
146
542014
2602
09:04
so how does this relate to the control?
147
544640
2779
ืื™ืš ื–ื” ืžืชืงืฉืจ ืœืฉืœื™ื˜ื”?
09:08
Well, ownership gives voting rights to shareholders.
148
548777
3646
ื•ื‘ื›ืŸ, ื”ื‘ืขืœื•ืช ืžืขื ื™ืงื” ื–ื›ื•ื™ื•ืช ื”ืฆื‘ืขื” ืœื‘ืขืœื™ ื”ืžื ื™ื•ืช.
09:12
This is the normal notion of control.
149
552447
2377
ื–ื”ื• ื”ืจืขื™ื•ืŸ ื”ืจื’ื™ืœ ืฉื‘ื™ืกื•ื“ ื”ืฉืœื™ื˜ื”.
ื•ื™ืฉ ืžื•ื“ืœื™ื ืฉื•ื ื™ื ืฉืžืืคืฉืจื™ื ืœื—ืฉื‘
09:15
And there are different models
150
555221
1468
09:16
which allow you to compute the control you get from ownership.
151
556713
3465
ื›ืžื” ืฉืœื™ื˜ื” ืžืขื ื™ืงื” ื”ื‘ืขืœื•ืช.
ืื ื™ืฉ ืœื›ื ื™ื•ืชืจ ืž-50% ืžืžื ื™ื•ืชื™ื” ืฉืœ ื—ื‘ืจื”,
09:21
If you have more than 50 percent of the shares in a company,
152
561178
2824
ื™ืฉ ืœื›ื ืฉืœื™ื˜ื”.
09:24
you get control,
153
564026
1325
09:25
but usually, it depends on the relative distribution of shares.
154
565375
3670
ืืš ื‘ื“"ื› ื–ื” ืชืœื•ื™ ื‘ื”ืชืคืœื’ื•ืช ื”ื™ื—ืกื™ืช ืฉืœ ื”ืžื ื™ื•ืช.
09:30
And the network really matters.
155
570352
1821
ื•ื”ืจืฉืช ื—ืฉื•ื‘ื” ืžืื“.
09:33
About 10 years ago, Mr. Tronchetti Provera
156
573575
2925
ืœืคื ื™ ื›-10 ืฉื ื™ื, ืžืจ ื˜ืจื•ื ืฆ'ื˜ื™ ืคืจื•ื‘ืจื”
ื”ื—ื–ื™ืง ื‘ื‘ืขืœื•ืช ื•ื‘ืฉืœื™ื˜ื” ืขืœ ื—ื‘ืจื” ืงื˜ื ื”,
09:36
had ownership and control in a small company,
157
576524
3411
09:39
which had ownership and control in a bigger company.
158
579959
2809
ืฉื”ื—ื–ื™ืงื” ื‘ื‘ืขืœื•ืช ื•ื‘ืฉืœื™ื˜ื” ืขืœ ื—ื‘ืจื” ื’ื“ื•ืœื” ื™ื•ืชืจ.
ื”ื‘ื ืชื ืืช ื”ืจืขื™ื•ืŸ.
09:43
You get the idea.
159
583146
1150
09:44
This ended up giving him control in Telecom Italia with a leverage of 26.
160
584714
5222
ื‘ืฉื•ืจื” ื”ืชื—ืชื•ื ื”, ื–ื” ื”ืขื ื™ืง ืœื• ืฉืœื™ื˜ื” ื‘"ื˜ืœืงื•ื ืื™ื˜ืœื™ื”"
ืขื ื›ื•ืฉืจ ืžื™ื ื•ืฃ ืฉืœ 26.
09:51
So this means that, with each euro he invested,
161
591750
3273
ื›ืœื•ืžืจ, ื‘ื›ืœ ื™ื•ืจื• ืฉื”ื•ื ื”ืฉืงื™ืข,
09:55
he was able to move 26 euros of market value
162
595047
3944
ื”ื™ื” ื™ื›ื•ืœ ืœื”ื ื™ืข 26 ื™ื•ืจื• ืฉืœ ืขืจืš-ืฉื•ืง
ืœืื•ืจืš ืฉืจืฉืจืช ื™ื—ืกื™ ื”ื‘ืขืœื•ืช.
