What I learned from 2,000 obituaries | Lux Narayan

168,515 views ・ 2017-03-23

TED


請雙擊下方英文字幕播放視頻。

譯者: 庭芝 梁 審譯者: ZHENG Shu
00:12
Joseph Keller used to jog around the Stanford campus,
0
12699
4072
約瑟夫·凱勒習慣在 史丹福大學校園周圍慢跑,
00:16
and he was struck by all the women jogging there as well.
1
16795
4717
在那裡慢跑的其他女性, 引發了他的好奇:
00:21
Why did their ponytails swing from side to side like that?
2
21536
3589
為什麼她們的馬尾總是左右晃動著?
00:25
Being a mathematician, he set out to understand why.
3
25687
3138
身為一名數學家, 他決定要弄清楚原因。
00:28
(Laughter)
4
28849
1151
(笑聲)
00:30
Professor Keller was curious about many things:
5
30024
2306
凱勒教授對許多事情都很好奇:
00:32
why teapots dribble
6
32354
1967
為什麼茶水會順著壺嘴滴下來,
00:34
or how earthworms wriggle.
7
34345
1830
或是蚯蚓如何蠕動。
00:36
Until a few months ago, I hadn't heard of Joseph Keller.
8
36667
3048
幾個月之前, 我還不知道約瑟夫·凱勒是誰。
00:40
I read about him in the New York Times,
9
40401
2852
我在紐約時報看到他的消息,
00:43
in the obituaries.
10
43277
1432
在訃聞版。
00:44
The Times had half a page of editorial dedicated to him,
11
44733
3772
紐約時報的編輯 用了半個版面來向他致敬。
00:48
which you can imagine is premium space for a newspaper of their stature.
12
48529
3922
你可以想像得到, 對一家大報社來說,
這代表著極高的尊崇。
00:53
I read the obituaries almost every day.
13
53188
2342
我幾乎每天都會閱讀訃聞版。
00:56
My wife understandably thinks I'm rather morbid
14
56510
3022
我的妻子曉得我這個 有點病態的習慣:
00:59
to begin my day with scrambled eggs and a "Let's see who died today."
15
59556
4400
每天早晨,我會一邊吃著炒蛋, 一邊閱讀訃聞版:
「我們來看看今天有誰去世了」。
01:03
(Laughter)
16
63980
1150
(笑聲)
01:05
But if you think about it,
17
65845
1292
但是如果你仔細想想,
01:07
the front page of the newspaper is usually bad news,
18
67161
3413
報紙的頭版通常刊登壞消息,
01:10
and cues man's failures.
19
70598
1975
這暗示我們某人失敗了。
01:12
An instance where bad news cues accomplishment
20
72597
2666
然而有一種情況: 壞消息卻暗示了某人的成就,
01:15
is at the end of the paper, in the obituaries.
21
75287
3235
那就是在報紙的最後一版, 在訃聞版。
01:19
In my day job,
22
79225
1364
我平常的工作,
01:20
I run a company that focuses on future insights
23
80613
2476
是經營一間企管顧問公司, 我們關注未來的發展趨勢,
01:23
that marketers can derive from past data --
24
83113
2420
並分析過去所累積的數據──
01:25
a kind of rearview-mirror analysis.
25
85557
2944
這是一種稱為「回顧分析」的技術。
01:28
And we began to think:
26
88912
1155
我們開始思考:
01:30
What if we held a rearview mirror to obituaries from the New York Times?
27
90091
5118
如果我們對紐約時報的訃聞版, 進行回顧分析?
01:36
Were there lessons on how you could get your obituary featured --
28
96334
3468
能否從裡面學到 「如何讓訃聞變得更為獨特」──
01:39
even if you aren't around to enjoy it?
29
99826
1977
即使你以後也看不到自己的訃聞?
01:41
(Laughter)
30
101827
1484
(笑聲)
01:43
Would this go better with scrambled eggs?
31
103335
2628
這樣做能讓訃聞更適合搭配炒蛋嗎?
01:45
(Laughter)
32
105987
1150
(笑聲)
01:47
And so, we looked at the data.
33
107983
2998
所以,我們檢視了數據。
01:51
2,000 editorial, non-paid obituaries
34
111689
4494
我們分析了總共 2000 篇 由編輯部刊登,非付費的訃聞,
01:56
over a 20-month period between 2015 and 2016.
35
116207
3642
範圍是 2015 到 2016 年的 20 個月之間。
01:59
What did these 2,000 deaths -- rather, lives -- teach us?
36
119873
4824
究竟這 2000 個死亡 ──應該說是生命──
教導了我們什麼?
02:04
Well, first we looked at words.
37
124721
2033
好,首先來看訃聞的用字。
02:06
This here is an obituary headline.
