Jennifer Healey: If cars could talk, accidents might be avoidable

48,788 views ・ 2013-04-25

TED


Za predvajanje videoposnetka dvakrat kliknite na spodnje angleške podnapise.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
Translator: Jure Mavrič Reviewer: Kaja Kren
00:12
Let's face it:
1
12703
1914
Priznajmo si:
00:14
Driving is dangerous.
2
14617
2445
Vožnja je nevarna.
00:17
It's one of the things that we don't like to think about,
3
17062
3098
Je ena od stvari o katerih ne razmišljamo radi,
00:20
but the fact that religious icons and good luck charms
4
20160
3652
ampak dejstvo, da se religiozne ikone in nalepke za srečo
00:23
show up on dashboards around the world
5
23812
4790
pojavljajo na armaturnih ploščah po svetu,
00:28
betrays the fact that we know this to be true.
6
28602
4137
priča o dejstvu, da se tega zavedamo.
00:32
Car accidents are the leading cause of death
7
32739
3594
Prometne nesreče so glavni povzročitelj smrti
00:36
in people ages 16 to 19 in the United States --
8
36333
4170
pri ljudeh od 16 do 19 let, v Združenih Državah --
00:40
leading cause of death --
9
40503
2843
glavni vzrok smrti --
00:43
and 75 percent of these accidents have nothing to do
10
43346
3863
in 75 procentov teh nesreč ni v povezavi
00:47
with drugs or alcohol.
11
47209
2285
z drogami ali alkoholom.
00:49
So what happens?
12
49494
2261
Torej, kaj se dogaja?
00:51
No one can say for sure, but I remember my first accident.
13
51755
4219
Nihče ne more zagotovo vedeti, ampak spomnim se svoje prve nesreče.
00:55
I was a young driver out on the highway,
14
55974
3803
Bila sem mladi voznik na avtocesti
00:59
and the car in front of me, I saw the brake lights go on.
15
59777
2258
in pri avtu pred mano sem videla, da so se prižgale zavorne luči.
01:02
I'm like, "Okay, all right, this guy is slowing down,
16
62035
1800
Pomislila sem "V redu, ta upočasnjuje,
01:03
I'll slow down too."
17
63835
1282
tudi samo bom upočasnila."
01:05
I step on the brake.
18
65117
1926
Pritisnila sem na zavoro.
01:07
But no, this guy isn't slowing down.
19
67043
2254
Ampak ne, ta pred mano ne upočasnjuje.
01:09
This guy is stopping, dead stop, dead stop on the highway.
20
69297
3178
Ta se ustavlja, popolnoma, ustavlja se sredi avtoceste.
01:12
It was just going 65 -- to zero?
21
72475
2540
Šel je iz 65 (100 km/h) -- do nič?
01:15
I slammed on the brakes.
22
75015
1520
Pritisnila sem na zavoro.
01:16
I felt the ABS kick in, and the car is still going,
23
76535
3059
Čutila sem, da se je uklopil ABS in avto je še kar peljal,
01:19
and it's not going to stop, and I know it's not going to stop,
24
79594
2696
in ne bo se ustavil, in vem, da se ne bo ustavil,
01:22
and the air bag deploys, the car is totaled,
25
82290
2939
in zračna blazina se je sprožila, avto je bil totalka.
01:25
and fortunately, no one was hurt.
26
85229
3557
Na srečo nihče ni bil poškodovan.
01:28
But I had no idea that car was stopping,
27
88786
4211
Ampak nisem vedela, da se bo tisti avto ustavil,
01:32
and I think we can do a lot better than that.
28
92997
3645
in mislim, da smo sposobni česa boljšega.
01:36
I think we can transform the driving experience
29
96642
4145
Mislim, da lahko preoblikujemo vožnjo,
01:40
by letting our cars talk to each other.
30
100787
3879
s tem, da dovolimo, da se naši avti pogovarjajo med sabo.
01:44
I just want you to think a little bit
31
104666
1424
Želim, da malo pomislite
01:46
about what the experience of driving is like now.
32
106090
2888
kako je dandanes voziti.
01:48
Get into your car. Close the door. You're in a glass bubble.
33
108978
4028
Sedeš v avto. Zapreš vrata. Si v steklenem mehurčku.
01:53
You can't really directly sense the world around you.
34
113006
2916
Ne moreš imeti neposrednega občutka sveta okoli tebe.
01:55
You're in this extended body.
35
115922
2181
Si v tem povečanem telesu.