09:59
through the chain of ownership relations.
163
599015
2168
10:02
Now what we actually computed in our study was the control over the TNCs' value.
164
602435
5915
ื•ืžื” ืฉื—ื™ืฉื‘ื ื• ื‘ืžื—ืงืจ ืฉืœื ื•
ื”ื•ื ืืช ื”ืฉืœื™ื˜ื” ื‘ืขืจื›ื ืฉืœ ื”ืืจ"ืœื™ื.
ื–ื” ืื™ืคืฉืจ ืœื ื• ืœื”ืงืฆื•ืช ื“ืจื’ืช ื”ืฉืคืขื” ืžืกื•ื™ืžืช
10:09
This allowed us to assign a degree of influence to each shareholder.
165
609295
4144
ืœื›ืœ ื‘ืขืœ-ืžื ื™ื•ืช.
ื–ื” ืžืื“ ื‘ืจื•ื—
10:15
This is very much in the sense of Max Weber's idea of potential power,
166
615025
4165
ื”ืจืขื™ื•ืŸ ืฉืœ ืžืงืก ื•ื•ื‘ืจ ืขืœ ื›ื•ื— ืคื•ื˜ื ืฆื™ืืœื™,
ืฉื”ื•ื ืžื™ื“ืช ื”ืกื‘ื™ืจื•ืช ืฉื‘ื” ืื“ื ื™ื›ื•ืœ ืœืื›ื•ืฃ ืืช ืจืฆื•ื ื•
10:20
which is the probability of imposing one's own will
167
620124
3467
10:23
despite the opposition of others.
168
623615
1983
ื—ืจืฃ ื”ืชื ื’ื“ื•ืชื ืฉืœ ืื—ืจื™ื.
10:27
If you want to compute the flow in an ownership network,
169
627666
4757
ืื ืชืจืฆื• ืœื—ืฉื‘ ืืช ื”ื–ืจื™ืžื” ื‘ืจืฉืช-ื‘ืขืœื•ืช ื›ืœืฉื”ื™,
10:32
this is what you have to do.
170
632447
1357
ื–ื” ืžื” ืฉืชืฆื˜ืจื›ื• ืœืขืฉื•ืช.
10:33
It's actually not that hard to understand.
171
633828
2194
ื•ืœืžืขืŸ ื”ืืžืช, ืœื ื”ื›ื™ ืงืฉื” ืœื”ื‘ื™ืŸ ื–ืืช.
10:36
Let me explain by giving you this analogy.
172
636046
3007
ื”ื‘ื” ื•ืืกื‘ื™ืจ ื‘ืขื–ืจืช ื”ื“ื•ื’ืžื” ื”ื‘ืื”.
ื—ื™ืฉื‘ื• ืขืœ ืžื™ื ืฉื–ื•ืจืžื™ื ื‘ืฆื ืจืช
10:39
So think about water flowing in pipes, where the pipes have different thickness.
173
639077
4925
ืฉื™ืฉ ื‘ื” ืฆื™ื ื•ืจื•ืช ื‘ืงื˜ืจื™ื ืฉื•ื ื™ื.
10:44
So similarly, the control is flowing in the ownership networks
174
644851
5354
ื‘ื“ื•ืžื” ืœื›ืš ื–ื•ืจืžืช ื”ืฉืœื™ื˜ื” ื‘ืจืฉืชื•ืช ื”ื‘ืขืœื•ืช,
ื•ืžืฆื˜ื‘ืจืช ื‘ืฆืžืชื™ื.
10:50
and is accumulating at the nodes.
175
650229
2087
10:54
So what did we find after computing all this network control?
176
654333
3793
ื•ืžื” ืžืฆืื ื• ืื—ืจื™ ืฉื—ื™ืฉื‘ื ื• ืืช ื›ืœ ื”ืฉืœื™ื˜ื” ื‘ืจืฉืช?
ื”ืกืชื‘ืจ ืœื ื• ืฉ-737 ื‘ืขืœื™ ื”ืžื ื™ื•ืช ื”ืขื™ืงืจื™ื™ื
10:58
Well, it turns out that the 737 top shareholders
177
658385
5361
11:03
have the potential to collectively control 80 percent of the TNCs' value.
178
663770
5570
ืžื—ื–ื™ืงื™ื ื‘ื›ื•ื— ื”ืžืฉื•ืชืฃ ืœืฉืœื•ื˜
ื‘-80% ืžืขืจืš ื”ืืจ"ืœื™ื.
11:10
Now remember, we started out with 600,000 nodes,
179
670988
2705
ื–ื™ื›ืจื• ืฉื”ืชื—ืœื ื• ืขื 600,000 ืฆืžืชื™ื,
11:13
so these 737 top players make up a bit more than 0.1 percent.
180
673717
6683
ื›ืš ืฉ-737 ืฉื—ืงื ื™ ื”ืฆืžืจืช ื”ืืœื”
ื”ื ืžืขื˜ ื™ื•ืชืจ ืž-0.1 ืื—ื•ื–.
11:21
They're mostly financial institutions in the US and the UK.
181
681434
4320
ื”ื ื‘ืขื™ืงืจ ืžื•ืกื“ื•ืช ืคื™ื ื ืกื™ื™ื ื‘ืืจื”"ื‘ ื•ื‘ื‘ืจื™ื˜ื ื™ื”.
11:26
And it gets even more extreme.
182
686345
1756
ื•ื–ื” ืžืงืฆื™ืŸ ืขื•ื“ ื™ื•ืชืจ.
ื‘ืœื™ื‘ื” ื™ืฉื ื 146 ืฉื—ืงื ื™ื,
11:29
There are 146 top players in the core,
183
689312
3290
ื•ื‘ื™ื—ื“, ื™ืฉ ืœื”ื ืคื•ื˜ื ืฆื™ืืœ ืฉืœื™ื˜ื”
11:34
and they together have the potential to collectively control
184
694239
3202
11:37
40 percent of the TNCs' value.
185
697465
3781
ื‘-40% ืžืขืจืš ื”ืืจ"ืœื™ื.
ืžื”ื• ื”ืœืงื— ืฉืขืœื™ื›ื ืœืœืžื•ื“ ืžื›ืœ ื–ื”?
11:43
What should you take home from all of this?
186
703341
2274
11:45
Well, the high degree of control you saw is very extreme by any standard.
187
705639
6984
ื•ื‘ื›ืŸ, ืจืžืช ื”ืฉืœื™ื˜ื” ื”ื’ื‘ื•ื”ื” ืฉืจืื™ืชื
ื”ื™ื ืงื™ืฆื•ื ื™ืช ืžืื“ ืœืคื™ ื›ืœ ืงื ื”-ืžื™ื“ื”.
ื”ืจืžื” ื”ื’ื‘ื•ื”ื” ืฉืœ ื”ืงื™ืฉื•ืจื™ื•ืช ื”ืคื ื™ืžื™ืช
11:54
The high degree of interconnectivity of the top players in the core
188
714545
4875
ื‘ื™ืŸ ืฉื—ืงื ื™ ื”ืฆืžืจืช ื‘ืœื™ื‘ื”
ืขืœื•ืœื” ืœื”ื•ื•ืช ืกื™ื›ื•ืŸ ืžืขืจื›ืชื™ ืžืฉืžืขื•ืชื™ ืœื›ืœื›ืœื” ื”ืขื•ืœืžื™ืช
11:59
could pose a significant systemic risk to the global economy.
189
719527
4455
ื•ืื ื• ื™ื›ื•ืœื™ื ืœืฉื›ืคืœ ื‘ืงืœื•ืช ืืช ืจืฉืช ื”ืืจ"ืœ
12:05
And we could easily reproduce the TNC network
190
725220
2482
12:07
with a few simple rules.
191
727726
1587
ื‘ืขื–ืจืช ื›ืžื” ื›ืœืœื™ื ืคืฉื•ื˜ื™ื.
ื”ืžืฉืžืขื•ืช ื”ื™ื ืฉื”ืžื‘ื ื” ืฉืœื” ื”ื•ื ื›ื ืจืื” ืชื•ืฆืื”
12:10
This means that its structure is probably the result of self-organization.
192
730026
3654
ืฉืœ ื”ืชืืจื’ื ื•ืช ืขืฆืžื™ืช.
ื–ื”ื• ื ื›ืก ื‘ื ืกื™ืงื”, ืฉืชืœื•ื™
12:14
It's an emergent property which depends on the rules of interaction in the system,
193
734090
5843
ื‘ื›ืœืœื™ ื™ื—ืกื™ ื”ื’ื•ืžืœื™ืŸ ื‘ืžืขืจื›ืช,
12:19
so it's probably not the result of a top-down approach
194
739957
3815
ื›ืš ืฉื™ืฉ ืœืฉืขืจ ืฉื–ื• ืœื ืชื•ืฆืื” ืฉืœ ื”ื•ืจืื•ืช ืžืœืžืขืœื”
12:23
like a global conspiracy.
195
743796
1703
ื›ืžื• ื‘ืงื•ื ืกืคื™ืจืฆื™ื” ืขื•ืœืžื™ืช.
ื”ืžื—ืงืจ ืฉืœื ื• "ื”ื•ื ื™ื•ืชืจ ื‘ื’ื“ืจ ื—ื™ืงื•ื™ ืฉืœ ืคื ื™ ื”ื™ืจื—,
12:27
Our study "is an impression of the moon's surface.
196
747359
2599
12:29
It's not a street map."
197
749982
1309
ืžืืฉืจ ืžืคืช ื“ืจื›ื™ื."
12:31
So you should take the exact numbers in our study with a grain of salt,
198
751315
3810
ืœื›ืŸ ืขืœื™ื›ื ืœืงื—ืช ืืช ื”ืžืกืคืจื™ื ื”ืžื“ื•ื™ืงื™ื ืฉืœ ืžื—ืงืจื ื•
ื‘ืฉืžืฅ ืคืงืคื•ืง,
12:35
yet it "gave us a tantalizing glimpse of a brave new world of finance."
199
755149
6083
ืื•ืœื ื”ื•ื "ื”ืขื ื™ืง ืœื ื• ื”ืฆืฆื” ืžืคืชื”
ืœืขื•ืœื ืคื™ื ื ืกื™ ื—ื“ืฉ ื•ืืžื™ืฅ"
ืื ื• ืžืงื•ื•ื™ื ืฉืคืชื—ื ื• ืืช ื”ืฉืขืจ ืœืžื—ืงืจื™ื ื ื•ืกืคื™ื ื‘ื›ื™ื•ื•ืŸ ื–ื”,
12:43
We hope to have opened the door for more such research in this direction,
200
763448
4029
12:47
so the remaining unknown terrain will be charted in the future.
201
767501
4297
ื›ื“ื™ ืฉืฉืืจ ื”ืืจืฅ ื”ืœื-ื ื•ื“ืขืช ืชืžื•ืคื” ื‘ืขืชื™ื“.
12:52
And this is slowly starting.
202
772296
1581
ื•ื–ื” ืžืชื—ื™ืœ ืื˜-ืื˜.