38
126778
1761
這是一篇訃聞的標題。
02:08
This one is of the amazing Lee Kuan Yew.
39
128563
2296
這一位是傳奇人物李光耀。
02:10
If you remove the beginning and the end,
40
130883
2522
移除開頭和結尾後的內容,
02:13
you're left with a beautifully worded descriptor
41
133429
3334
只剩短短的幾句話, 一些優美的描述辭彙,
02:16
that tries to, in just a few words, capture an achievement or a lifetime.
42
136787
4675
能讓你捕捉到亡者的成就, 或是他的一生。
02:21
Just looking at these is fascinating.
43
141486
2161
看著這些詞彙就夠令人著迷了。
02:24
Here are a few famous ones, people who died in the last two years.
44
144121
3295
這裡有幾位, 在這兩年內過世的名人。
02:27
Try and guess who they are.
45
147440
1319
試著猜猜看他們是誰。
02:28
[An Artist who Defied Genre]
46
148783
1440
「一位顛覆形式的藝術家」
02:30
That's Prince.
47
150247
1185
這是王子。
02:32
[Titan of Boxing and the 20th Century]
48
152317
1837
「二十世紀的拳擊巨星」
02:34
Oh, yes.
49
154178
1160
是的,
02:35
[Muhammad Ali]
50
155362
1224
拳王阿里。
02:36
[Groundbreaking Architect]
51
156610
1546
「開創未來的建築師」
02:38
Zaha Hadid.
52
158180
1251
札哈.哈蒂。
02:40
So we took these descriptors
53
160663
1748
因此,我們找出這些描述詞,
02:42
and did what's called natural language processing,
54
162435
2524
進行所謂的自然語言處理。
02:44
where you feed these into a program,
55
164983
1771
也就是你將文字輸入程式,
02:46
it throws out the superfluous words --
56
166778
1865
它能剔除不必要的文字, 例如 「the」--
02:48
"the," "and," -- the kind of words you can mime easily in "Charades," --
57
168667
4223
並且剔除在玩「比手畫腳」遊戲時, 很容易以手勢表示的文字,
02:52
and leaves you with the most significant words.
58
172914
2193
最後留下最重要的詞彙。
02:55
And we did it not just for these four,
59
175131
1821
我們不只分析上面這四則,
02:56
but for all 2,000 descriptors.
60
176976
2519
而是分析了所有 2000 則 訃聞的描述詞彙。
02:59
And this is what it looks like.
61
179519
1743
我們來看看結果是什麼樣子。
03:02
Film, theatre, music, dance and of course, art, are huge.
62
182824
4827
電影,戲劇,音樂,舞蹈。 當然「藝術」是最明顯的。
03:08
Over 40 percent.
63
188305
1946
出現的頻率多出 40%。
03:10
You have to wonder why in so many societies
64
190275
2528
你不得不驚訝的是, 為什麼在大多數的社會中,
03:12
we insist that our kids pursue engineering or medicine or business or law
65
192827
4435
我們一直認為讓孩子讀工程、 醫學、商業或法律科系,
03:17
to be construed as successful.
66
197286
1587
才是所謂的成功。
03:19
And while we're talking profession,
67
199691
1693
當我們關注職業時,
03:21
let's look at age --
68
201408
1151
也來看看年齡──
03:22
the average age at which they achieved things.
69
202583
2510
這些人功成名就的平均年齡。
03:25
That number is 37.
70
205117
1846
這個數字是37年。
03:28
What that means is, you've got to wait 37 years ...
71
208094
3656
這意味著什麼? 就是你平均必須等待 37 年……
03:31
before your first significant achievement that you're remembered for --
72
211774
3395
才能獲得第一個成就,
03:35
on average --
73
215193
1151
44 年後,
03:36
44 years later, when you die at the age of 81 --
74
216368
2478
當你過世時才會被紀念,
03:38
on average.
75
218870
1168
平均年齡是 81 歲。
03:40
(Laughter)
76
220062
1001
(笑聲)
03:41
Talk about having to be patient.
77
221087
1684
這告訴我們要有耐心。
03:42
(Laughter)
78
222795
1057
(笑聲)
03:43
Of course, it varies by profession.
79
223876
2089
當然,這會因職業而異。
03:46
If you're a sports star,
80
226386
1193
如果你是體育明星,
03:47
you'll probably hit your stride in your 20s.
81
227603
2127
你可能會在 20 多歲打破紀錄。
03:49
And if you're in your 40s like me,
82
229754
2645
如果你和我一樣已經 40 多歲了,
03:52
you can join the fun world of politics.
83
232423
1991
你可以加入有趣的政治圈。
03:54
(Laughter)
84
234438
1056
(笑聲)
03:55
Politicians do their first and sometimes only commendable act in their mid-40s.