01:58
You're tasked with navigating it down
36
118103
2163
Tvoja naloga je, da ga usmerjaš
02:00
partially-seen roadways,
37
120266
2056
po delno vidnih cestah,
02:02
in and amongst other metal giants, at super-human speeds.
38
122322
4424
med drugimi jeklenimi velikani, pri super-človeški hitrosti.
02:06
Okay? And all you have to guide you are your two eyes.
39
126746
4480
Ja? In vse kar imaš kot vodilo, sta tvoji dve očesi.
02:11
Okay, so that's all you have,
40
131226
1762
Torej, to je vse kar imaš,
02:12
eyes that weren't really designed for this task,
41
132988
1735
oči, ki niso bile ustvarjene za to nalogo.
02:14
but then people ask you to do things like,
42
134723
3751
Potem ljudje rečejo, stvari, kot so:
02:18
you want to make a lane change,
43
138474
1549
Hočeš zamenjati pas,
02:20
what's the first thing they ask you do?
44
140023
2321
kaj je prva stvar, ki ti jo naročijo?
02:22
Take your eyes off the road. That's right.
45
142344
3095
Nehaj gledati na cesto. Tako je prav.
02:25
Stop looking where you're going, turn,
46
145439
2096
Ne glej kam greš, obrni se,
02:27
check your blind spot,
47
147535
2018
preveri mrtve kote,
02:29
and drive down the road without looking where you're going.
48
149553
3471
in vozi po cesti, ne da bi gledal kam pelješ.
02:33
You and everyone else. This is the safe way to drive.
49
153024
3135
Ti in vsi ostali. To je varen način vožnje.
02:36
Why do we do this? Because we have to,
50
156159
2241
Zakaj to počnemo? Ker moramo.
02:38
we have to make a choice, do I look here or do I look here?
51
158400
2579
Moram sprejeti odločitev, naj gledam sem ali naj gledam sem.
02:40
What's more important?
52
160979
1521
Kaj je bolj pomembno?
02:42
And usually we do a fantastic job
53
162500
2711
In po navadi nam gre odlično
02:45
picking and choosing what we attend to on the road.
54
165211
3769
z izbiranjem in razmišljanjem čemu na cesti se posvetimo.
02:48
But occasionally we miss something.
55
168980
3650
Ampak včasih kaj spregledamo.
02:52
Occasionally we sense something wrong or too late.
56
172630
4461
Včasih kaj zaznamo narobe ali pa prepozno.
02:57
In countless accidents, the driver says,
57
177091
1988
V nešteto nesrečah, voznik pravi:
02:59
"I didn't see it coming."
58
179079
2308
"Nisem ga videl."
03:01
And I believe that. I believe that.
59
181387
3281
In temu verjamem. Temu verjamem.
03:04
We can only watch so much.
60
184668
2925
Vsega ne moremo videti.
03:07
But the technology exists now that can help us improve that.
61
187593
5144
Ampak danes imamo tehnologijo, ki nam lahko pomaga, da to izboljšamo.
03:12
In the future, with cars exchanging data with each other,
62
192737
4296
V prihodnosti, ko si bodo avti izmenjevali podatke,
03:17
we will be able to see not just three cars ahead
63
197033
3928
ne bomo videli le za tri avte naprej,
03:20
and three cars behind, to the right and left,
64
200961
1594
ampak za tri avte nazaj, v desno in levo,
03:22
all at the same time, bird's eye view,
65
202555
3166
vse to hkrati, iz ptičje perspektive,
03:25
we will actually be able to see into those cars.
66
205721
3128
pravzaprav bomo videli v tiste avte.
03:28
We will be able to see the velocity of the car in front of us,
67
208849
2371
Videli bomo lahko hitrost avta, ki je pred nami,
03:31
to see how fast that guy's going or stopping.
68
211220
3240
da vidimo kako hitro pospešuje ali se ustavlja.
03:34
If that guy's going down to zero, I'll know.
69
214460
4510
Če se popolnoma ustavlja, bom vedela.
03:38
And with computation and algorithms and predictive models,
70
218970
3859
In z izračuni in algoritmi in modeli predvidevanja,
03:42
we will be able to see the future.
71
222829
3273
bomo lahko videli v prihodnost.
03:46
You may think that's impossible.
72
226102
1556
Lahko se vam zdi nemogoče.
03:47
How can you predict the future? That's really hard.
73
227658
2731
Kako lahko predvidiš prihodnost? To je težko.
03:50
Actually, no. With cars, it's not impossible.
74
230389
3619
V bistvu ne. Z avti ni nemogoče.
03:54
Cars are three-dimensional objects
75
234008
2732
Avti so tridimenzionalni predmeti
03:56
that have a fixed position and velocity.
76
236740
2332
s stalnim položajem in hitrostjo.
03:59
They travel down roads.
77
239072
1631
Potujejo po cesti.
04:00
Often they travel on pre-published routes.
78
240703
2412
Pogosto potujejo po vnaprej zastavljeni poti.
04:03
It's really not that hard to make reasonable predictions
79
243115
3938
Res ni tako težko ustvariti razumnih predvidevanj
04:07
about where a car's going to be in the near future.
80
247053
2864
glede tega, kje bo avto v prihodnosti.
04:09
Even if, when you're in your car
81
249917
2002
Tudi, če si v avtu
04:11
and some motorcyclist comes -- bshoom! --
82
251919
1994
in pride mimo motorist --bshoom!--
04:13
85 miles an hour down, lane-splitting --
83
253913
2296
85 milj na uro (140 km/h).
04:16
I know you've had this experience --
84
256209
2547
Vem, da ste to že doživeli --
04:18
that guy didn't "just come out of nowhere."
85
258756
2603
ta motorist ni "kar prišel od nikoder".
04:21
That guy's been on the road probably for the last half hour.
86
261359
3643
Ta motorist je bil na cesti verjetno zadnje pol ure.
04:25
(Laughter)
87
265002
1190
(Smeh)
04:26
Right? I mean, somebody's seen him.
88
266192
3589
Res? Mislim, gotovo ga je nekdo videl.
04:29
Ten, 20, 30 miles back, someone's seen that guy,
89
269781
2768
10, 20, 30 milj nazaj, nekdo ga je videl
04:32
and as soon as one car sees that guy
90
272549
2384
in takoj, ko ga en avto vidi
04:34
and puts him on the map, he's on the map --
91
274933
2231
in ga postavi na zemljevid, je na zemljevidu --
04:37
position, velocity,
92
277164
2176
položaj, hitrost,
04:39
good estimate he'll continue going 85 miles an hour.
93
279340
2321
lahko rečemo, da bo pot nadaljeval pri 85 mph (140 km/h).
04:41
You'll know, because your car will know, because
94
281661
2184
Ti boš vedel, ker bo vedel tvoj avto, ker
04:43
that other car will have whispered something in his ear,
95
283845
2275
mu bo tisti drugi avto zašepetal na uho,
04:46
like, "By the way, five minutes,
96
286120
1923
npr.: "Mimogrede, pet minut,
04:48
motorcyclist, watch out."
97
288043
2775
motorist, pazi."
04:50
You can make reasonable predictions about how cars behave.
98
290818
2703
Lahko narediš razumna predvidevanja o vedenju avtov.
04:53
I mean, they're Newtonian objects.
99
293521
1365
Mislim, saj so 'Newtonski' predmeti.
04:54
That's very nice about them.
100
294886
2909
To je pri njih zelo prikladno.
04:57
So how do we get there?
101
297795
3034
Torej, kako do tega?
05:00
We can start with something as simple
102
300829
2266
Začnemo lahko z nečim preprostim,
05:03
as sharing our position data between cars,
103
303095
2870
kot je izmenjava podatkov o polažaju med avti,
05:05
just sharing GPS.
104
305965
1892
samo z delitvijo GPS-ja.
05:07
If I have a GPS and a camera in my car,
105
307857
2444
Če imam GPS in kamero v avtu,
05:10
I have a pretty precise idea of where I am
106
310301
2231
se mi kar zdi kje sem
05:12
and how fast I'm going.
107
312532
1732
in kako hitro peljem.
05:14
With computer vision, I can estimate where
108
314264
1657
Z računalniškim pogledom lahko predvidim kje
05:15
the cars around me are, sort of, and where they're going.
109
315921
3537
so avti okoli mene, nekako, in kam grejo.
05:19
And same with the other cars.
110
319458
970
In enako je z ostalimi avti.
05:20
They can have a precise idea of where they are,
111
320428
1814
Lahko natančno vedo kje so,
05:22
and sort of a vague idea of where the other cars are.
112
322242
2146
in se jim zdi kje so ostali avti.
05:24
What happens if two cars share that data,
113
324388
3231
Kaj se zgodi, če si dva avta delita podatke,
05:27
if they talk to each other?
114
327619
1955
če se pogovarjata?
05:29
I can tell you exactly what happens.
115
329574
2778
Lahko vam povem natanko kaj se zgodi.
05:32
Both models improve.
116
332352
2339
Oba modela se izboljšata.
05:34
Everybody wins.
117
334691
2055
Vsi imajo korist.
05:36
Professor Bob Wang and his team
118
336746
2577
Profeso Bob Wang in njegova ekipa
05:39
have done computer simulations of what happens
119
339323
2738
so naredili računalniško simulacijo kaj se zgodi,
05:42
when fuzzy estimates combine, even in light traffic,
120
342061
3431
ko se približna predvidenja združi, celo pri malo prometa,
05:45
when cars just share GPS data,
121
345492
2624
kjer si avti le delijo GPS podatke.
05:48
and we've moved this research out of the computer simulation
122
348116
2513
In to raziskavo smo premaknili iz računalniške simulacije
05:50
and into robot test beds that have the actual sensors
123
350629
3027
v robotske testne neprave s senzorji,
05:53
that are in cars now on these robots:
124
353656
3133
ki so v avtih, zdaj na te robote:
05:56
stereo cameras, GPS,
125
356789
1838
stereo kamere, GPS
05:58
and the two-dimensional laser range finders
126
358627
1874
in dvodimenzionalne laserske pregledovalce območja,
06:00
that are common in backup systems.
127
360501
2240
ki so navadno v vzvratnih sistemih.
06:02
We also attach a discrete short-range communication radio,
128
362741
4484
Dodali smo tudi diskreten radio za komunikacijo na kratke razdalje,
06:07
and the robots talk to each other.
129
367225
1909
in roboti se med sabo pogovarjajo.
06:09
When these robots come at each other,
130
369134
1539
Ko se ti roboti približajo eden drugemu,
06:10
they track each other's position precisely,
131
370673
2971
si izmenjajo natančne podatke o položaju
06:13
and they can avoid each other.
132
373644
2737
in lahko se eden drugemu izogibajo.
06:16
We're now adding more and more robots into the mix,
133
376381
3226
Zdaj dodajamo več in več robotov
06:19
and we encountered some problems.
134
379607
1471
in odkrili smo nekaj problemov.
06:21
One of the problems, when you get too much chatter,
135
381078
2359
Eden od problemov se pojavi, ko je preveč tega pogovarjanja,
06:23
it's hard to process all the packets, so you have to prioritize,
136
383437
3728
potem je težko obdelati toliko podatkov, zato je treba nekatere prioritizirati
06:27
and that's where the predictive model helps you.
137
387165
2357
in s tem nam pomagajo modeli predvidevanja.
06:29
If your robot cars are all tracking the predicted trajectories,
138
389522
4372
Če vaši robotski avti sledijo predvidenim potem,
06:33
you don't pay as much attention to those packets.
139
393894
1767
se ni potrebno posvečati vsem njim.
06:35
You prioritize the one guy
140
395661
1703
Prednost daš tistemu,
06:37
who seems to be going a little off course.
141
397364
1333
za katerega se vidi, da mogoče ne bo sledil načrtu.
06:38
That guy could be a problem.
142
398697
2526
Ta zna biti problem.
06:41
And you can predict the new trajectory.
143
401223
3002
In lahko predvidiš novo pot.
06:44
So you don't only know that he's going off course, you know how.
144
404225
2763
Tako da ne veš samo da pelje izven načrta, ampak veš kako.
06:46
And you know which drivers you need to alert to get out of the way.
145
406988
3725
In veš katere voznike je potrebno opozoriti, da se umaknejo s poti.
06:50
And we wanted to do -- how can we best alert everyone?
146
410713
2633
In hoteli smo narediti -- kako lahko najbolje opozorimo vse?
06:53
How can these cars whisper, "You need to get out of the way?"
147
413346
3183
Kako lahko ti avti šepetajo "Moraš se umakniti s poti."?
06:56
Well, it depends on two things:
148
416529
1517
No, odvisno je od dveh stvari:
06:58
one, the ability of the car,
149
418046
2169
prva je zmožnost avta
07:00
and second the ability of the driver.
150
420215
3217
in druga je sposobnost voznika.
07:03
If one guy has a really great car,
151
423432
1505
Če ima nekdo res dober avto,
07:04
but they're on their phone or, you know, doing something,
152
424937
2925
ampak telefonira ali počne kaj drugega,
07:07
they're not probably in the best position
153
427862
1930
potem ni v najboljšem položaju,
07:09
to react in an emergency.
154
429792
2970
da bi reagiral v sili.
07:12
So we started a separate line of research
155
432762
1665
Zato smo začeli ločeno raziskavo
07:14
doing driver state modeling.
156
434427
2551
o modeliranju voznikovega stanja.
07:16
And now, using a series of three cameras,
157
436978
2329
In zdaj, z uporabo treh kamer
07:19
we can detect if a driver is looking forward,
158
439307
2270
zaznamo, če voznik gleda naprej,
07:21
looking away, looking down, on the phone,
159
441577
2860
stran, dol, na telefon
07:24
or having a cup of coffee.
160
444437
3061
ali sreba kavo.
07:27
We can predict the accident
161
447498
2070
Lahko predvidimo nesreče
07:29
and we can predict who, which cars,
162
449568
3651
in lahko predvidimo kdo in kateri avto,
07:33
are in the best position to move out of the way
163
453219
3486
sta na najboljšem položaju, da se umakneta
07:36
to calculate the safest route for everyone.
164
456705
3009
za najvarnejšo pot vseh.
07:39
Fundamentally, these technologies exist today.
165
459714
4635
Temeljno, te tehnologije danes obstajajo.
07:44
I think the biggest problem that we face
166
464349
2824
Mislim, da je največja težava s katero se soočamo
07:47
is our own willingness to share our data.
167
467173
3013
naša lastna volja za izmenjavo podatkov.
07:50
I think it's a very disconcerting notion,
168
470186
2631
Misli, da gre za zaskrbljujoče mišljenje,
07:52
this idea that our cars will be watching us,
169
472817
2386
ta misel, da nas bodo avti opazovali,
07:55
talking about us to other cars,
170
475203
3371
da bodo govorili o nas z drugimi avti,
07:58
that we'll be going down the road in a sea of gossip.
171
478574
3427
da se bomo vozili po cesti v morju govoric.
08:02
But I believe it can be done in a way that protects our privacy,
172
482001
3897
Ampak verjamem, da je lahko storjeno tako, da je naša privatnost zaščitena,
08:05
just like right now, when I look at your car from the outside,
173
485898
3741
tako kot zdaj, ko pogledam vaš avto od zunaj,
08:09
I don't really know about you.
174
489639
2363
v resnici ne vem nič o vas.
08:12
If I look at your license plate number,
175
492002
1137
Če pogledam vašo registracijo,
08:13
I don't really know who you are.
176
493139
1886
ne vem kdo ste.
08:15
I believe our cars can talk about us behind our backs.
177
495025
4249
Verjamem, da lahko naši avti govorijo o nas za našimi hrbti.
08:19
(Laughter)
178
499274
2975
(Smeh)
08:22
And I think it's going to be a great thing.
179
502249
3185
In mislim, da bo to dobro.
08:25
I want you to consider for a moment
180
505434
1650
Hočem, da razmislite za trenutek,
08:27
if you really don't want the distracted teenager behind you
181
507084
4118
če res nočete, da bi raztresena najstnica za vami
08:31
to know that you're braking,
182
511202
2120
vedela, da zavirate,
08:33
that you're coming to a dead stop.
183
513322
2924
da se popolnoma ustavljate.
08:36
By sharing our data willingly,
184
516246
2741
S tem, da delimo podatke,
08:38
we can do what's best for everyone.
185
518987
2812
storimo kar je najboljše za vse.
08:41
So let your car gossip about you.
186
521799
3076
Torej, dovolite, da vas vaš avto opravlja.
08:44
It's going to make the roads a lot safer.
187
524875
3038
S tem bodo ceste veliko varnejše.
08:47
Thank you.
188
527913
1791
Hvala.
08:49
(Applause)
189
529704
4985
(Aplavz)
O tej spletni strani

Na tem mestu boste našli videoposnetke na YouTubu, ki so uporabni za učenje angleščine. Ogledali si boste lekcije angleščine, ki jih poučujejo vrhunski učitelji z vsega sveta. Z dvoklikom na angleške podnapise, ki so prikazani na vsaki strani z videoposnetki, lahko predvajate videoposnetek od tam. Podnapisi se pomikajo sinhronizirano s predvajanjem videoposnetka. Če imate kakršne koli pripombe ali zahteve, nam pišite prek tega obrazca za stike.

https://forms.gle/WvT1wiN1qDtmnspy7