12:53
We're seeing the emergence of long-term and highly-funded programs
203
773901
5091
ืจืื™ื ื• ืืช ื”ื•ืคืขืชืŸ ืฉืœ ืชื›ื ื™ื•ืช
ืืจื•ื›ื•ืช-ื˜ื•ื•ื— ื•ืขืชื™ืจื•ืช ืžื™ืžื•ืŸ ืฉืžื˜ืจืชืŸ ืœื”ื‘ื™ืŸ
12:59
which aim at understanding our networked world
204
779016
3627
ืืช ืขื•ืœืžื ื• ื”ืžืจื•ืฉืช ืžืŸ ื”ื”ื™ื‘ื˜ ืฉืœ ื”ืžื•ืจื›ื‘ื•ืช.
13:02
from a complexity point of view.
205
782667
1730
ืื‘ืœ ืื ื• ืจืง ื‘ืจืืฉื™ืช ื”ื“ืจืš,
13:05
But this journey has only just begun,
206
785121
1798
13:06
so we will have to wait before we see the first results.
207
786943
3701
ื›ืš ืฉื™ื”ื™ื” ืขืœื™ื ื• ืœื”ืžืชื™ืŸ ื‘ื˜ืจื ื ืจืื” ืืช ื”ืชื•ืฆืื•ืช ื”ืจืืฉื•ื ื•ืช.
13:12
Now there is still a big problem, in my opinion.
208
792670
3179
ื•ืขื“ื™ื™ืŸ ื™ืฉ ื‘ืขื™ื” ืจืฆื™ื ื™ืช, ืœืคื™ ื“ืขืชื™.
ืจืขื™ื•ื ื•ืช ื”ื ื•ื’ืขื™ื ืœื›ืกืคื™ื, ืœื›ืœื›ืœื”, ืœืคื•ืœื™ื˜ื™ืงื”,
13:16
Ideas relating to finance, economics, politics, society,
209
796801
5925
ืœื—ื‘ืจื”, ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืžื•ื›ืชืžื™ื
13:22
are very often tainted by people's personal ideologies.
210
802750
3945
ื‘ืื™ื“ื™ืื•ืœื•ื’ื™ื•ืช ื”ืคืจื˜ื™ื•ืช ืฉืœ ืื ืฉื™ื.
13:28
I really hope that this complexity perspective
211
808708
3528
ืื ื™ ื‘ืืžืช ืžืงื•ื•ื” ืฉื”ื™ื‘ื˜ ื”ืžื•ืจื›ื‘ื•ืช ื”ื–ื”
13:32
allows for some common ground to be found.
212
812857
3587
ื™ืืคืฉืจ ืœืžืฆื•ื ืื™ื–ื” ืžื›ื ื” ืžืฉื•ืชืฃ.
ื™ื”ื™ื” ืžืžืฉ ื ืคืœื ืื ื™ื”ื™ื” ืœื• ื”ื›ื•ื—
13:38
It would be really great if it has the power
213
818237
2237
13:40
to help end the gridlock created by conflicting ideas,
214
820498
5129
ืœืขื–ื•ืจ ืœื—ืกืœ ืืช ื”ืชืงื™ืขื•ืช ืฉื ื’ืจืžืช ืข"ื™ ืจืขื™ื•ื ื•ืช ืกื•ืชืจื™ื,
13:45
which appears to be paralyzing our globalized world.
215
825651
3307
ืฉื›ื ืจืื” ืžืฉืชืงื™ื ืืช ืขื•ืœืžื ื• ื”ื’ืœื•ื‘ืœื™ืกื˜ื™.
13:50
Reality is so complex, we need to move away from dogma.
216
830832
3747
ื”ืžืฆื™ืื•ืช ื›ื” ืžื•ืจื›ื‘ืช, ืขื“ ื›ื™ ืขืœื™ื ื• ืœื”ืชืจื—ืง ืžื“ื•ื’ืžื˜ื™ื•ืช.
13:55
But this is just my own personal ideology.
217
835620
2557
ืื‘ืœ ื–ื• ืจืง ื”ืื™ื“ื™ืื•ืœื•ื’ื™ื” ื”ืคืจื˜ื™ืช ืฉืœื™.
13:58
Thank you.
218
838201
1151
ืชื•ื“ื” ืœื›ื.
13:59
(Applause)
219
839376
6272
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7