85
235518
3915
政治家完成他們的第一項成就, 可能也是唯一的一次,
大約是在45歲左右。
03:59
(Laughter)
86
239457
1257
(笑聲)
04:00
If you're wondering what "others" are,
87
240738
1937
如果你想知道「其他職業」是什麼,
04:02
here are some examples.
88
242699
1476
這裡有一些例子。
04:04
Isn't it fascinating, the things people do
89
244641
2116
這些人所做的,
04:06
and the things they're remembered for?
90
246781
1882
和他們被紀念的事蹟, 是不是很令人著迷?
04:08
(Laughter)
91
248687
1752
(笑聲)
04:11
Our curiosity was in overdrive,
92
251956
1844
我們的好奇心被點燃了,
04:13
and we desired to analyze more than just a descriptor.
93
253824
3788
我們不只想要分析描述詞。
04:18
So, we ingested the entire first paragraph of all 2,000 obituaries,
94
258818
4946
所以,我們輸入了 2000 則 訃聞的第一段全文,
04:23
but we did this separately for two groups of people:
95
263788
2774
但是將亡者分為兩群:
04:26
people that are famous and people that are not famous.
96
266586
2777
知名人士,以及非知名人士。
04:29
Famous people -- Prince, Ali, Zaha Hadid --
97
269387
2689
知名人士例如:王子、 阿里、札哈.哈蒂。
04:32
people who are not famous are people like Jocelyn Cooper,
98
272100
4235
非知名人士例如:喬斯林庫柏、
04:36
Reverend Curry
99
276359
1154
嘉里牧師
04:37
or Lorna Kelly.
100
277537
1169
或羅娜.凱利。
04:38
I'm willing to bet you haven't heard of most of their names.
101
278730
3188
我敢打賭,你絕對沒聽過 大多數這些人的名字。
04:41
Amazing people, fantastic achievements, but they're not famous.
102
281942
3812
這些人有著令人驚訝,稀奇古怪的成就,
但是他們並不出名。
04:46
So what if we analyze these two groups separately --
103
286540
2788
因此,如果我們分析一下這兩群人,
04:49
the famous and the non-famous?
104
289352
1525
知名和非知名人士,
04:50
What might that tell us?
105
290901
1419
可能得到什麼結果?
04:52
Take a look.
106
292344
1240
我們來看一下。
04:56
Two things leap out at me.
107
296376
1469
有兩個結果讓我驚訝。
04:58
First:
108
298389
1170
第一個:
04:59
"John."
109
299926
1198
「約翰」。
05:01
(Laughter)
110
301148
1300
(笑聲)
05:03
Anyone here named John should thank your parents --
111
303734
3388
如果這裡有人也叫約翰的, 應該感謝你的父母──
05:07
(Laughter)
112
307146
1329
(笑聲)
05:08
and remind your kids to cut out your obituary when you're gone.
113
308499
3082
而且記得提醒你的孩子, 當你過世時要把訃聞剪下來。
05:12
And second:
114
312881
1356
另一個結果是:
05:15
"help."
115
315669
1154
「幫助」。
05:18
We uncovered, many lessons from lives well-led,
116
318344
3465
我們發現了,這些已經逝去, 在報紙上令我們緬懷的事蹟,
05:21
and what those people immortalized in print could teach us.
117
321833
2836
教導我們許多事情, 教導我們如何好好活著。
05:24
The exercise was a fascinating testament to the kaleidoscope that is life,
118
324693
4738
這次的實驗就是 萬花筒般生命的迷人見證。
05:29
and even more fascinating
119
329455
2715
甚至更迷人的是,
05:32
was the fact that the overwhelming majority of obituaries
120
332194
3068
在大多數的訃聞中,
05:35
featured people famous and non-famous,
121
335286
2998
無論是知名或非知名人士,
05:38
who did seemingly extraordinary things.
122
338308
2433
他們所做的不平凡事蹟。
05:41
They made a positive dent in the fabric of life.
123
341394
3110
他們在不停編織的人生中, 留下了有意義的印記。
05:44
They helped.
124
344528
1237
他們幫助他人。
05:46
So ask yourselves as you go back to your daily lives:
125
346592
2591
所以問問自己, 當你回到日常生活中:
05:49
How am I using my talents to help society?
126
349207
2920
我如何運用我的才華, 幫助這個社會?
05:52
Because the most powerful lesson here is,
127
352151
2973
因為在這裡,最重要的一課是:
05:55
if more people lived their lives trying to be famous in death,
128
355148
4336
如果有更多的人, 在活著時努力過著自己的人生,
而能在過世時變得知名,
05:59
the world would be a much better place.
129
359508
2605
這個世界將會變得更加美好。
06:02
Thank you.
130
362882
1169
謝謝大家。
06:04
(Applause)
131
364075
2848
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog