Jennifer Healey: If cars could talk, accidents might be avoidable

48,788 views ใƒป 2013-04-25

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Guy Sella ืžื‘ืงืจ: Ido Dekkers
00:12
Let's face it:
1
12703
1914
ื‘ื•ืื• ื ื•ื“ื” ื‘ื–ื”:
00:14
Driving is dangerous.
2
14617
2445
ื ื”ื™ื’ื” ื”ื™ื ื“ื‘ืจ ืžืกื•ื›ืŸ.
00:17
It's one of the things that we don't like to think about,
3
17062
3098
ื–ื” ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืœื ืื•ื”ื‘ื™ื ืœื—ืฉื•ื‘ ืขืœื™ื”ื,
00:20
but the fact that religious icons and good luck charms
4
20160
3652
ืื‘ืœ ื”ืขื•ื‘ื“ื” ืฉืกืžืœื™ื ื“ืชื™ื™ื ื•ืงืžืขื•ืช ืฉืœ ืžื–ืœ ื˜ื•ื‘
00:23
show up on dashboards around the world
5
23812
4790
ืžื•ืคื™ืขื™ื ืขืœ ืœื•ื—ื•ืช ืžื—ื•ื•ื ื™ื ื‘ืจื—ื‘ื™ ื”ืขื•ืœื
00:28
betrays the fact that we know this to be true.
6
28602
4137
ืžืกื’ื™ืจื” ืืช ื”ืขื•ื‘ื“ื” ืฉืื ื• ื™ื•ื“ืขื™ื ืฉื–ื” ื ื›ื•ืŸ.
00:32
Car accidents are the leading cause of death
7
32739
3594
ืชืื•ื ื•ืช ื“ืจื›ื™ื ื”ื™ื ืŸ ื’ื•ืจื ื”ืžื•ื•ืช ื”ืขื™ืงืจื™
00:36
in people ages 16 to 19 in the United States --
8
36333
4170
ื‘ืงืจื‘ ื ืขืจื™ื ื‘ื’ื™ืœืื™ื 16 ืขื“ 19 ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช -
00:40
leading cause of death --
9
40503
2843
ื’ื•ืจื ื”ืžื•ื•ืช ื”ืขื™ืงืจื™ -
00:43
and 75 percent of these accidents have nothing to do
10
43346
3863
ื•-75% ืžื”ืชืื•ื ื•ืช ื”ืœืœื• ืื™ื ืŸ ืงืฉื•ืจื•ืช
00:47
with drugs or alcohol.
11
47209
2285
ืœืกืžื™ื ืื• ืืœื›ื•ื”ื•ืœ.
00:49
So what happens?
12
49494
2261
ืื– ืžื” ืงื•ืจื”?
00:51
No one can say for sure, but I remember my first accident.
13
51755
4219
ืืฃ ืื—ื“ ืœื ื™ื›ื•ืœ ืœื•ืžืจ ื‘ื•ื•ื“ืื•ืช, ืื‘ืœ ืื ื™ ื–ื•ื›ืจืช ืืช ื”ืชืื•ื ื” ื”ืจืืฉื•ื ื” ืฉืœื™.
00:55
I was a young driver out on the highway,
14
55974
3803
ื”ื™ื™ืชื™ ื ื”ื’ืช ืฆืขื™ืจื”, ื‘ื›ื‘ื™ืฉ ื”ืžื”ื™ืจ,
00:59
and the car in front of me, I saw the brake lights go on.
15
59777
2258
ื•ื”ืจื›ื‘ ืฉื ืกืข ืžื•ืœื™ - ืจืื™ืชื™ ืืช ืื•ืจื•ืช ื”ื‘ืœืžื™ื ืฉืœื• ื ื“ืœืงื™ื.
01:02
I'm like, "Okay, all right, this guy is slowing down,
16
62035
1800
ืืžืจืชื™ ืœืขืฆืžื™, "ื‘ืกื“ืจ, ื”ื‘ื—ื•ืจ ืžืื˜,
01:03
I'll slow down too."
17
63835
1282
"ืื ื™ ืืื˜ ื’ื ื›ืŸ."
01:05
I step on the brake.
18
65117
1926
ืœื—ืฆืชื™ ืขืœ ื”ื‘ืœื.
01:07
But no, this guy isn't slowing down.
19
67043
2254
ืื‘ืœ ืœื, ื”ื‘ื—ื•ืจ ืœื ืžืื˜.
01:09
This guy is stopping, dead stop, dead stop on the highway.
20
69297
3178
ื”ื‘ื—ื•ืจ ืขื•ืฆืจ, ืขืฆื™ืจื” ืคืชืื•ืžื™ืช, ืขืฆื™ืจื” ืคืชืื•ืžื™ืช ื‘ืืžืฆืข ื›ื‘ื™ืฉ ืžื”ื™ืจ.
01:12
It was just going 65 -- to zero?
21
72475
2540
ื–ื” ืคืฉื•ื˜ ื™ืจื“ ืž-100 ืงืž"ืฉ ืœ-0.
01:15
I slammed on the brakes.
22
75015
1520
ืœื—ืฆืชื™ ื‘ื—ื•ื–ืงื” ืขืœ ื”ื‘ืœืžื™ื.
01:16
I felt the ABS kick in, and the car is still going,
23
76535
3059
ื”ืจื’ืฉืชื™ ืืช ื”-ABS ื ื›ื ืก ืœืคืขื•ืœื”, ื•ื”ืžื›ื•ื ื™ืช ืขื“ื™ื™ืŸ ื”ืžืฉื™ื›ื” ื‘ื ืกื™ืขื”,
01:19
and it's not going to stop, and I know it's not going to stop,
24
79594
2696
ื•ื”ื™ื ืœื ื”ืชื›ื•ื•ื ื” ืœืขืฆื•ืจ, ื•ืื ื™ ื™ื•ื“ืขืช ืฉื–ื” ืœื ืขื•ืžื“ ืœืขืฆื•ืจ,
01:22
and the air bag deploys, the car is totaled,
25
82290
2939
ื•ื›ืจื™ืช ื”ืื•ื•ื™ืจ ื ืคืชื—ื”, ื•ื”ืžื›ื•ื ื™ืช ื”ืชืจืกืงื”,
01:25
and fortunately, no one was hurt.
26
85229
3557
ื•ืœืžืจื‘ื” ื”ืžื–ืœ - ืื™ืฉ ืœื ื ืคื’ืข.
01:28
But I had no idea that car was stopping,
27
88786
4211
ืื‘ืœ ืœื ื”ื™ื” ืœื™ ืžื•ืฉื’ ืฉื”ืจื›ื‘ ืžืชื›ื•ื•ืŸ ืœืขืฆื•ืจ,
01:32
and I think we can do a lot better than that.
28
92997
3645
ื•ืื ื™ ื—ื•ืฉื‘ืช ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘ ืžื–ื”.
01:36
I think we can transform the driving experience
29
96642
4145
ืื ื™ ื—ื•ืฉื‘ืช ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฉื ื•ืช ืืช ื—ื•ื•ื™ืช ื”ื ื”ื™ื’ื”
01:40
by letting our cars talk to each other.
30
100787
3879
ืข"ื™ ื›ืš ืฉื ื™ืชืŸ ืœืžื›ื•ื ื™ื•ืช ืฉืœื ื• ืœื“ื‘ืจ ื–ื• ืขื ื–ื•.
01:44
I just want you to think a little bit
31
104666
1424
ืื ื™ ืจืง ืจื•ืฆื” ืฉืชื—ืฉื‘ื• ืงืฆืช
01:46
about what the experience of driving is like now.
32
106090
2888
ืžื”ื™ ื—ื•ื•ื™ืช ื”ื ื”ื™ื’ื” ืฉืœื ื• ื”ื™ื•ื.
01:48
Get into your car. Close the door. You're in a glass bubble.
33
108978
4028
ื ื›ื ืกื™ื ืœืžื›ื•ื ื™ืช. ืกื•ื’ืจื™ื ืืช ื”ื“ืœืช. ืืชื ื‘ืชื•ืš ื‘ื•ืขืช ื–ื›ื•ื›ื™ืช.
01:53
You can't really directly sense the world around you.
34
113006
2916
ืืชื ืœื ื‘ืืžืช ื™ื›ื•ืœื™ื ืœื—ื•ืฉ ืืช ื”ืขื•ืœื ืกื‘ื™ื‘ื›ื.
01:55
You're in this extended body.
35
115922
2181
ืืชื ื‘ืชื•ืš ื”ื’ื•ืฃ ื”ืžื•ืจื—ื‘ ื”ื–ื”.
01:58
You're tasked with navigating it down
36
118103
2163
ืืชื ืืžื•ื ื™ื ืขืœ ื ื™ื•ื•ื˜ื•,
02:00
partially-seen roadways,
37
120266
2056
ืจื•ืื™ื ืืช ื”ื“ืจืš ื‘ืื•ืคืŸ ื—ืœืงื™,
02:02
in and amongst other metal giants, at super-human speeds.
38
122322
4424
ื‘ืชื•ืš ืกื‘ื™ื‘ื” ืฉืœ ืขื ืงื™ ืžืชื›ืช ื ื•ืกืคื™ื, ื‘ืžื”ื™ืจื•ืช ืขืœ-ืื ื•ืฉื™ืช.
02:06
Okay? And all you have to guide you are your two eyes.
39
126746
4480
ื‘ืกื“ืจ? ื•ื›ืœ ืžื” ืฉื™ื›ื•ืœ ืœื”ื“ืจื™ืš ืื•ืชื›ื ื”ืŸ ื–ื•ื’ ืขื™ื ื™ื™ื›ื.
02:11
Okay, so that's all you have,
40
131226
1762
ื‘ืกื“ืจ, ืื– ื–ื” ื›ืœ ืžื” ืฉื™ืฉ ืœื›ื,
02:12
eyes that weren't really designed for this task,
41
132988
1735
ืขื™ื ื™ื™ื ืฉืœื ื‘ืืžืช ืžื™ื•ืขื“ื•ืช ืœืžืฉื™ืžื” ื”ื–ื•,
02:14
but then people ask you to do things like,
42
134723
3751
ืื‘ืœ ืื– ืื ืฉื™ื ืžื‘ืงืฉื™ื ืžืžื›ื ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ืžื•,
02:18
you want to make a lane change,
43
138474
1549
ืืชื ืจื•ืฆื™ื ืœืขื‘ื•ืจ ื ืชื™ื‘,
02:20
what's the first thing they ask you do?
44
140023
2321
ืžื” ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉื™ื‘ืงืฉื• ืžืžื›ื ืœืขืฉื•ืช?
02:22
Take your eyes off the road. That's right.
45
142344
3095
ืœื”ืกื™ื˜ ืืช ืขื™ื ื™ื™ืš ืžื”ื›ื‘ื™ืฉ. ื ื›ื•ืŸ.
02:25
Stop looking where you're going, turn,
46
145439
2096
ื”ืคืกื™ืงื• ืœื”ืกืชื›ืœ ืœืืŸ ืฉืืชื ื ื•ืกืขื™ื, ืคื ื•,
02:27
check your blind spot,
47
147535
2018
ื‘ื“ืงื• ืืช ื”ืฉื˜ื— ื”ืžืช,
02:29
and drive down the road without looking where you're going.
48
149553
3471
ื•ื”ืžืฉื™ื›ื• ื‘ื“ืจืš ืžื‘ืœื™ ืœื”ืกืชื›ืœ ืœืืŸ ืืชื ื ื•ืกืขื™ื.
02:33
You and everyone else. This is the safe way to drive.
49
153024
3135
ืืชื ื•ื›ืœ ื”ื™ืชืจ. ื–ื• ื”ื“ืจืš ื”ื‘ื˜ื•ื—ื” ืœื ื”ื•ื’.
02:36
Why do we do this? Because we have to,
50
156159
2241
ืœืžื” ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื”? ื›ื™ ืื ื—ื ื• ื—ื™ื™ื‘ื™ื,
02:38
we have to make a choice, do I look here or do I look here?
51
158400
2579
ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœื‘ื—ื•ืจ, ื”ืื ืฆืจื™ืš ืœื”ืกืชื›ืœ ืœื›ืืŸ ืื• ืœืฉื?
02:40
What's more important?
52
160979
1521
ืžื” ื™ื•ืชืจ ื—ืฉื•ื‘?
02:42
And usually we do a fantastic job
53
162500
2711
ื•ื‘ื“ืจืš ื›ืœืœ ืื ื—ื ื• ืขื•ืฉื™ื ืขื‘ื•ื“ื” ืžืฆื•ื™ื™ื ืช,
02:45
picking and choosing what we attend to on the road.
54
165211
3769
ืœื‘ื—ื•ืจ ื•ืœื‘ืจื•ืจ ืžื” ืœืขืฉื•ืช ืขืœ ื”ื›ื‘ื™ืฉ.
02:48
But occasionally we miss something.
55
168980
3650
ืื‘ืœ ืœืขืชื™ื ืื ื—ื ื• ืžืคืกืคืกื™ื ืžืฉื”ื•.
02:52
Occasionally we sense something wrong or too late.
56
172630
4461
ืœืขืชื™ื ืื ื—ื ื• ื—ืฉื™ื ืžืฉื”ื• ืœื ื ื›ื•ืŸ, ืื• ืžืื•ื—ืจ ืžื“ื™.
02:57
In countless accidents, the driver says,
57
177091
1988
ื‘ืžืกืคืจ ืจื‘ ืฉืœ ืชืื•ื ื•ืช ื“ืจื›ื™ื, ื”ื ื”ื’ ืื•ืžืจ,
02:59
"I didn't see it coming."
58
179079
2308
"ืœื ืจืื™ืชื™ ืืช ื–ื” ื‘ื".
03:01
And I believe that. I believe that.
59
181387
3281
ื•ืื ื™ ืžืืžื™ื ื” ืœื–ื”. ืื ื™ ืžืืžื™ื ื” ืœื–ื”.
03:04
We can only watch so much.
60
184668
2925
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืฆืคื•ืช ื‘ื›ืœ ื›ืš ื”ืจื‘ื”.
03:07
But the technology exists now that can help us improve that.
61
187593
5144
ืื‘ืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืงื™ื™ืžืช ื”ื™ื•ื ื™ื›ื•ืœื” ืœืกื™ื™ืข ืœื ื• ืœืฉืคืจ ื–ืืช.
03:12
In the future, with cars exchanging data with each other,
62
192737
4296
ื‘ืขืชื™ื“, ื›ืฉื›ืœื™ ืจื›ื‘ ื™ื•ื›ืœื• ืœื”ื—ืœื™ืฃ ืžื™ื“ืข ื‘ื™ื ื™ื”ื,
03:17
we will be able to see not just three cars ahead
63
197033
3928
ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœืจืื•ืช ืœื ืจืง ืฉืœื•ืฉ ืžื›ื•ื ื™ื•ืช ืžืœืคื ื™ื,
03:20
and three cars behind, to the right and left,
64
200961
1594
ื•ืฉืœื•ืฉ ืžื›ื•ื ื™ื•ืช ืžืื—ื•ืจ, ืžื™ืžื™ืŸ ื•ืžืฉืžืืœ,
03:22
all at the same time, bird's eye view,
65
202555
3166
ื›ื•ืœืŸ ื‘ืื•ืชื• ื”ื–ืžืŸ, ื˜ื•ื•ื— ืจืื™ื” ืฉืœ ืฆื™ืคื•ืจ,
03:25
we will actually be able to see into those cars.
66
205721
3128
ืœืžืขืฉื” ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœืจืื•ืช ืœืชื•ืš ื”ืžื›ื•ื ื™ื•ืช ื”ืœืœื•.
03:28
We will be able to see the velocity of the car in front of us,
67
208849
2371
ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœืจืื•ืช ืืช ื”ืžื”ื™ืจื•ืช ืฉืœ ื”ืจื›ื‘ ืžืœืคื ื™ื ื•,
03:31
to see how fast that guy's going or stopping.
68
211220
3240
ืœืจืื•ืช ื‘ืื™ื–ื• ืžื”ื™ืจื•ืช ื”ื ื”ื’ ืžืœืคื ื™ื ื• ื ื•ืกืข ืื• ืขื•ืฆืจ.
03:34
If that guy's going down to zero, I'll know.
69
214460
4510
ืื ื”ื ื”ื’ ืžืื˜ ืขื“ ืœืขืฆื™ืจื”, ืื ื™ ืื“ืข.
03:38
And with computation and algorithms and predictive models,
70
218970
3859
ื•ืขื ืžื—ืฉื•ื‘ ื•ืืœื’ื•ืจื™ืชืžื™ื ื•ืžื•ื“ืœื™ื ืฉืžืกื•ื’ืœื™ื ืœื—ื–ื•ืช,
03:42
we will be able to see the future.
71
222829
3273
ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœืจืื•ืช ืืช ื”ืขืชื™ื“.
03:46
You may think that's impossible.
72
226102
1556
ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืฉื–ื” ื‘ืœืชื™ ืืคืฉืจื™.
03:47
How can you predict the future? That's really hard.
73
227658
2731
ืื™ืš ืืคืฉืจ ืœื ื‘ื ืืช ื”ืขืชื™ื“? ื–ื” ื‘ืืžืช ืงืฉื”.
03:50
Actually, no. With cars, it's not impossible.
74
230389
3619
ืœืžืขืฉื” ืœื. ืขื ื›ืœื™ ืจื›ื‘, ื–ื” ืœื ื‘ืœืชื™-ืืคืฉืจื™.
03:54
Cars are three-dimensional objects
75
234008
2732
ืžื›ื•ื ื™ื•ืช ื”ืŸ ืื•ื‘ื™ื™ืงื˜ื™ื ืชืœืช-ืžื™ืžื“ื™ื™ื
03:56
that have a fixed position and velocity.
76
236740
2332
ืฉื™ืฉ ืœื”ื ืžื™ืงื•ื ื•ืžื”ื™ืจื•ืช ืžื•ื—ืœื˜ื™ื.
03:59
They travel down roads.
77
239072
1631
ื”ืŸ ื ื•ืกืขื•ืช ื‘ื›ื‘ื™ืฉื™ื.
04:00
Often they travel on pre-published routes.
78
240703
2412
ืœืขืชื™ื ื”ืŸ ื ื•ืกืขื•ืช ื‘ื ืชื™ื‘ื™ื ืžืกื•ืžื ื™ื.
04:03
It's really not that hard to make reasonable predictions
79
243115
3938
ื–ื” ืœื ื‘ืืžืช ืงืฉื” ื›ืœ ื›ืš ืœื‘ืฆืข ื”ืขืจื›ื•ืช ืกื‘ื™ืจื•ืช
04:07
about where a car's going to be in the near future.
80
247053
2864
ืื™ืคื” ืžื›ื•ื ื™ืช ืžืกื•ื™ื™ืžืช ืขื•ืžื“ืช ืœื”ื™ื•ืช ื‘ืขืชื™ื“ ื”ืงืจื•ื‘.
04:09
Even if, when you're in your car
81
249917
2002
ืืคื™ืœื• ืื, ื›ืฉืืชื ื‘ืžื›ื•ื ื™ืช
04:11
and some motorcyclist comes -- bshoom! --
82
251919
1994
ื•ืื•ืคื ื•ืขืŸ ืื—ื“ ืžื’ื™ืข - ื•ื•ืฉืฉืฉืฉ...
04:13
85 miles an hour down, lane-splitting --
83
253913
2296
130 ืงืž"ืฉ ื‘ืžื•ืจื“ ื”ื›ื‘ื™ืฉ, ื—ื•ืฆื” ื ืชื™ื‘ื™ื -
04:16
I know you've had this experience --
84
256209
2547
ืื ื™ ื™ื•ื“ืขืช ืฉื—ื•ื•ื™ืชื ืืช ื”ื—ื•ื•ื™ื” ื”ื–ื• -
04:18
that guy didn't "just come out of nowhere."
85
258756
2603
ื”ื‘ื—ื•ืจ ืœื "ืคืฉื•ื˜ ื‘ื ืžืฉื•ื ืžืงื•ื."
04:21
That guy's been on the road probably for the last half hour.
86
261359
3643
ื”ื‘ื—ื•ืจ ื”ื™ื” ื›ื›ืœ ื”ื ืจืื” ืขืœ ื”ื›ื‘ื™ืฉ ื‘ื—ืฆื™ ื”ืฉืขื” ื”ืื—ืจื•ื ื”.
04:25
(Laughter)
87
265002
1190
(ืฆื—ื•ืง)
04:26
Right? I mean, somebody's seen him.
88
266192
3589
ื ื›ื•ืŸ? ืื ื™ ืžืชื›ื•ื•ื ืช, ืžื™ืฉื”ื• ืจืื” ืื•ืชื•.
04:29
Ten, 20, 30 miles back, someone's seen that guy,
89
269781
2768
15, 30, 45 ืงื™ืœื•ืžื˜ืจื™ื ืื—ื•ืจื”, ืžื™ืฉื”ื• ื‘ื˜ื— ืจืื” ืืช ื”ื‘ื—ื•ืจ ื”ื–ื”,
04:32
and as soon as one car sees that guy
90
272549
2384
ื•ื‘ืจื’ืข ืฉืžื›ื•ื ื™ืช ืื—ืช ืจื•ืื” ืืช ื”ื‘ื—ื•ืจ ื”ื–ื”
04:34
and puts him on the map, he's on the map --
91
274933
2231
ื•ืฉืžื” ืื•ืชื• ืขืœ ื”ืžืคื”, ื”ื•ื ืขืœ ื”ืžืคื” -
04:37
position, velocity,
92
277164
2176
ืžื™ืงื•ื, ืžื”ื™ืจื•ืช,
04:39
good estimate he'll continue going 85 miles an hour.
93
279340
2321
ื”ืขืจื›ื” ืกื‘ื™ืจื” ืฉื”ื•ื ื™ืžืฉื™ืš ื‘ืžื”ื™ืจื•ืช ืฉืœ 130 ืงืž"ืฉ.
04:41
You'll know, because your car will know, because
94
281661
2184
ืืชื” ืชื“ืข, ื›ื™ ื”ืžื›ื•ื ื™ืช ืฉืœืš ืชื“ืข, ื‘ื’ืœืœ
04:43
that other car will have whispered something in his ear,
95
283845
2275
ืฉืžื›ื•ื ื™ืช ืื—ืจืช ืชืœื—ืฉ ืžืฉื”ื• ื‘ืื•ื–ื ื™ (ื”ืžื›ื•ื ื™ืช) ืฉืœืš,
04:46
like, "By the way, five minutes,
96
286120
1923
ืžืฉื”ื• ื›ืžื•, "ืื’ื‘, ื—ืžืฉ ื“ืงื•ืช,
04:48
motorcyclist, watch out."
97
288043
2775
"ืื•ืคื ื•ืขืŸ, ืฉื™ื ืœื‘."
04:50
You can make reasonable predictions about how cars behave.
98
290818
2703
ืชื•ื›ืœ ืœื‘ืฆืข ื”ืขืจื›ื” ืกื‘ื™ืจื” ืื•ื“ื•ืช ืื™ืš ืžื›ื•ื ื™ื•ืช ืžืชื”ื’ื•ืช.
04:53
I mean, they're Newtonian objects.
99
293521
1365
ืื ื™ ืžืชื›ื•ื•ื ืช, ื”ืŸ ืื•ื‘ื™ื™ืงื˜ื™ื ื ื™ื•ื˜ื•ื ื™ื™ื.
04:54
That's very nice about them.
100
294886
2909
ื–ื” ืžืื•ื“ ื ื—ืžื“ ื‘ืžื›ื•ื ื™ื•ืช.
04:57
So how do we get there?
101
297795
3034
ืื– ืื™ืš ืื ื—ื ื• ืžื’ื™ืขื™ื ืœืฉื?
05:00
We can start with something as simple
102
300829
2266
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืขื ืžืฉื”ื• ืคืฉื•ื˜
05:03
as sharing our position data between cars,
103
303095
2870
ื›ืžื• ืœืฉืชืฃ ืžื›ื•ื ื™ื•ืช ืื—ืจื•ืช ื‘ืžื™ืงื•ื ืฉืœื ื•,
05:05
just sharing GPS.
104
305965
1892
ืจืง ืœืฉืชืฃ GPS.
05:07
If I have a GPS and a camera in my car,
105
307857
2444
ืื ื™ืฉ ืœื™ GPS ื•ืžืฆืœืžื” ื‘ืจื›ื‘,
05:10
I have a pretty precise idea of where I am
106
310301
2231
ื™ืฉ ืœื™ ืžื™ื“ืข ื“ื™ ืžื“ื•ื™ืง ืื™ืคื” ืื ื™
05:12
and how fast I'm going.
107
312532
1732
ื•ื›ืžื” ืžื”ืจ ืื ื™ ื ื•ืกืขืช.
05:14
With computer vision, I can estimate where
108
314264
1657
ื‘ืืžืฆืขื•ืช ืจืื™ื™ื” ืžืžื•ื—ืฉื‘ืช, ืื ื™ ื™ื›ื•ืœื” ืœื”ืขืจื™ืš
05:15
the cars around me are, sort of, and where they're going.
109
315921
3537
ืื™ืคื” ื”ืžื›ื•ื ื™ื•ืช ืžืกื‘ื™ื‘ื™, ื‘ืขืจืš, ื•ืœืืŸ ื”ืŸ ื ื•ืกืขื•ืช.
05:19
And same with the other cars.
110
319458
970
ื•ืื•ืชื• ื”ื“ื‘ืจ ืœื’ื‘ื™ ืžื›ื•ื ื™ื•ืช ืื—ืจื•ืช.
05:20
They can have a precise idea of where they are,
111
320428
1814
ื™ื›ื•ืœ ืœื”ื™ื•ืช ืœื”ืŸ ืžื•ืฉื’ ืžื“ื•ื™ืง ืื™ืคื” ื”ืŸ,
05:22
and sort of a vague idea of where the other cars are.
112
322242
2146
ื•ืกื•ื’ ืฉืœ ืžื•ืฉื’ ืžืขื•ืจืคืœ ืื™ืคื” ื”ืžื›ื•ื ื™ื•ืช ื”ืื—ืจื•ืช.
05:24
What happens if two cars share that data,
113
324388
3231
ืžื” ืงื•ืจื” ืื ืฉืชื™ ืžื›ื•ื ื™ื•ืช ื—ื•ืœืงื•ืช ืืช ื”ืžื™ื“ืข ื”ื–ื”,
05:27
if they talk to each other?
114
327619
1955
ืื ื”ืŸ ืžื“ื‘ืจื•ืช ืื—ืช ืขื ื”ืฉื ื™ื”?
05:29
I can tell you exactly what happens.
115
329574
2778
ืื ื™ ื™ื›ื•ืœื” ืœื”ื’ื™ื“ ืœื›ื ื‘ื“ื™ื•ืง ืžื” ืงื•ืจื”:
05:32
Both models improve.
116
332352
2339
ืฉื ื™ ื”ืžื•ื“ืœื™ื ืžืฉืชืคืจื™ื.
05:34
Everybody wins.
117
334691
2055
ื›ื•ืœื ืžืจื•ื•ื™ื—ื™ื.
05:36
Professor Bob Wang and his team
118
336746
2577
ืคืจื•ืคืกื•ืจ ื‘ื•ื‘ ื•ื•ืื ื’ ื•ื”ืฆื•ื•ืช ืฉืœื•
05:39
have done computer simulations of what happens
119
339323
2738
ื‘ื™ืฆืขื• ืกื™ืžื•ืœืฆื™ื•ืช ืžื—ืฉื‘ ืฉืžื—ืฉื‘ื•ืช ืžื” ืงื•ืจื”
05:42
when fuzzy estimates combine, even in light traffic,
120
342061
3431
ื›ืืฉืจ ื”ืขืจื›ื•ืช ืขืžื•ืžื•ืช ืžืฉืชืœื‘ื•ืช, ืืคื™ืœื• ื›ืฉื”ืชื ื•ืขื” ื–ื•ืจืžืช,
05:45
when cars just share GPS data,
121
345492
2624
ื›ืฉืžื›ื•ื ื™ื•ืช ืจืง ื—ื•ืœืงื•ืช ืžื™ื“ืข ืฉืœ GPS
05:48
and we've moved this research out of the computer simulation
122
348116
2513
ื•ืื ื—ื ื• ื”ืขื‘ืจื ื• ืืช ื”ืžื—ืงืจ ื”ื–ื” ืžื—ื•ืฅ ืœืกื™ืžื•ืœืฆื™ื™ืช ื”ืžื—ืฉื‘
05:50
and into robot test beds that have the actual sensors
123
350629
3027
ืœืžืฆืข ืฉืœ ืจื•ื‘ื•ื˜ื™ื ืžื—ืงืจื™ื™ื ืฉื™ืฉ ืœื”ื ื—ื™ื™ืฉื ื™ื
05:53
that are in cars now on these robots:
124
353656
3133
ื›ืžื• ื‘ืžื›ื•ื ื™ื•ืช, ืขืœ ื”ืจื•ื‘ื•ื˜ื™ื ื”ืœืœื•:
05:56
stereo cameras, GPS,
125
356789
1838
ืžืฆืœืžื•ืช ืกื˜ืจื™ืื•, GPS,
05:58
and the two-dimensional laser range finders
126
358627
1874
ื•ื’ืœืื™ ื˜ื•ื•ื— ื“ื•-ืžื“ื™ื™ื ืžื‘ื•ืกืกื™ ืœื™ื™ื–ืจ
06:00
that are common in backup systems.
127
360501
2240
ืฉื ืคื•ืฆื™ื ื‘ืžืขืจื›ื•ืช ื ืกื™ืขื” ืœืื—ื•ืจ.
06:02
We also attach a discrete short-range communication radio,
128
362741
4484
ืฆื™ืจืคื ื• ื’ื ืžืฉื“ืจ ืจื“ื™ื• ืœื˜ื•ื•ื— ืงืฆืจ,
06:07
and the robots talk to each other.
129
367225
1909
ื•ื”ืจื•ื‘ื•ื˜ื™ื ืžื“ื‘ืจื™ื ื–ื” ืขื ื–ื”.
06:09
When these robots come at each other,
130
369134
1539
ื›ืฉื”ืจื•ื‘ื•ื˜ื™ื ื”ืœืœื• ืžืชืงืจื‘ื™ื ื–ื” ืœื–ื”,
06:10
they track each other's position precisely,
131
370673
2971
ื”ื ืขื•ืงื‘ื™ื ืื—ืจ ื”ืžื™ืงื•ื ืฉืœ ื”ืื—ืจื™ื ื‘ืžื“ื•ื™ืง,
06:13
and they can avoid each other.
132
373644
2737
ื•ื”ื ื™ื›ื•ืœื™ื ืœื—ืžื•ืง ืื—ื“ ืžื”ืฉื ื™.
06:16
We're now adding more and more robots into the mix,
133
376381
3226
ืื ื—ื ื• ืขื›ืฉื™ื• ืžื•ืกื™ืคื™ื ืขื•ื“ ื•ืขื•ื“ ืจื•ื‘ื•ื˜ื™ื ืœืชืขืจื•ื‘ืช,
06:19
and we encountered some problems.
134
379607
1471
ื•ืขืœื™ื ื• ืขืœ ื›ืžื” ื‘ืขื™ื•ืช.
06:21
One of the problems, when you get too much chatter,
135
381078
2359
ืื—ืช ื”ื‘ืขื™ื•ืช, ื›ืฉืžื’ื™ืขื™ื ืืœื™ืš ื™ื•ืชืจ ืžื“ื™ ืื•ืชื•ืช ืžื™ื“ืข,
06:23
it's hard to process all the packets, so you have to prioritize,
136
383437
3728
ืงืฉื” ืœืขื‘ื“ ืืช ื›ื•ืœื•, ืื– ืืชื” ื—ื™ื™ื‘ ืœืชืขื“ืฃ,
06:27
and that's where the predictive model helps you.
137
387165
2357
ื•ื›ืืŸ ื”ืžื•ื“ืœื™ื ืขื•ื–ืจื™ื ืœืš ืœื—ื–ื•ืช.
06:29
If your robot cars are all tracking the predicted trajectories,
138
389522
4372
ืื ื›ืœ ื”ืžื›ื•ื ื™ื•ืช ื”ืจื•ื‘ื•ื˜ื™ื•ืช ืฉืœืš ืžืžืฉื™ื›ื•ืช ื‘ืžืกืœื•ืœื™ื ืฉื ื—ื–ื•,
06:33
you don't pay as much attention to those packets.
139
393894
1767
ืืชื” ืœื ืžืคื ื” ื™ื•ืชืจ ืžื“ื™ ืชืฉื•ืžืช ืœื‘ ืœืื•ืชื•ืช ื”ืžื™ื“ืข.
06:35
You prioritize the one guy
140
395661
1703
ืืชื” ืžืชืขื“ืฃ ืืช ื”ื‘ื—ื•ืจ
06:37
who seems to be going a little off course.
141
397364
1333
ืฉื ืจืื” ืœืš ืฉืกื•ื˜ื” ืงืฆืช ืžื”ืžืกืœื•ืœ.
06:38
That guy could be a problem.
142
398697
2526
ื”ื‘ื—ื•ืจ ื™ื›ื•ืœ ืœื”ื•ื•ืช ื‘ืขื™ื”.
06:41
And you can predict the new trajectory.
143
401223
3002
ื•ืืชื” ื™ื›ื•ืœ ืœื—ื–ื•ืช ืืช ื”ืžืกืœื•ืœ ื”ื—ื“ืฉ.
06:44
So you don't only know that he's going off course, you know how.
144
404225
2763
ืื– ืืชื” ื™ื•ื“ืข ืœื ืจืง ืฉื”ื•ื ืกื•ื˜ื” ืžื”ืžืกืœื•ืœ, ืืชื” ื™ื•ื“ืข ื›ื™ืฆื“.
06:46
And you know which drivers you need to alert to get out of the way.
145
406988
3725
ื•ืืชื” ื™ื•ื“ืข ืื™ืœื• ื ื”ื’ื™ื ืืชื” ืฆืจื™ืš ืœื”ื–ื”ื™ืจ ืœื–ื•ื– ืžื”ื“ืจืš.
06:50
And we wanted to do -- how can we best alert everyone?
146
410713
2633
ื•ืื ื—ื ื• ืจืฆื™ื ื• ืœืขืฉื•ืช - ืื™ืš ืืคืฉืจ ืœื”ื–ื”ื™ืจ ืืช ื›ื•ืœื?
06:53
How can these cars whisper, "You need to get out of the way?"
147
413346
3183
ืื™ืš ื”ืžื›ื•ื ื™ื•ืช ื”ืืœื” ืœื•ื—ืฉื•ืช, "ืืชื” ืฆืจื™ืš ืœื–ื•ื– ืžื”ื“ืจืš?"
06:56
Well, it depends on two things:
148
416529
1517
ื•ื‘ื›ืŸ, ื–ื” ืชืœื•ื™ ื‘ืฉื ื™ ื“ื‘ืจื™ื:
06:58
one, the ability of the car,
149
418046
2169
ืื—ื“, ื”ื™ื›ื•ืœืช ืฉืœ ื”ืžื›ื•ื ื™ืช,
07:00
and second the ability of the driver.
150
420215
3217
ื•ื”ืฉื ื™, ื”ื™ื›ื•ืœืช ืฉืœ ื”ื ื”ื’.
07:03
If one guy has a really great car,
151
423432
1505
ืื ืœื ื”ื’ ืื—ื“ ื™ืฉ ืžื›ื•ื ื™ืช ื‘ืืžืช ื ืคืœืื”,
07:04
but they're on their phone or, you know, doing something,
152
424937
2925
ืื‘ืœ ื”ื•ื ืžื“ื‘ืจ ื‘ื˜ืœืคื•ืŸ ืื•, ืืชื ื™ื•ื“ืขื™ื, ืขื•ืฉื” ืžืฉื”ื•,
07:07
they're not probably in the best position
153
427862
1930
ื”ื•ื ืœื ื‘ืืžืช ื‘ืขืžื“ื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ
07:09
to react in an emergency.
154
429792
2970
ืœื”ื’ื™ื‘ ื‘ืžืงืจื” ื—ื™ืจื•ื.
07:12
So we started a separate line of research
155
432762
1665
ืื– ื”ืชื—ืœื ื• ืงื• ื ืคืจื“ ืฉืœ ืžื—ืงืจ
07:14
doing driver state modeling.
156
434427
2551
ืœื‘ื™ืฆื•ืข ืžื™ื“ื•ืœ ืฉืœ ืžืฆื‘ ื”ื ื”ื’.
07:16
And now, using a series of three cameras,
157
436978
2329
ื•ื›ืขืช, ืชื•ืš ืฉื™ืžื•ืฉ ื‘ืกื“ืจื” ืฉืœ ืฉืœื•ืฉ ืžืฆืœืžื•ืช,
07:19
we can detect if a driver is looking forward,
158
439307
2270
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื–ื”ื•ืช ืื ื ื”ื’ ืžืกืชื›ืœ ืงื“ื™ืžื”,
07:21
looking away, looking down, on the phone,
159
441577
2860
ืžืกืชื›ืœ ื”ื—ื•ืฆื”, ื”ืฆื™ื“ื”, ืขืœ ื”ื˜ืœืคื•ืŸ,
07:24
or having a cup of coffee.
160
444437
3061
ืื• ืฉื•ืชื” ื›ื•ืก ืงืคื”.
07:27
We can predict the accident
161
447498
2070
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืืช ื”ืชืื•ื ื”.
07:29
and we can predict who, which cars,
162
449568
3651
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืžื™, ืื™ืœื• ืžื›ื•ื ื™ื•ืช,
07:33
are in the best position to move out of the way
163
453219
3486
ื ืžืฆืื•ืช ื‘ืขืžื“ื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื–ื•ื– ืžื”ื“ืจืš
07:36
to calculate the safest route for everyone.
164
456705
3009
ืœื—ืฉื‘ ืืช ื”ื ืชื™ื‘ ื”ื‘ื˜ื•ื— ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ื›ื•ืœื.
07:39
Fundamentally, these technologies exist today.
165
459714
4635
ื‘ืื•ืคืŸ ืขืงืจื•ื ื™, ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืœืœื• ืงื™ื™ืžื•ืช ื›ื™ื•ื.
07:44
I think the biggest problem that we face
166
464349
2824
ืื ื™ ื—ื•ืฉื‘ืช ืฉื”ื‘ืขื™ื” ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ืฉืื ื• ืžืชืžื•ื“ื“ื™ื ืื™ืชื”
07:47
is our own willingness to share our data.
167
467173
3013
ื”ื•ื ื”ืจืฆื•ืŸ ืœืฉืชืฃ ืืช ื”ืžื™ื“ืข ืฉืœื ื•.
07:50
I think it's a very disconcerting notion,
168
470186
2631
ืื ื™ ื—ื•ืฉื‘ืช ืฉื–ื” ืจืขื™ื•ืŸ ืžืื•ื“ ืžื‘ื™ืš,
07:52
this idea that our cars will be watching us,
169
472817
2386
ื”ืจืขื™ื•ืŸ ืฉืžื›ื•ื ื™ื•ืช ืื—ืจื•ืช ืชื•ื›ืœื ื” ืœืขืงื•ื‘ ืื—ืจื™ื ื•,
07:55
talking about us to other cars,
170
475203
3371
ื•ืœื“ื‘ืจ ืขืœื™ื ื• ืขื ืžื›ื•ื ื™ื•ืช ืื—ืจื•ืช.
07:58
that we'll be going down the road in a sea of gossip.
171
478574
3427
ืฉื ื™ืกืข ื‘ื›ื‘ื™ืฉ ื‘ื™ื ืฉืœ ืจื›ื™ืœื•ืช.
08:02
But I believe it can be done in a way that protects our privacy,
172
482001
3897
ืื‘ืœ ืื ื™ ืžืืžื™ื ื” ืฉื–ื” ื™ื›ื•ืœ ืœื”ื™ืขืฉื•ืช ื‘ื“ืจืš ืฉืชืฉืžื•ืจ ืขืœ ื”ืคืจื˜ื™ื•ืช ืฉืœื ื•,
08:05
just like right now, when I look at your car from the outside,
173
485898
3741
ืžืžืฉ ื›ืžื• ืขื›ืฉื™ื•, ื›ืฉืื ื™ ืžืกืชื›ืœืช ืขืœ ื”ืžื›ื•ื ื™ืช ืฉืœืš ืžื‘ื—ื•ืฅ,
08:09
I don't really know about you.
174
489639
2363
ืื ื™ ืœื ื‘ืืžืช ื™ื•ื“ืขืช ืขืœื™ืš.
08:12
If I look at your license plate number,
175
492002
1137
ืื ืื ื™ ืžืกืชื›ืœืช ืขืœ ืœื•ื—ื™ืช ื”ืจื™ืฉื•ื™ ืฉืœืš,
08:13
I don't really know who you are.
176
493139
1886
ืื ื™ ืœื ื‘ืืžืช ื™ื•ื“ืขืช ืžื™ ืืชื”.
08:15
I believe our cars can talk about us behind our backs.
177
495025
4249
ืื ื™ ืžืืžื™ื ื” ืฉื”ืžื›ื•ื ื™ื•ืช ืฉืœื ื• ื™ื›ื•ืœื•ืช ืœื“ื‘ืจ ืขืœื™ื ื• ืžืื—ื•ืจื™ ื”ื’ื‘.
08:19
(Laughter)
178
499274
2975
(ืฆื—ื•ืง)
08:22
And I think it's going to be a great thing.
179
502249
3185
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื”ื•ืœืš ืœื”ื™ื•ืช ื“ื‘ืจ ื’ื“ื•ืœ.
08:25
I want you to consider for a moment
180
505434
1650
ืื ื™ ืจื•ืฆื” ืฉืชืฉืงืœื• ืœืจื’ืข
08:27
if you really don't want the distracted teenager behind you
181
507084
4118
ืื ืืชื ืžืžืฉ ืœื ืจื•ืฆื™ื ืฉื‘ืŸ ื”ื ื•ืขืจ ืžื•ืกื— ื”ื“ืขืช ืžืื—ื•ืจื™ื›ื
08:31
to know that you're braking,
182
511202
2120
ื™ื“ืข ืฉืืชื” ื‘ื•ืœืžื™ื,
08:33
that you're coming to a dead stop.
183
513322
2924
ืฉืืชื ืขื•ืžื“ื™ื ืœื‘ืฆืข ืขืฆื™ืจื” ืคืชืื•ืžื™ืช.
08:36
By sharing our data willingly,
184
516246
2741
ืขืœ ื™ื“ื™ ืฉื™ืชื•ืฃ ื”ืžื™ื“ืข ืฉืœื ื• ืžืจืฆื•ืŸ ื˜ื•ื‘,
08:38
we can do what's best for everyone.
185
518987
2812
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืžื” ืฉื˜ื•ื‘ ืœื›ื•ืœื.
08:41
So let your car gossip about you.
186
521799
3076
ืื– ืชืŸ ืœืจื›ื‘ ืฉืœืš ืœืจื›ืœ ืขืœื™ืš.
08:44
It's going to make the roads a lot safer.
187
524875
3038
ื–ื” ืขื•ืžื“ ืœื”ืคื•ืš ืืช ื”ื›ื‘ื™ืฉื™ื ืœื‘ื˜ื•ื—ื™ื ื™ื•ืชืจ.
08:47
Thank you.
188
527913
1791
ืชื•ื“ื”.
08:49
(Applause)
189
529704
4985
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7