Sheena Iyengar: How to make choosing easier

555,172 views ใƒป 2012-01-19

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Ann Yoon ๊ฒ€ํ† : Jeongyob Park
00:15
Do you know how many choices you make
0
15260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ๋ณดํ†ต ํ•˜๋ฃจ์—
00:17
in a typical day?
1
17260
3000
์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์„ ํƒ์„ ํ•˜์‹œ๋Š”์ง€ ์•„์‹ญ๋‹ˆ๊นŒ?
00:20
Do you know how many choices you make
2
20260
2000
๋ณดํ†ต ์ผ์ฃผ์ผ์—
00:22
in typical week?
3
22260
2000
์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์„ ํƒ์„ ํ•˜์‹œ๋Š”์ง€ ์•„์‹ญ๋‹ˆ๊นŒ?
00:24
I recently did a survey
4
24260
2000
์ €๋Š” 2,000๋ช… ๋„˜๋Š” ๋ฏธ๊ตญ์ธ๋“ค์—๊ฒŒ
00:26
with over 2,000 Americans,
5
26260
2000
์ตœ๊ทผ์— ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ํ–ˆ๋Š”๋ฐ
00:28
and the average number of choices
6
28260
2000
ํ‰๊ท ์ ์œผ๋กœ ๋ฏธ๊ตญ์ธ๋“ค์ด
00:30
that the typical American reports making
7
30260
2000
๋ณดํ†ต ํ•˜๋ฃจ์— ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์€
00:32
is about 70 in a typical day.
8
32260
3000
70๊ฐœ ์ •๋„์ž…๋‹ˆ๋‹ค.
00:35
There was also recently a study done with CEOs
9
35260
4000
๊ทธ๋ฆฌ๊ณ  ์ตœ๊ทผ์— CEO๋“ค์„ ์ผ์ฃผ์ผ ๋™์•ˆ ์ซ“์•„๋‹ค๋‹ˆ๋ฉฐ
00:39
in which they followed CEOs around for a whole week.
10
39260
3000
์ˆ˜ํ–‰ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
00:42
And these scientists simply documented all the various tasks
11
42260
3000
๊ทธ๋ฆฌ๊ณ  ์ด ๊ณผํ•™์ž๋“ค์€ CEO๋“ค์ด ์ˆ˜ํ–‰ํ•˜๋Š”
00:45
that these CEOs engaged in
12
45260
2000
๋‹ค์–‘ํ•œ ์—…๋ฌด๋“ค๊ณผ ๊ทธ ์—…๋ฌด๋“ค์— ๊ด€๋ จ๋œ
00:47
and how much time they spent engaging
13
47260
2000
๊ฒฐ์ •์„ ํ•˜๋Š”๋ฐ ๋“œ๋Š” ์‹œ๊ฐ„์˜ ์–‘์„
00:49
in making decisions related to these tasks.
14
49260
2000
๊ธฐ๋กํ–ˆ์Šต๋‹ˆ๋‹ค.
00:51
And they found that the average CEO
15
51260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋“ค์€ ๋ณดํ†ต์˜ CEO๋Š” ์ผ์ฃผ์ผ์—
00:54
engaged in about 139 tasks in a week.
16
54260
3000
139๊ฐ€์ง€ ์—…๋ฌด์— ์ข…์‚ฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
00:57
Each task was made up of many, many, many sub-choices of course.
17
57260
4000
์—…๋ฌด ํ•˜๋‚˜๋Š” ๋‹น์—ฐํžˆ ์—„์ฒญ ๋งŽ์€ ์ž‘์€ ๊ฒฐ์ •๋“ค๋กœ ๋‚˜๋ˆ„์–ด์ ธ ์žˆ๊ฒ ์ง€์š”.
01:01
50 percent of their decisions
18
61260
2000
์ด๋Ÿฐ ๊ฒฐ์ •์˜ 50%๋Š”
01:03
were made in nine minutes or less.
19
63260
3000
9๋ถ„๋‚ด์— ์ด๋ฃจ์–ด์กŒ์Šต๋‹ˆ๋‹ค.
01:06
Only about 12 percent of the decisions
20
66260
3000
์˜ค์ง 12% ์ •๋„์˜ ๊ฒฐ์ •์—๋งŒ
01:09
did they make an hour or more of their time.
21
69260
4000
๊ทธ๋“ค์€ ํ•œ ์‹œ๊ฐ„ ์ด์ƒ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค.
01:13
Think about your own choices.
22
73260
2000
์—ฌ๋Ÿฌ๋ถ„ ์ž์‹ ์˜ ๊ฒฐ์ •์„ ์ƒ๊ฐํ•ด ๋ณด์„ธ์š”.
01:15
Do you know how many choices
23
75260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ๊ฒฐ์ •์„
01:17
make it into your nine minute category
24
77260
2000
9๋ถ„๋‚ด๋กœ ํ•˜๋Š”์ง€, ๊ฑฐ๊ธฐ์— ๋น„ํ•ด ์–ผ๋งˆ๋‚˜ ๋งŽ์€
01:19
versus your one hour category?
25
79260
2000
๊ฒฐ์ •์„ 1์‹œ๊ฐ„ ์ด์ƒ ๊ฑธ๋ ค ํ•˜๋Š”์ง€ ์•„์‹œ๋‚˜์š”?
01:21
How well do you think you're doing
26
81260
2000
๋‹น์‹ ์€ ์ด๋Ÿฐ ๊ฒฐ์ •๋“ค์„
01:23
at managing those choices?
27
83260
3000
์–ผ๋งˆ๋‚˜ ์ž˜ ์ฒ˜๋ฆฌํ•˜๋Š”์ง€ ์•„์‹ญ๋‹ˆ๊นŒ?
01:26
Today I want to talk
28
86260
2000
์˜ค๋Š˜ ์ €๋Š” ์šฐ๋ฆฌ๊ฐ€ ํ˜„์žฌ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”
01:28
about one of the biggest modern day choosing problems that we have,
29
88260
3000
๊ฐ€์žฅ ํฐ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์ธ, ๋„ˆ๋ฌด ๋งŽ์€ ์„ ํƒ๋“ค์— ๋Œ€ํ•ด
01:31
which is the choice overload problem.
30
91260
2000
๋งํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
01:33
I want to talk about the problem
31
93260
2000
์ €๋Š” ์ด ๋ฌธ์ œ์™€ ๊ฐ€๋Šฅ์„ฑ ์žˆ๋Š”
01:35
and some potential solutions.
32
95260
2000
ํ•ด๊ฒฐ์ฑ…๋“ค์— ๋Œ€ํ•ด ๋งํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
01:37
Now as I talk about this problem,
33
97260
2000
์ด์ œ ์ œ๊ฐ€ ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋งํ•˜๋ฉด์„œ,
01:39
I'm going to have some questions for you
34
99260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ช‡๊ฐ€์ง€ ์งˆ๋ฌธ์„ ํ• ํ…Œ๋‹ˆ๊นŒ
01:41
and I'm going to want to know your answers.
35
101260
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋‹ต์„ ์•Œ๋ ค ์ฃผ์„ธ์š”.
01:44
So when I ask you a question,
36
104260
2000
์ œ๊ฐ€ ์งˆ๋ฌธ์„ ํ• ๋•Œ,
01:46
since I'm blind,
37
106260
2000
๊ทผ๋ฐ ์ €๋Š” ๋ณผ ์ˆ˜๊ฐ€ ์—†์–ด์š”,
01:48
only raise your hand if you want to burn off some calories.
38
108260
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์นผ๋กœ๋ฆฌ๋ฅผ ์ข€ ์“ฐ๊ณ  ์‹ถ๋‹ค๋ฉด ์†์„ ๋“œ์„ธ์š”.
01:51
(Laughter)
39
111260
3000
(์›ƒ์Œ)
01:54
Otherwise, when I ask you a question,
40
114260
2000
๊ทธ๋ ‡์ง€ ์•Š๋‹ค๋ฉด, ์ œ๊ฐ€ ์งˆ๋ฌธ์„ ํ–ˆ๋Š”๋ฐ,
01:56
and if your answer is yes,
41
116260
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋‹ต์ด '๋„ค'๋ผ๋ฉด,
01:58
I'd like you to clap your hands.
42
118260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์†๋ผ‰์„ ์ณ์ฃผ์‹œ๋ฉด ์ข‹๊ฒ ์Šต๋‹ˆ๋‹ค.
02:00
So for my first question for you today:
43
120260
3000
์˜ค๋Š˜ ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ฌผ์–ด ๋ณผ ์ฒซ๋ฒˆ์งธ ์งˆ๋ฌธ์€:
02:03
Are you guys ready to hear about the choice overload problem?
44
123260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ๋„ˆ๋ฌด ๋งŽ์€ ์„ ํƒ์— ๋Œ€ํ•ด ๋“ฃ๊ณ  ์‹ถ์œผ์‹ ๊ฐ€์š”?
02:06
(Applause)
45
126260
2000
(๋ฐ•์ˆ˜)
02:08
Thank you.
46
128260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
02:11
So when I was a graduate student at Stanford University,
47
131260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ์Šคํƒ ํฌ๋“œ ๋Œ€ํ•™์›์ƒ์ด์—ˆ์„ ๋•Œ์—,
02:13
I used to go to this very, very upscale grocery store;
48
133260
3000
์ €๋Š” ๋งค์šฐ ๋งค์šฐ ๊ณ ๊ธ‰์Šค๋Ÿฌ์šด ์‹ํ’ˆ์ ์— ๊ฐ€๊ณค ํ–ˆ๋Š”๋ฐ,
02:16
at least at that time it was truly upscale.
49
136260
2000
์ ์–ด๋„๊ทธ ๋•Œ๋Š” ์•„์ฃผ ๊ณ ๊ธ‰์Šค๋Ÿฌ์› ์Šต๋‹ˆ๋‹ค.
02:18
It was a store called Draeger's.
50
138260
3000
'Draeger's'๋ผ๋Š” ๊ฐ€๊ฒŒ์˜€์Šต๋‹ˆ๋‹ค.
02:21
Now this store, it was almost like going to an amusement park.
51
141260
3000
์ด ๊ฐ€๊ฒŒ์— ๊ฐ€๋Š” ๊ฒƒ์€ ๋งˆ์น˜ ๋†€์ด๊ณต์›์— ๊ฐ€๋Š” ๊ฒƒ ๊ฐ™์•˜์Šต๋‹ˆ๋‹ค.
02:24
They had 250 different kinds of mustards and vinegars
52
144260
3000
๊ทธ๋“ค์€ 250๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ๋จธ์Šคํ„ฐ๋“œ์™€ ์‹์ดˆ๋ฅผ ํŒ”๊ณ  ์žˆ์—ˆ๊ณ 
02:27
and over 500 different kinds
53
147260
2000
500๊ฐ€์ง€ ๋„˜๋Š” ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜
02:29
of fruits and vegetables
54
149260
2000
๊ณผ์ผ๊ณผ ์•ผ์ฑ„,
02:31
and more than two dozen different kinds of bottled water --
55
151260
3000
๊ทธ๋ฆฌ๊ณ  24๊ฐœ๊ฐ€ ๋„˜๋Š” ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๋ณ‘์— ๋“  ์ƒ์ˆ˜--
02:34
and this was during a time when we actually used to drink tap water.
56
154260
4000
๊ทธ๋•Œ๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ˆ˜๋—๋ฌผ์„ ๋งˆ์‹œ๋˜ ๋•Œ์˜€์Šต๋‹ˆ๋‹ค.
02:38
I used to love going to this store,
57
158260
3000
์ €๋Š” ์ด ๊ฐ€๊ฒŒ์— ๊ฐ€๋Š” ๊ฒƒ์„ ์ข‹์•„ํ–ˆ์ง€๋งŒ
02:41
but on one occasion I asked myself,
58
161260
2000
ํ•œ๋ฒˆ์€ ์ œ ์ž์‹ ์—๊ฒŒ, ๊ธ€์Ž„
02:43
well how come you never buy anything?
59
163260
2000
๋„ˆ๋Š” ์™œ ์•„๋ฌด๊ฒƒ๋„ ์‚ฌ์ง€ ์•Š๋‹ˆ? ๋ผ๊ณ  ๋ฌผ์—ˆ์Šต๋‹ˆ๋‹ค.
02:45
Here's their olive oil aisle.
60
165260
2000
์—ฌ๊ธฐ๋Š” ์˜ฌ๋ฆฌ๋ธŒ์œ  ์ฝ”๋„ˆ์ž…๋‹ˆ๋‹ค.
02:47
They had over 75 different kinds of olive oil,
61
167260
2000
75๊ฐ€์ง€๊ฐ€ ๋„˜๋Š” ๋‹ค์–‘ํ–ฅ ์ข…๋ฅ˜์˜ ์˜ฌ๋ฆฌ๋ธŒ์œ ๋ฅผ ํŒ”์•˜๊ณ ,
02:49
including those that were in a locked case
62
169260
2000
์–ด๋–ค ๊ฒƒ๋“ค์€ ์ฒœ๋…„ ๋œ ์˜ฌ๋ฆฌ๋ธŒ ๋‚˜๋ฌด์—์„œ ๋‚˜์˜จ ๊ฒƒ๋“ค์ด๊ณ 
02:51
that came from thousand-year-old olive trees.
63
171260
4000
๋ด‰ํ•ด์ง„ ์ผ€์ด์Šค์— ๋‹ด๊ฒจ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
02:55
So I one day decided to pay a visit to the manager,
64
175260
2000
์ €๋Š” ์–ด๋Š ๋‚  ๋งค๋‹ˆ์ €๋ฅผ ์ฐพ์•„ ๊ฐ€์„œ
02:57
and I asked the manager,
65
177260
2000
๋งค๋‹ˆ์ €์—๊ฒŒ, "์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์ด๋ ‡๊ฒŒ ๋งŽ์ด ์„ ํƒ๊ถŒ์„
02:59
"Is this model of offering people all this choice really working?"
66
179260
3000
์ฃผ๋Š” ๊ฒƒ์ด ์ž˜ ๋˜๋‚˜์š”?"
03:02
And he pointed to the busloads of tourists
67
182260
2000
๊ทธ๋Š” ๋งค์ผ ๊ฐ™์ด ์นด๋ฉ”๋ผ๋ฅผ ๊ฑธ์น˜๊ณ 
03:04
that would show up everyday,
68
184260
2000
๋ฒ„์Šค์— ๊ฐ€๋“ ํƒ€๊ณ  ์˜ค๋Š”
03:06
with cameras ready usually.
69
186260
2000
๊ด€๊ด‘๊ฐ๋“ค์„ ๊ฐ€๋ฆฌ์ผฐ์Šต๋‹ˆ๋‹ค.
03:08
We decided to do a little experiment,
70
188260
3000
์šฐ๋ฆฌ๋Š” ์‹คํ—˜ ํ•˜๋‚˜๋ฅผ ํ•ด ๋ณด๊ธฐ๋กœ ํ•˜์˜€๊ณ ,
03:11
and we picked jam for our experiment.
71
191260
2000
์šฐ๋ฆฌ๋Š” ์žผ์„ ์‹คํ—˜ ๋Œ€์ƒ์œผ๋กœ ๊ณจ๋ž์Šต๋‹ˆ๋‹ค.
03:13
Here's their jam aisle.
72
193260
2000
์ด๊ฒƒ์ด ์žผ ์ฝ”๋„ˆ์ž…๋‹ˆ๋‹ค.
03:15
They had 348 different kinds of jam.
73
195260
2000
348๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์žผ์„ ๊ตฌ๋น„ํ•˜๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
03:17
We set up a little tasting booth
74
197260
2000
์šฐ๋ฆฌ๋Š” ๊ฐ€๊ฒŒ์˜ ์ž…๊ตฌ ๋ฐ”๋กœ ์˜†์—
03:19
right near the entrance of the store.
75
199260
2000
์ž‘์€ ์‹œ์‹ ๊ณต๊ฐ„์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
03:21
We there put out six different flavors of jam
76
201260
2000
๊ฑฐ๊ธฐ๋‹ค 6์ข…๋ฅ˜์˜ ๋‹ค๋ฅธ ์žผ์ด๋‚˜
03:23
or 24 different flavors of jam,
77
203260
3000
24์ข…๋ฅ˜์˜ ๋‹ค๋ฅธ ์žผ์„ ๋‚ด๋†“์•˜๊ณ ,
03:26
and we looked at two things:
78
206260
2000
๋‘ ๊ฐ€์ง€ ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด ๋ณด์•˜์Šต๋‹ˆ๋‹ค:
03:28
First, in which case
79
208260
2000
์ฒซ์งธ, ์–ด๋–ค ๊ฒฝ์šฐ์— ์‚ฌ๋žŒ๋“ค์€
03:30
were people more likely to stop, sample some jam?
80
210260
3000
๋ฉˆ์ถ”์–ด ์„œ์„œ, ์žผ์„ ์ข€ ๋ง›๋ณผ๊นŒ?
03:33
More people stopped when there were 24, about 60 percent,
81
213260
3000
24์ข…๋ฅ˜์˜ ์žผ์ด ์žˆ์„๋•Œ ๋” ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด, ์•ฝ 60% ์ •๋„,
03:36
than when there were six,
82
216260
2000
๋ฉˆ์ท„๊ณ  6๊ฐœ๊ฐ€ ์žˆ์„๋•Œ๋Š”
03:38
about 40 percent.
83
218260
2000
์•ฝ 40%์ •๋„ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
03:40
The next thing we looked at
84
220260
2000
๊ทธ ๋‹ค์Œ์œผ๋กœ ์šฐ๋ฆฌ๊ฐ€ ๋ณธ ๊ฒƒ์€
03:42
is in which case were people more likely
85
222260
2000
์–ด๋–ค ๊ฒฝ์šฐ์— ์‚ฌ๋žŒ๋“ค์€ ์žผ์„
03:44
to buy a jar of jam.
86
224260
2000
์‚ฌ๊ฒŒ ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋ƒ๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
03:46
Now we see the opposite effect.
87
226260
2000
์ด์ œ ์šฐ๋ฆฌ๋Š” ๋ฐ˜๋Œ€์˜ ํšจ๊ณผ๋ฅผ ๋ณด๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
03:48
Of the people who stopped when there were 24,
88
228260
2000
24๊ฐœ์˜ ์žผ์ด ์žˆ์—ˆ์„ ๋•Œ ๋ฉˆ์ถ”์–ด ์„  ์‚ฌ๋žŒ๋“ค ์ค‘
03:50
only three percent of them actually bought a jar of jam.
89
230260
3000
์˜ค์ง 3%๋งŒ์ด ์‹ค์ œ๋กœ ์žผ ํ•œ ๋ณ‘์„ ์‚ฌ๊ฐ”์Šต๋‹ˆ๋‹ค.
03:53
Of the people who stopped when there were six,
90
233260
3000
6๊ฐœ์˜ ์žผ์ด ์žˆ์—ˆ์„ ๋•Œ ๋ฉˆ์ถ”์–ด ์„  ์‚ฌ๋žŒ๋“ค ์ค‘์—์„œ๋Š”
03:56
well now we saw that 30 percent of them
91
236260
2000
30%์˜ ์‚ฌ๋žŒ๋“ค์ด
03:58
actually bought a jar of jam.
92
238260
2000
์‹ค์ œ๋กœ ์žผ์„ ์‚ฌ ๊ฐ€๋Š” ๊ฒƒ์„ ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
04:00
Now if you do the math,
93
240260
2000
์ด์ œ ๊ณ„์‚ฐ์„ ํ•ด๋ณด๋ฉด,
04:02
people were at least six times more likely to buy a jar of jam
94
242260
3000
์‚ฌ๋žŒ๋“ค์€ 24๊ฐœ์˜ ์žผ๊ณผ ๋งˆ์ฃผํ•˜์˜€์„ ๋•Œ๋ณด๋‹ค
04:05
if they encountered six
95
245260
2000
6๊ฐœ์˜ ์žผ์„ ๋ณด๊ฒŒ ๋˜์—ˆ์„ ๋•Œ
04:07
than if they encountered 24.
96
247260
2000
์žผ์„ ์‚ด ํ™•๋ฅ ์ด ์ตœ์†Œ 6๋ฐฐ๊ฐ€ ๋†’์•˜์Šต๋‹ˆ๋‹ค.
04:09
Now choosing not to buy a jar of jam
97
249260
2000
์žผ์„ ์•ˆ ์‚ฌ๊ธฐ๋กœ ํ•˜๋Š” ๊ฒƒ์€
04:11
is probably good for us --
98
251260
2000
์–ด์ฉŒ๋ฉด ์šฐ๋ฆฌ์—๊ฒŒ ์ข‹์€ ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค--
04:13
at least it's good for our waistlines --
99
253260
2000
์ตœ์†Œ ์šฐ๋ฆฌ์˜ ํ—ˆ๋ฆฌ ๋‘˜๋ ˆ๋ฅผ ์œ„ํ•ด์„œ๋Š”์š”--
04:15
but it turns out that this choice overload problem affects us
100
255260
3000
ํ•˜์ง€๋งŒ ์„ ํƒ ๊ณผ๋ถ€ํ™” ๋ฌธ์ œ๋Š” ์‹ฌ์ง€์–ด ์ค‘๋Œ€ํ•œ ๋ฌธ์ œ์—์„œ๋„
04:18
even in very consequential decisions.
101
258260
3000
์šฐ๋ฆฌ์—๊ฒŒ ์˜ํ–ฅ์„ ์ค€๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
04:21
We choose not to choose,
102
261260
2000
์šฐ๋ฆฌ๋Š” ์‹ฌ์ง€์–ด ์ž์‹ ์˜ ์ด์ต์—
04:23
even when it goes against our best self-interests.
103
263260
3000
๋ฐ˜๋Œ€๋˜๋Š” ๊ฒฝ์šฐ์—๋„ ์„ ํƒํ•˜์ง€ ์•Š๊ธฐ๋กœ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
04:26
So now for the topic of today: financial savings.
104
266260
3000
๊ทธ๋Ÿฌ๋‹ˆ ์˜ค๋Š˜์˜ ํ† ํ”ฝ์€ ์ €์ถ•์ž…๋‹ˆ๋‹ค.
04:29
Now I'm going to describe to you a study I did
105
269260
4000
๊ทธ๋ฆฌ๊ณ  ์ €๋Š” Gur Huberman, Emir Kamenica, Wei Jang๊ณผ
04:33
with Gur Huberman, Emir Kamenica, Wei Jang
106
273260
3000
ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ณด์—ฌ ๋“œ๋ฆด ๊ฒƒ์ธ๋ฐ,
04:36
where we looked at the retirement savings decisions
107
276260
4000
์šฐ๋ฆฌ๋Š” ๋ฏธ๊ตญ ์ „์ฒด์—์„œ
04:40
of nearly a million Americans
108
280260
3000
๋ฐฑ๋งŒ ๋ช…์— ๊ฐ€๊นŒ์šด ๋ฏธ๊ตญ์ธ๋“ค์ด
04:43
from about 650 plans
109
283260
3000
650๊ฐœ์˜ ์ƒํ’ˆ์ค‘์—์„œ
04:46
all in the U.S.
110
286260
2000
์„ ํƒํ•œ ์—ฐ๊ธˆ ์ €์ถ•์— ๋Œ€ํ•˜์—ฌ ์กฐ์‚ฌํ•˜์˜€์Šต๋‹ˆ๋‹ค.
04:48
And what we looked at
111
288260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์ฃผ๋ชฉํ•œ ๊ฒƒ์€
04:50
was whether the number of fund offerings
112
290260
2000
์—ฐ๊ธˆ ์ €์ถ•, 401(k) ๊ณ„ํš์—
04:52
available in a retirement savings plan,
113
292260
2000
์ด์šฉ ๊ฐ€๋Šฅํ•œ ์—ฐ๊ธˆ ์ €์ถ•ํŽ€๋“œ
04:54
the 401(k) plan,
114
294260
2000
, 401(k) ์ƒํ’ˆ์˜ ์ˆซ์ž๊ฐ€
04:56
does that affect people's likelihood
115
296260
2000
๋ฏธ๋ž˜๋ฅผ ์œ„ํ•ด ๋” ๋งŽ์ด ์ €์ถ•ํ•  ๊ฐ€๋Šฅ์„ฑ์—
04:58
to save more for tomorrow.
116
298260
2000
๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ž…๋‹ˆ๋‹ค.
05:00
And what we found
117
300260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์ฐพ์•„๋‚ธ ๊ฒƒ์€
05:02
was that indeed there was a correlation.
118
302260
3000
๊ฑฐ๊ธฐ์—๋Š” ๋ถ„๋ช… ์—ฐ๊ด€์„ฑ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
05:05
So in these plans, we had about 657 plans
119
305260
3000
์ด 657๊ฐœ์˜ ์ƒํ’ˆ๋“ค์€ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ
05:08
that ranged from offering people
120
308260
2000
2๊ฐœ์—์„œ 59๊ฐœ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ํŽ€๋“œ๋ฅผ
05:10
anywhere from two to 59 different fund offerings.
121
310260
3000
๊ณ ๋ฅด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
05:13
And what we found was that,
122
313260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ฒŒ ๋œ ๊ฒƒ์€,
05:15
the more funds offered,
123
315260
2000
๋” ๋งŽ์€ ํŽธ๋“œ๊ฐ€ ์ œ๊ณต๋  ์ˆ˜๋ก
05:17
indeed, there was less participation rate.
124
317260
3000
๋ถ„๋ช…, ์ฐธ์—ฌ ๋น„์œจ์€ ๋‚ฎ์•„์ง„๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
05:20
So if you look at the extremes,
125
320260
2000
๊ทธ๋ž˜์„œ ๊ฐ€์žฅ ๊ทน์‹ฌํ•œ ์˜ˆ์—์„œ๋Š”,
05:22
those plans that offered you two funds,
126
322260
2000
2๊ฐœ์˜ ํŽ€๋“œ๋ฅผ ์ œ์‹œํ•ด ์ฃผ๋Š” ๊ณ„ํš๋“ค์—์„œ,
05:24
participation rates were around in the mid-70s --
127
324260
3000
์ฐธ์—ฌ ๋น„์œจ์€ 70 ์ค‘๋ฐ˜ ์ •๋„์— ์žˆ์—ˆ๋Š”๋ฐ--
05:27
still not as high as we want it to be.
128
327260
2000
์—ฌ์ „ํžˆ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” ๋งŒํผ ๋†’์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
05:29
In those plans that offered nearly 60 funds,
129
329260
3000
์ด๋“ค ์ค‘ 60๊ฐœ์— ๊ฐ€๊นŒ์šด ํŽ€๋“œ๋ฅผ ์ œ์‹œํ•ด ์ฃผ๋Š”
05:32
participation rates have now dropped
130
332260
3000
์ƒํ’ˆ์˜ ์ฐธ์—ฌ ๋น„์œจ์€ 60๋ฒˆ์งธ
05:35
to about the 60th percentile.
131
335260
3000
๋ฐฑ๋ถ„์œ„์ˆ˜๊นŒ์ง€ ๋–จ์–ด์กŒ์Šต๋‹ˆ๋‹ค.
05:38
Now it turns out
132
338260
2000
๊ทธ๋Ÿฌ๋‹ˆ ๋‹น์‹ ์ด ๋” ๋งŽ์€
05:40
that even if you do choose to participate
133
340260
3000
์„ ํƒ๊ถŒ์ด ์กด์žฌํ•  ๋•Œ์—๋„ ์ฐธ์—ฌํ•˜๊ธฐ๋กœ
05:43
when there are more choices present,
134
343260
2000
๊ฒฐ์ •ํ•œ๋‹ค๊ณ  ํ•˜๋”๋ผ๋„, ๋ถ€์ •์ ์ธ
05:45
even then, it has negative consequences.
135
345260
3000
์˜ํ–ฅ์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์ง‘๋‹ˆ๋‹ค.
05:48
So for those people who did choose to participate,
136
348260
3000
๊ทธ๋ž˜์„œ ์ฐธ์—ฌํ•˜๊ธฐ๋กœ ๊ฒฐ์ •ํ•œ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ,
05:51
the more choices available,
137
351260
2000
๋” ๋งŽ์€ ์„ ํƒ๋“ค์ด ์ฃผ์–ด์งˆ ์ˆ˜๋ก,
05:53
the more likely people were
138
353260
2000
์‚ฌ๋žŒ๋“ค์ด ์ฃผ์‹์ด๋‚˜ ์ฃผ์‹ํ˜• ํŽ€๋“œ๋ฅผ
05:55
to completely avoid stocks or equity funds.
139
355260
3000
์•„์˜ˆ ํ”ผํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋” ๋†’์Šต๋‹ˆ๋‹ค.
05:58
The more choices available,
140
358260
2000
๋” ๋งŽ์€ ์„ ํƒ์ด ์ฃผ์–ด์งˆ ์ˆ˜๋ก,
06:00
the more likely they were
141
360260
2000
๋ˆ์„ ์™„์ „ํžˆ MMA ๊ตฌ์ขŒ์— ํˆฌ์žํ• 
06:02
to put all their money in pure money market accounts.
142
362260
2000
๊ฐ€๋Šฅ์„ฑ์ด ๋†’์•„์ง‘๋‹ˆ๋‹ค.
06:04
Now neither of these extreme decisions
143
364260
2000
์ด์ œ ์ด๋“ค ์ค‘ ์–ด๋–ค ์ชฝ์˜ ๊ทน๋‹จ์ 
06:06
are the kinds of decisions
144
366260
2000
๊ฒฐ์ •๋“ค๋„ ๋ฏธ๋ž˜์˜ ์‚ฌ๋žŒ๋“ค์˜
06:08
that any of us would recommend for people
145
368260
2000
๊ธˆ์œต์  ํ–‰๋ณต ์ธก๋ฉด์—์„œ
06:10
when you're considering their future financial well-being.
146
370260
3000
์ถ”์ฒœํ•  ๋งŒํ•œ ๊ฒฐ์ •๋“ค์€ ์•„๋‹™๋‹ˆ๋‹ค.
06:13
Well, over the past decade,
147
373260
2000
์ง€๋‚œ 10๋…„ ๋™์•ˆ, ์ €ํฌ๋Š” ์‚ฌ๋žŒ๋“ค์—๊ฒŒ
06:15
we have observed three main negative consequences
148
375260
3000
๋” ๋งŽ์€ ์„ ํƒ๊ถŒ์„ ์ฃผ์—ˆ์„ ๋•Œ์˜ 3๊ฐ€์ง€
06:18
to offering people more and more choices.
149
378260
3000
์ฃผ๋œ ๋ถ€์ •์ ์ธ ๊ฒฐ๊ณผ๋ฌผ๋“ค์„ ๊ด€์ฐฐํ•˜์˜€์Šต๋‹ˆ๋‹ค.
06:21
They're more likely to delay choosing --
150
381260
2000
๊ทธ๋“ค์€ ์„ ํƒ์„ ๋ฏธ๋ฃฐ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ณ --
06:23
procrastinate even when it goes against their best self-interest.
151
383260
3000
์ž์‹ ์˜ ์ตœ๋Œ€ ์ด์ต๊ณผ ์–ด๊ธ‹๋‚  ๋•Œ์—๋„ ๋ฏธ๋ฃน๋‹ˆ๋‹ค.
06:26
They're more likely to make worse choices --
152
386260
2000
๊ทธ๋“ค์€ ๋” ์•ˆ ์ข‹์€ ๊ธˆ์œต์  ๊ฒฐ์ •, ์˜๋ฃŒ์  ๊ฒฐ์ • ๋“ฑ
06:28
worse financial choices, medical choices.
153
388260
3000
๋” ์•ˆ ์ข‹์€ ๊ฒฐ์ •๋“ค์„ ๋งŒ๋“ค ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Šต๋‹ˆ๋‹ค.
06:31
They're more likely to choose things that make them less satisfied,
154
391260
3000
๊ทธ๋“ค์ด ๊ฐ๊ด€์ ์œผ๋กœ ๋” ์ž˜ ํ•  ์ˆ˜ ์žˆ์„ ๋•Œ์—๋„
06:34
even when they do objectively better.
155
394260
3000
์Šค์Šค๋กœ ๋œ ๋งŒ์กฑ์Šค๋Ÿฌ์šด ๊ฒƒ๋“ค์„ ์„ ํƒํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Šต๋‹ˆ๋‹ค.
06:37
The main reason for this
156
397260
2000
๊ทธ๊ฒƒ์˜ ์ฃผ์š” ์›์ธ์€, ์šฐ๋ฆฌ๋Š”
06:39
is because, we might enjoy gazing at those giant walls
157
399260
4000
๋งˆ์š”๋„ค์ฆˆ๋“ค, ๋จธ์Šคํƒ€๋“œ๋“ค, ์‹์ดˆ๋“ค, ์žผ๋“ค ๋“ฑ์˜
06:43
of mayonnaises, mustards, vinegars, jams,
158
403260
2000
๊ฑฐ๋Œ€ํ•œ ๋ฒฝ๋“ค์„ ๋ฐ”๋ผ๋ณด๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ์ฆ๊ธฐ์ง€๋งŒ
06:45
but we can't actually do the math of comparing and contrasting
159
405260
3000
์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ๊ทธ ๋†€๋ผ์šด ์ „์‹œ๋ฌผ์—์„œ ์‹ค์ œ๋กœ
06:48
and actually picking from that stunning display.
160
408260
4000
๋น„๊ตํ•˜๊ณ  ๋Œ€์กฐํ•ด ๊ฐ€๋ฉฐ ์‹ค์ œ๋กœ ๊ณ ๋ฅผ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
06:52
So what I want to propose to you today
161
412260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ์˜ค๋Š˜
06:54
are four simple techniques --
162
414260
3000
์ œ์•ˆํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์€
06:57
techniques that we have tested in one way or another
163
417260
3000
๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ ๋ถ„์•ผ๋“ค์—์„œ
07:00
in different research venues --
164
420260
2000
์ด๋Ÿฐ์ €๋Ÿฐ ๋ฐฉ๋ฒ•์œผ๋กœ ํ…Œ์ŠคํŠธ ํ•ด๋ณธ--
07:02
that you can easily apply
165
422260
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ๊ฒฝ์šฐ์— ์‰ฝ๊ฒŒ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š”--
07:04
in your businesses.
166
424260
2000
๋„ค ๊ฐ€์ง€ ๊ฐ„๋‹จํ•œ ๊ธฐ์ˆ ๋“ค์ž…๋‹ˆ๋‹ค.
07:06
The first: Cut.
167
426260
2000
์ฒซ ๋ฒˆ์งธ: ์ค„์—ฌ๋ผ.
07:08
You've heard it said before,
168
428260
2000
๊ทธ ์ „์—๋„ ๋งŽ์ด ๋“ค์–ด๋ณด์•˜๊ฒ ์ง€๋งŒ,
07:10
but it's never been more true than today,
169
430260
2000
์˜ค๋Š˜๋ณด๋‹ค ๋” ํ™•์‹คํžˆ, ๋” ์ ์€ ๊ฒƒ์ด
07:12
that less is more.
170
432260
2000
๋” ๋‚ซ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€ ์ ์€ ์—†์„ ๊ฒ๋‹ˆ๋‹ค.
07:14
People are always upset when I say, "Cut."
171
434260
3000
์‚ฌ๋žŒ๋“ค์€ ์ œ๊ฐ€ '์ค„์—ฌ๋ผ'๊ณ  ํ•˜๋ฉด ๊ธฐ๋ถ„ ๋‚˜๋น ํ•ฉ๋‹ˆ๋‹ค.
07:17
They're always worried they're going to lose shelf space.
172
437260
2000
๊ทธ๋“ค์ด ์ง„์—ด๋Œ€ ๊ณต๊ฐ„์„ ์žƒ์„ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์ง€์š”.
07:19
But in fact, what we're seeing more and more
173
439260
3000
ํ•˜์ง€๋งŒ ์‚ฌ์‹ค, ์ค„์ด๊ณ ์ž ํ•œ๋‹ค๋ฉด
07:22
is that if you are willing to cut,
174
442260
2000
๊ด€๋ จ ์—†๊ณ  ๋ถˆํ•„์š”ํ•œ ์„ ํƒ๋“ค์„ ์—†์• ๊ณ ,
07:24
get rid of those extraneous redundant options,
175
444260
2000
๋” ๋งŽ์€ ์ง„์—ด๋Œ€ ๊ณต๊ฐ„์„ ๊ฐ€์ง€๊ฒŒ ๋˜๊ณ ,
07:26
well there's an increase in sales,
176
446260
2000
ํŒ๋งค๋„ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜๊ณ ,
07:28
there's a lowering of costs,
177
448260
2000
๊ฐ€๊ฒฉ๋„ ์ค„์–ด๋“ค๋ฉฐ,
07:30
there is an improvement of the choosing experience.
178
450260
4000
์„ ํƒ์„ ํ•˜๋Š”๋ฐ ๋ฐœ์ „๋„ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
07:34
When Proctor & Gamble
179
454260
2000
Proctor & Gamble์ด
07:36
went from 26 different kinds of Head & Shoulders to 15,
180
456260
2000
26๊ฐ€์ง€ ์ข…๋ฅ˜์˜ Head & Shoulders๋ฅผ 15๊ฐœ๋กœ ์ค„์˜€์„ ๋•Œ
07:38
they saw an increase in sales by 10 percent.
181
458260
3000
ํŒ๋งค์˜ 10% ์ฆ๊ฐ€๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.
07:41
When the Golden Cat Corporation
182
461260
2000
Golden Cat ์ฃผ์‹ํšŒ์‚ฌ๊ฐ€
07:43
got rid of their 10 worst-selling cat litter products,
183
463260
2000
๊ฐ€์žฅ ์ž˜ ํŒ”๋ฆฌ์ง€ ์•Š๋Š”
07:45
they saw an increase in profits
184
465260
2000
10๊ฐ€์ง€ ๊ณ ์–‘์ด ์œ„์ƒ์ œํ’ˆ์„ ์—†์•  ๋ฒ„๋ฆฌ์ž
07:47
by 87 percent --
185
467260
2000
์ˆ˜์ต์ด 87% ์˜ฌ๋ž์Šต๋‹ˆ๋‹ค--
07:49
a function of both increase in sales
186
469260
2000
ํŒ๋งค๋„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ  ๊ฐ€๊ฒฉ๋„ ๋‚ฎ์ถ”๋Š”
07:51
and lowering of costs.
187
471260
2000
๊ธฐ๋Šฅ์„ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:53
You know, the average grocery store today
188
473260
2000
์˜ค๋Š˜๋‚ ์˜ ํ‰๊ท ์ ์ธ ์‹๋ฃŒํ’ˆ์ ์€
07:55
offers you 45,000 products.
189
475260
2000
45,000๊ฐ€์ง€ ์ œํ’ˆ์„ ์ทจ๊ธ‰ํ•ฉ๋‹ˆ๋‹ค.
07:57
The typical Walmart today offers you 100,000 products.
190
477260
3000
์ผ๋ฐ˜์ ์ธ Walmart๋Š” ์š”์ฆ˜ 100,000๊ฐ€์ง€ ์ œํ’ˆ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
08:00
But the ninth largest retailer,
191
480260
5000
ํ•˜์ง€๋งŒ 9๋ฒˆ์งธ๋กœ ํฐ ์†Œ๋งค์—…์ฒด,
08:05
the ninth biggest retailer in the world today
192
485260
2000
์„ธ์ƒ์—์„œ 9๋ฒˆ์งธ๋กœ ํฐ ์†Œ๋งค์—…์ฒด๋Š”
08:07
is Aldi,
193
487260
2000
Aldi์ธ๋ฐ,
08:09
and it offers you only 1,400 products --
194
489260
3000
๊ฑฐ๊ธฐ๋Š” ๋‹จ์ง€ 1,400 ์ œํ’ˆ๋งŒ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค--
08:12
one kind of canned tomato sauce.
195
492260
3000
ํ†ต์กฐ๋ฆผ์œผ๋กœ ๋œ ํ† ๋งˆํ†  ์†Œ์Šค๋Š” ํ•œ ์ข…๋ฅ˜๋งŒ์š”.
08:15
Now in the financial savings world,
196
495260
2000
์ด์ œ ๊ธˆ์œต ์ €์ถ• ๋ถ„์•ผ์—์„œ,
08:17
I think one of the best examples that has recently come out
197
497260
3000
์„ ํƒ ์ œ๊ณต์„ ์ž˜ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ
08:20
on how to best manage the choice offerings
198
500260
3000
์ตœ๊ทผ์— ๋‚˜์˜จ ๊ฐ€์žฅ ์ข‹์€ ์˜ˆ์‹œ๋“ค ์ค‘ ํ•˜๋‚˜๋Š”
08:23
has actually been something that David Laibson was heavily involved in designing,
199
503260
3000
David Laibson์ด ๋””์ž์ธ์— ํฌ๊ฒŒ ๊ด€์—ฌํ•œ ๊ฒƒ์ธ๋ฐ,
08:26
which was the program that they have at Harvard.
200
506260
2000
ํ•˜๋ฒ„๋“œ์— ์žˆ๋Š” ํ”„๋กœ๊ทธ๋žจ์ž…๋‹ˆ๋‹ค.
08:28
Every single Harvard employee
201
508260
2000
ํ•˜๋ฒ„๋“œ ์ข…์—…์› ํ•œ ๋ช… ํ•œ ๋ช…์ด
08:30
is now automatically enrolled
202
510260
2000
๋ผ์ดํ”„์‚ฌ์ดํด ํŽ€๋“œ์—
08:32
in a lifecycle fund.
203
512260
2000
์ž๋™์ ์œผ๋กœ ๋“ฑ๋ก๋ฉ๋‹ˆ๋‹ค.
08:34
For those people who actually want to choose,
204
514260
2000
ํŽ€๋“œ๋ฅผ ๊ณ ๋ฅด๊ณ  ์‹ถ์€ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ,
08:36
they're given 20 funds,
205
516260
2000
300๊ฐœ๋‚˜ ๊ทธ ์ด์ƒ์˜ ํŽ€๋“œ๊ฐ€ ์•„๋‹ˆ๋ผ
08:38
not 300 or more funds.
206
518260
2000
20๊ฐœ์˜ ํŽ€๋“œ๋ฅผ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.
08:40
You know, often, people say,
207
520260
2000
์žˆ์ž–์•„์š”, ๊ฐ€๋” ์‚ฌ๋žŒ๋“ค์€, "์–ด๋–ป๊ฒŒ
08:42
"I don't know how to cut.
208
522260
2000
์ค„์–ด์•ผ ํ• ์ง€ ๋ชจ๋ฅด๊ฒ ์–ด์š”. ๋ชจ๋‘
08:44
They're all important choices."
209
524260
2000
์ค‘์š”ํ•œ ์„ ํƒ๋“ค์ด๊ฑฐ๋“ ์š”."๋ผ๊ณ  ๋งํ•˜์ง€์š”.
08:46
And the first thing I do is I ask the employees,
210
526260
3000
๊ทธ๋ฆฌ๊ณ  ์ œ๊ฐ€ ๊ฐ€์žฅ ๋จผ์ € ํ•˜๋Š” ๊ฒƒ์€ ์ข…์—…์›๋“ค์—๊ฒŒ ๋ฌผ์–ด๋ณด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:49
"Tell me how these choices are different from one another.
211
529260
2000
"๋‚˜์—๊ฒŒ ์ด ์„ ํƒ๋“ค์ด ์„œ๋กœ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ ์ค˜.
08:51
And if your employees can't tell them apart,
212
531260
2000
๊ทธ๋ฆฌ๊ณ  ์ข…์—…์›๋“ค๋„ ๊ทธ๊ฒƒ๋“ค์˜ ์ฐจ์ด์ ์„ ์•Œ์ง€ ๋ชปํ•œ๋‹ค๋ฉด,
08:53
neither can your consumers."
213
533260
3000
์†Œ๋น„์ž๋“ค ์—ญ์‹œ ์•Œ์ง€ ๋ชป ํ•ด."
08:56
Now before we started our session this afternoon,
214
536260
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์˜คํ›„์— ์„ธ์…˜์„ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์—
08:59
I had a chat with Gary.
215
539260
2000
์ €๋Š” Gary๋ž‘ ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„์—ˆ์Šต๋‹ˆ๋‹ค.
09:01
And Gary said that he would be willing
216
541260
3000
๊ทธ๋ฆฌ๊ณ  Gary๋Š” ์ฒญ์ค‘์— ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์—๊ฒŒ
09:04
to offer people in this audience
217
544260
2000
์„ธ์ƒ์—์„œ ๊ฐ€์žฅ ์•„๋ฆ„๋‹ค์šด ๋„๋กœ๋กœ
09:06
an all-expenses-paid free vacation
218
546260
3000
๋ชจ๋“  ๋น„์šฉ์„ ๋‹ค ์ง€๊ธ‰ํ•ด ์ฃผ๋Š” ํœด๊ฐ€๋ฅผ
09:09
to the most beautiful road in the world.
219
549260
4000
์ œ๊ณตํ•ด ์ค„ ์˜ํ–ฅ์ด ์žˆ๋‹ค๊ณ  ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
09:13
Here's a description of the road.
220
553260
3000
์—ฌ๊ธฐ ๊ทธ ๋„๋กœ์— ๋Œ€ํ•œ ์„ค๋ช…์ด ์žˆ์Šต๋‹ˆ๋‹ค.
09:16
And I'd like you to read it.
221
556260
2000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ๋ถ„์ด ์ฝ์–ด ์ฃผ์—ˆ์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค.
09:18
And now I'll give you a few seconds to read it
222
558260
2000
๊ทธ๋ฆฌ๊ณ  ์ฝ์„ ์ˆ˜ ์žˆ๋„๋ก ๋ช‡ ์ดˆ๋ฅผ ๋“œ๋ฆดํ…Œ๋‹ˆ
09:20
and then I want you to clap your hands
223
560260
2000
Gary์˜ ์ œ์•ˆ์„ ๋ฐ›์•„๋“ค์ด์‹ค ์ค€๋น„๊ฐ€ ๋˜์‹  ๋ถ„์€
09:22
if you're ready to take Gary up on his offer.
224
562260
2000
๋ฐ•์ˆ˜๋ฅผ ์ณ ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
09:24
(Light clapping)
225
564260
2000
(์•ฝํ•œ ๋ฐ•์ˆ˜์†Œ๋ฆฌ)
09:26
Okay. Anybody who's ready to take him up on his offer.
226
566260
3000
๋„ค. ์ œ์•ˆ์„ ๋ฐ›์•„๋“ค์ด์‹ค ๋ถ„๋“ค์€ ๋ˆ„๊ตฌ๋‚˜ ๋ฉ๋‹ˆ๋‹ค.
09:29
Is that all?
227
569260
2000
๊ทธ๊ฒŒ ๋‹ค์ž…๋‹ˆ๊นŒ?
09:31
All right, let me show you some more about this.
228
571260
3000
์ข‹์Šต๋‹ˆ๋‹ค, ์ œ๊ฐ€ ์ด๊ฒƒ์— ๋Œ€ํ•ด ์กฐ๊ธˆ ๋” ๋ณด์—ฌ๋“œ๋ฆฌ๋„๋ก ํ•˜์ง€์š”.
09:34
(Laughter)
229
574260
3000
(์›ƒ์Œ)
09:37
You guys knew there was a trick, didn't you.
230
577260
3000
์—ฌ๊ธฐ ์†์ž„์ˆ˜๊ฐ€ ์žˆ์„ ์ค„ ์•Œ์•˜์ง€์š”?
09:44
(Honk)
231
584260
2000
(์ž๋™์ฐจ ๊ฒฝ์  ์†Œ๋ฆฌ)
09:46
Now who's ready to go on this trip.
232
586260
3000
์ด์ œ ๋ˆ„๊ฐ€ ์—ฌํ–‰์„ ๊ฐˆ ์ค€๋น„๊ฐ€ ๋˜์…จ๋‚˜์š”?
09:49
(Applause)
233
589260
2000
(๋ฐ•์ˆ˜ ๊ฐˆ์ฑ„)
09:51
(Laughter)
234
591260
2000
(์›ƒ์Œ)
09:53
I think I might have actually heard more hands.
235
593260
3000
์‹ค์ œ๋กœ ๋” ๋งŽ์€ ์†๋“ค์˜ ์†Œ๋ฆฌ๋ฅผ ๋“ค์€ ๊ฒƒ ๊ฐ™์€๋ฐ์š”.
09:56
All right.
236
596260
2000
์ข‹์Šต๋‹ˆ๋‹ค.
09:58
Now in fact,
237
598260
2000
์‚ฌ์‹ค,
10:00
you had objectively more information
238
600260
2000
๋‹น์‹ ์€ ๋‘ ๋ฒˆ์งธ๋ณด๋‹ค ์ฒซ ๋ฒˆ์งธ์—
10:02
the first time around than the second time around,
239
602260
2000
๊ฐ๊ด€์ ์œผ๋กœ ๋” ๋งŽ์€ ์ •๋ณด๋ฅผ ๊ฐ€์กŒ์ง€๋งŒ
10:04
but I would venture to guess
240
604260
2000
์ €๋Š” ๋‘ ๋ฒˆ์งธ์— ๋‹น์‹ ์ด ์ด๊ฒƒ์ด
10:06
that you felt that it was more real the second time around.
241
606260
4000
์กฐ๊ธˆ ๋” ํ˜„์‹ค๊ฐ ์žˆ๋‹ค๊ณ  ๋Š๊ผˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ์ถ”์ธกํ•ฉ๋‹ˆ๋‹ค.
10:10
Because the pictures made it feel
242
610260
2000
์™œ๋ƒํ•˜๋ฉด ์ด ์‚ฌ์ง„๋“ค์ด ๋”
10:12
more real to you.
243
612260
2000
ํ˜„์‹ค์ ์œผ๋กœ ๋Š๊ปด์กŒ๊ธฐ ๋•Œ๋ฌธ์ด์ง€์š”.
10:14
Which brings me to the second technique
244
614260
2000
์ด๊ฒƒ์€ ์„ ํƒ ๊ณผ๋ถ€ํ™” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฐ
10:16
for handling the choice overload problem,
245
616260
2000
๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์ธ '๊ตฌ์ฒดํ™”'๋กœ
10:18
which is concretization.
246
618260
2000
์ด์–ด์ง‘๋‹ˆ๋‹ค.
10:20
That in order for people to understand
247
620260
2000
์‚ฌ๋žŒ๋“ค์ด ์„ ํƒ๋“ค ๊ฐ„์˜ ์ฐจ์ด์ ์„
10:22
the differences between the choices,
248
622260
2000
์ดํ•ดํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”
10:24
they have to be able to understand
249
624260
2000
๊ทธ๋“ค์€ ๊ฐ ์„ ํƒ์— ์ด์–ด์ง€๋Š” ๊ฒฐ๊ณผ๋“ค์„
10:26
the consequences associated with each choice,
250
626260
3000
์ดํ•ดํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๊ณ ,
10:29
and that the consequences need to be felt
251
629260
3000
๊ทธ ๊ฒฐ๊ณผ๋“ค์€ ์•„์ฃผ ์ƒ์ƒํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ,
10:32
in a vivid sort of way, in a very concrete way.
252
632260
4000
์•„์ฃผ ๊ตฌ์ฒด์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ๋Š๊ปด์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
10:36
Why do people spend an average of 15 to 30 percent more
253
636260
3000
์™œ ์‚ฌ๋žŒ๋“ค์€ ํ˜„๊ธˆ์„ ์‚ฌ์šฉํ•  ๋•Œ์— ๋น„ํ•ด ATM ์นด๋“œ๋‚˜
10:39
when they use an ATM card or a credit card
254
639260
2000
์‹ ์šฉ ์นด๋“œ๋ฅผ ์“ธ ๋•Œ ํ‰๊ท ์ ์œผ๋กœ
10:41
as opposed to cash?
255
641260
2000
15~30%๋‚˜ ๋” ์ง€์ถœ์„ ํ• ๊นŒ์š”?
10:43
Because it doesn't feel like real money.
256
643260
2000
์™œ๋ƒํ•˜๋ฉด ๊ทธ๊ฒƒ์€ ์ง„์งœ ๋ˆ ๊ฐ™์ด ๋Š๊ปด์ง€์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:45
And it turns out
257
645260
2000
์กฐ๊ธˆ ๋” ๊ตฌ์ฒด์ ์œผ๋กœ
10:47
that making it feel more concrete
258
647260
2000
๋Š๊ปด์ง€๊ฒŒ ํ•˜๋Š” ๊ฒƒ์€ ์‚ฌ๋žŒ๋“ค์ด
10:49
can actually be a very positive tool
259
649260
2000
๋” ์ €์ถ•ํ•˜๊ฒŒ ํ•˜๋Š” ๋ฐ์— ์•„์ฃผ
10:51
to use in getting people to save more.
260
651260
2000
๊ธ์ •์ ์ธ ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:53
So a study that I did with Shlomo Benartzi
261
653260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ Shlomo Benartzi์™€
10:55
and Alessandro Previtero,
262
655260
2000
Alessandro Previtero๋ž‘ ํ•จ๊ป˜ ํ•œ ์—ฐ๊ตฌ์—์„œ,
10:57
we did a study with people at ING --
263
657260
4000
ING์— ์ผํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์—ฐ๊ตฌ๋ฅผ ํ–ˆ๋Š”๋ฐ--
11:01
employees that are all working at ING --
264
661260
3000
๋ชจ๋‘ ING์— ์ผํ•˜๋Š” ์ข…์—…์›๋“ค--
11:04
and now these people were all in a session
265
664260
2000
๊ทธ๋ฆฌ๊ณ  ์ด์ œ ์ด ์‚ฌ๋žŒ๋“ค์€ ์ž์‹ ๋“ค์˜
11:06
where they're doing enrollment for their 401(k) plan.
266
666260
3000
401(k) ๊ณ„ํš์— ๋“ฑ๋ก์„ ํ•˜๋Š” ์…ฐ์…˜์„ ๊ฐ€์กŒ์Šต๋‹ˆ๋‹ค.
11:09
And during that session,
267
669260
2000
๊ทธ๋ฆฌ๊ณ  ์ด ์…ฐ์…˜ ๋™์•ˆ์—, ์šฐ๋ฆฌ๋Š”
11:11
we kept the session exactly the way it used to be,
268
671260
2000
์ด๊ฒƒ์„ ๋‹ค๋ฅธ ์…ฐ์…˜๋“ค๊ณผ ๋‹ค๋ฅผ ๋ฐ”๊ฐ€ ์—†๋„๋ก ํ•˜์˜€์ง€๋งŒ
11:13
but we added one little thing.
269
673260
3000
ํ•œ ๊ฐ€์ง€ ์ž‘์€ ๊ฒƒ์„ ๋” ์ถ”๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
11:16
The one little thing we added
270
676260
3000
์šฐ๋ฆฌ๊ฐ€ ์ถ”๊ฐ€ํ•œ ๊ฒƒ์€
11:19
was we asked people
271
679260
2000
์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์ €์ถ•์„ ๋” ํ•˜๊ฒŒ ๋œ๋‹ค๋ฉด
11:21
to just think about all the positive things that would happen in your life
272
681260
3000
์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ๊ธ์ •์ ์ธ ์ผ๋“ค์— ๋Œ€ํ•˜์—ฌ
11:24
if you saved more.
273
684260
2000
๋ฌผ์–ด ๋ณธ ๊ฒ๋‹ˆ๋‹ค.
11:26
By doing that simple thing,
274
686260
3000
์ด ๊ฐ„๋‹จํ•œ ์ผ์„ ํ•˜๋‹ˆ,
11:29
there was an increase in enrollment by 20 percent
275
689260
3000
๋“ฑ๋ก์— 20% ์ฆ๊ฐ€๊ฐ€ ์žˆ์—ˆ๊ณ 
11:32
and there was an increase in the amount of people willing to save
276
692260
3000
์‚ฌ๋žŒ๋“ค์ด ์ €์ถ•ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ˆ์˜ ๊ธˆ์•ก, ๋˜๋Š”
11:35
or the amount that they were willing to put down into their savings account
277
695260
3000
๊ทธ๋“ค์ด ์˜ˆ๊ธˆ ๊ณ„์ขŒ์— ๋„ฃ๊ณ ์ž ํ•˜๋Š” ๊ธˆ์•ก์ด
11:38
by four percent.
278
698260
2000
4% ์ฆ๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
11:40
The third technique: Categorization.
279
700260
3000
์„ธ ๋ฒˆ์งธ ๊ธฐ์ˆ : ๋ฒ”์ฃผํ™”.
11:43
We can handle more categories
280
703260
3000
์šฐ๋ฆฌ๋Š” ๋งŽ์€ ์„ ํƒ๋“ค์„ ๋‹ค๋ฃจ๋Š” ๊ฒƒ๋ณด๋‹ค
11:46
than we can handle choices.
281
706260
2000
๋” ๋งŽ์€ ๋ฒ”์ฃผ๋“ค์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:48
So for example,
282
708260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, ์šฐ๋ฆฌ๊ฐ€
11:50
here's a study we did in a magazine aisle.
283
710260
2000
์žก์ง€ ์ฝ”๋„ˆ์—์„œ ํ•œ ์‹คํ—˜์ด ์žˆ์Šต๋‹ˆ๋‹ค.
11:52
It turns out that in Wegmans grocery stores
284
712260
2000
Wegmans ์‹ํ’ˆ์ ์— ์žˆ๋Š”
11:54
up and down the northeast corridor,
285
714260
2000
๋ถ๋™์ชฝ ๋ณต๋„์— ์žˆ๋Š” ์žก์ง€ ์ฝ”๋„ˆ๋Š”
11:56
the magazine aisles range anywhere
286
716260
2000
331๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์žก์ง€๋กœ๋ถ€ํ„ฐ
11:58
from 331 different kinds of magazines
287
718260
2000
664๊ฐ€์ง€ ์ข…๋ฅ˜๊นŒ์ง€
12:00
all the way up to 664.
288
720260
3000
๋ฒ”์ฃผ๊ฐ€ ๋‹ค์–‘ํ•ฉ๋‹ˆ๋‹ค.
12:03
But you know what?
289
723260
2000
ํ•˜์ง€๋งŒ, ๊ทธ๊ฒƒ ์•„์‹ญ๋‹ˆ๊นŒ?
12:05
If I show you 600 magazines
290
725260
2000
์ œ๊ฐ€ 600๊ฐœ์˜ ์žก์ง€๋“ค์„
12:07
and I divide them up into 10 categories,
291
727260
3000
10๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ ,
12:10
versus I show you 400 magazines
292
730260
2000
๋ฐ˜๋ฉด์— 400๊ฐ€์ง€ ์žก์ง€๋“ค์„
12:12
and divide them up into 20 categories,
293
732260
3000
20๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€์„ ๋•Œ
12:15
you believe that I have given you
294
735260
2000
๋‹น์‹ ์€ ์ œ๊ฐ€ 600๊ฐœ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ์„ ๋•Œ๋ณด๋‹ค
12:17
more choice and a better choosing experience
295
737260
2000
400๊ฐœ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ์„ ๋•Œ
12:19
if I gave you the 400
296
739260
2000
์ œ๊ฐ€ ๋‹น์‹ ์—๊ฒŒ ๋” ๋งŽ์€ ์„ ํƒ๊ณผ
12:21
than if I gave you the 600.
297
741260
2000
๋” ๋‚˜์€ ์„ ํƒ์„ ๊ฒฝํ—˜ํ•˜๊ฒŒ ํ•ด ์ฃผ์—ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
12:23
Because the categories tell me how to tell them apart.
298
743260
3000
๋ฒ”์ฃผ๋“ค์€ ๊ฐ ๋ฌผ๊ฑด์„ ์–ด๋–ป๊ฒŒ ๊ตฌ๋ถ„ํ• ์ง€ ๋ณด์—ฌ์ฃผ๋‹ˆ๊นŒ์š”.
12:28
Here are two different jewelry displays.
299
748260
3000
์—ฌ๊ธฐ ๋‘ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ๋ณด์„ ์ „์‹œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
12:31
One is called "Jazz" and the other one is called "Swing."
300
751260
3000
ํ•˜๋‚˜๋Š” '์žฌ์ฆˆ'๋ผ๊ณ  ๋ถˆ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” '์Šค์œ™'์ด๋ผ๊ณ  ๋ถˆ๋ฆฝ๋‹ˆ๋‹ค.
12:34
If you think the display on the left is Swing
301
754260
3000
์™ผ์ชฝ์— ์žˆ๋Š” ์ „์‹œ๊ฐ€ '์Šค์œ™'์ด๊ณ 
12:37
and the display on the right is Jazz,
302
757260
3000
์˜ค๋ฅธ์ชฝ์— ์žˆ๋Š” ์ „์‹œ๊ฐ€ '์žฌ์ฆˆ'๋ผ๊ณ  ์ƒ๊ฐํ•˜์‹ ๋‹ค๋ฉด,
12:40
clap your hands.
303
760260
2000
์†๋ผ‰์„ ์ณ์ฃผ์„ธ์š”.
12:42
(Light Clapping)
304
762260
2000
(์ž‘์€ ๋ฐ•์ˆ˜์†Œ๋ฆฌ)
12:44
Okay, there's some.
305
764260
2000
์ข‹์•„์š”, ๋ช‡๋ช‡ ์‚ฌ๋žŒ๋“ค์ด๋„ค์š”.
12:46
If you think the one on the left is Jazz and the one on the right is Swing,
306
766260
2000
๋‹น์‹ ์ด ์™ผ์ชฝ์— ์žˆ๋Š” ๊ฒƒ์ด '์žฌ์ฆˆ'๊ณ  ์˜ค๋ฅธ์ชฝ ๊ฒƒ์ด '์Šค์œ™'์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์‹ ๋‹ค๋ฉด,
12:48
clap your hands.
307
768260
2000
์†๋ผ‰์„ ์ณ ์ฃผ์„ธ์š”.
12:50
Okay, a bit more.
308
770260
2000
๋„ค, ์กฐ๊ธˆ ๋” ์žˆ๋„ค์š”.
12:52
Now it turns out you're right.
309
772260
2000
๋‹น์‹ ์ด ๋งž์•˜์Šต๋‹ˆ๋‹ค.
12:54
The one on the left is Jazz and the one on the right is Swing,
310
774260
2000
์™ผ์ชฝ์— ์žˆ๋Š” ๊ฒƒ์ด '์žฌ์ฆˆ'์˜€๊ณ  ์˜ค๋ฅธ์ชฝ ๊ฒƒ์ด '์Šค์œ™'์ด์—ˆ๊ฑฐ๋“ ์š”,
12:56
but you know what?
311
776260
2000
ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ ์•„์„ธ์š”?
12:58
This is a highly useless categorization scheme.
312
778260
3000
์ด๊ฒƒ์€ ๋งค์šฐ ์“ธ๋ชจ์—†๋Š” ๋ถ„๋ฅ˜ ๊ณ„ํš์ด์—ˆ์Šต๋‹ˆ๋‹ค.
13:01
(Laughter)
313
781260
2000
(์›ƒ์Œ)
13:03
The categories need to say something
314
783260
3000
๋ฒ”์ฃผ๋“ค์€ ๊ณ ๋ฅด๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ๋ง์„ ํ•ด์•ผ์ง€,
13:06
to the chooser, not the choice-maker.
315
786260
3000
์„ ํƒ์„ ๋งŒ๋“œ๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ๋ง์„ ํ•˜๋ฉด ์•ˆ ๋ฉ๋‹ˆ๋‹ค.
13:09
And you often see that problem
316
789260
2000
๊ทธ๋ฆฌ๊ณ  ๋‹น์‹ ์€ ํŽ€๋“œ๋“ค์˜ ๊ธด ๋ช…๋‹จ์„
13:11
when it comes down to those long lists of all these funds.
317
791260
3000
๋ณผ ๋•Œ ์ด ๋ฌธ์ œ์ ์„ ๋ฐœ๊ฒฌํ•˜๊ฒŒ ๋˜์ง€์š”.
13:14
Who are they actually supposed to be informing?
318
794260
4000
์ •๋ง ๋ˆ„๊ตฌ์—๊ฒŒ ์•Œ๋ฆฌ๋Š” ๊ฒƒ์ธ๊ฐ€์š”?
13:18
My fourth technique: Condition for complexity.
319
798260
3000
๋„ค ๋ฒˆ์งธ ๊ธฐ์ˆ : ๋ณต์žกํ•จ์˜ ์กฐ๊ฑด.
13:21
It turns out we can actually
320
801260
2000
์šฐ๋ฆฌ๋Š” ์‚ฌ์‹ค ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค
13:23
handle a lot more information than we think we can,
321
803260
2000
ํ›จ์”ฌ ๋งŽ์€ ์ •๋ณด๋ฅผ ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ,
13:25
we've just got to take it a little easier.
322
805260
2000
๋‹จ์ง€ ์กฐ๊ธˆ ๋” ์‰ฝ๊ฒŒ ๋งŒ๋“ค์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
13:27
We have to gradually increase the complexity.
323
807260
3000
์šฐ๋ฆฌ๋Š” ์„œ์„œํžˆ ๋ณต์žกํ•จ์„ ๋Š˜๋ ค์•ผ ํ•˜๋Š” ๊ฒƒ์ด์ง€์š”.
13:30
I'm going to show you one example of what I'm talking about.
324
810260
3000
์ œ๊ฐ€ ํ•˜๋Š” ๋ง์˜ ๋‚ด์šฉ์— ๋Œ€ํ•ด ์˜ˆ์‹œ๋ฅผ ํ•˜๋‚˜ ๋“ค์–ด๋ณผ๊ฒŒ์š”.
13:33
Let's take a very, very complicated decision:
325
813260
2000
์ด๊ฒƒ์€ ๋งค์šฐ ๋งค์šฐ ๋ณต์žกํ•œ ๊ฒฐ์ •์ž…๋‹ˆ๋‹ค:
13:35
buying a car.
326
815260
2000
์ฐจ๋ฅผ ์‚ฌ๋Š” ๊ฒƒ์ด์ง€์š”.
13:37
Here's a German car manufacturer
327
817260
2000
์—ฌ๊ธฐ ์‚ฌ์šฉ์ž๊ฐ€ ์ฐจ๋ฅผ ์ง์ ‘ ๋งŒ๋“ค ์ˆ˜
13:39
that gives you the opportunity to completely custom make your car.
328
819260
3000
์žˆ๋Š” ๊ธฐํšŒ๋ฅผ ์ฃผ๋Š” ๋…์ผ ์ฐจ ์ œ์กฐ ์—…์ฒด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
13:42
You've got to make 60 different decisions,
329
822260
2000
๋‹น์‹ ์€ ์ฐจ ์ „์ฒด๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ
13:44
completely make up your car.
330
824260
2000
60๊ฐ€์ง€ ๋‹ค๋ฅธ ์„ ํƒ์„ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
13:46
Now these decisions vary
331
826260
2000
์ด์ œ ์ด ๊ฒฐ์ •๋“ค์€ ๊ฒฐ์ • ํ•œ ๋ฒˆ ๋‹น
13:48
in the number of choices that they offer per decision.
332
828260
3000
์ฃผ์–ด์ง€๋Š” ์„ ํƒ์˜ ์ˆซ์ž์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค.
13:51
Car colors, exterior car colors --
333
831260
2000
์ €๋Š” ์ฐจ ์ƒ‰๊น”, ์™ธ๋ถ€ ์ฐจ ์ƒ‰๊น”--
13:53
I've got 56 choices.
334
833260
2000
56๊ฐ€์ง€ ์„ ํƒ์„ ๊ฐ€์กŒ์Šต๋‹ˆ๋‹ค.
13:55
Engines, gearshift -- four choices.
335
835260
3000
์—”์ง„, ๋ณ€์† ๊ธฐ์–ด--4๊ฐ€์ง€ ์„ ํƒ์ด์ง€์š”.
13:58
So now what I'm going to do
336
838260
2000
๊ทธ๋Ÿฌ๋‹ˆ ์ด์ œ ์ €๋Š”
14:00
is I'm going to vary the order in which these decisions appear.
337
840260
3000
์ด ์„ ํƒ๋“ค์ด ๋‚˜ํƒ€๋‚˜๋Š” ์ˆœ์„œ๋ฅผ ๋ฐ”๊พธ์–ด ๋ณด๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
14:03
So half of the customers
338
843260
2000
๊ทธ๋ž˜์„œ ์†Œ๋น„์ž๋“ค์˜ ์ ˆ๋ฐ˜์€
14:05
are going to go from high choice, 56 car colors,
339
845260
2000
๋†’์€ ์„ ํƒ, 56๊ฐ€์ง€ ์ƒ‰๊น”์—์„œ๋ถ€ํ„ฐ
14:07
to low choice, four gearshifts.
340
847260
3000
๋‚ฎ์€ ์„ ํƒ, 4๊ฐ€์ง€ ๋ณ€์† ๊ธฐ์–ด๋“ค๋กœ ๊ฐ€๊ฒ ์ง€์š”.
14:10
The other half of the customers
341
850260
2000
๋˜ ๋‹ค๋ฅธ ์†Œ๋น„์ž๋“ค์˜ ์ ˆ๋ฐ˜์€
14:12
are going to go from low choice, four gearshifts,
342
852260
2000
๋‚ฎ์€ ์„ ํƒ, 4๊ฐ€์ง€ ๋ณ€์† ๊ธฐ์–ด๋“ค๋ถ€ํ„ฐ
14:14
to 56 car colors, high choice.
343
854260
3000
56๊ฐ€์ง€ ์ฐจ ์ƒ‰๊น”, ๋†’์€ ์„ ํƒ๊นŒ์ง€ ๊ฐˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:17
What am I going to look at?
344
857260
2000
์ œ๊ฐ€ ์ง€๊ธˆ ๋ณด๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ๋ฌด์—‡์ผ๊นŒ์š”?
14:19
How engaged you are.
345
859260
2000
๋‹น์‹ ์ด ์–ผ๋งˆ๋‚˜ ๊ด€์—ฌํ•˜๊ณ  ์žˆ๋Š”์ง€์ž…๋‹ˆ๋‹ค.
14:21
If you keep hitting the default button per decision,
346
861260
3000
๋‹น์‹ ์ด ๊ฒฐ์ •์„ ๋‚ด๋ฆด ๋•Œ๋งˆ๋‹ค ๊ธฐ๋ณธ ๋ฒ„ํŠผ์„ ๋ˆ„๋ฅธ๋‹ค๋ฉด,
14:24
that means you're getting overwhelmed,
347
864260
2000
๋‹น์‹ ์ด ์••๋„๋˜์–ด์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๊ณ ,
14:26
that means I'm losing you.
348
866260
2000
์ œ๊ฐ€ ๋‹น์‹ ์„ ๋†“์ณ ๊ฐ€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:28
What you find
349
868260
2000
๋‹น์‹ ์ด ์•Œ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€
14:30
is the people who go from high choice to low choice,
350
870260
2000
๋†’์€ ์„ ํƒ์—์„œ ๋‚ฎ์€ ์„ ํƒ์œผ๋กœ ๊ฐ€๋Š” ์‚ฌ๋žŒ๋“ค์€
14:32
they're hitting that default button over and over and over again.
351
872260
3000
๊ธฐ๋ณธ ๋ฒ„ํŠผ์„ ๊ณ„์† ๋ˆ„๋ฅด๊ณ  ๋˜ ๋ˆ„๋ฅธ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:35
We're losing them.
352
875260
2000
์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋“ค์„ ๋†“์น˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด์ง€์š”.
14:37
They go from low choice to high choice,
353
877260
2000
๊ทธ๋“ค์ด ๋‚ฎ์€ ์„ ํƒ์—์„œ ๋†’์€ ์„ ํƒ์œผ๋กœ ๊ฐ€๋ฉด,
14:39
they're hanging in there.
354
879260
2000
๊ทธ๋“ค์€ ๊ณ„์† ๋จธ๋ฌผ๋Ÿฌ ์žˆ์Šต๋‹ˆ๋‹ค.
14:41
It's the same information. It's the same number of choices.
355
881260
3000
๊ทธ๊ฒƒ์€ ๊ฐ™์€ ์ •๋ณด์ž…๋‹ˆ๋‹ค. ๊ฐ™์€ ์ˆซ์ž์˜ ์„ ํƒ๋“ค์ด์ง€์š”.
14:44
The only thing that I have done
356
884260
2000
ํ•˜์ง€๋งŒ ์ œ๊ฐ€ ํ•œ ์œ ์ผํ•œ ํ–‰๋™์€
14:46
is I have varied the order
357
886260
2000
๊ทธ ์ •๋ณด๊ฐ€ ๋ณด์—ฌ์ง€๋Š”
14:48
in which that information is presented.
358
888260
2000
์ˆœ์„œ๋ฅผ ๋ฐ”๊พผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:50
If I start you off easy,
359
890260
2000
์ œ๊ฐ€ ์‰ฝ๊ฒŒ ์‹œ์ž‘ํ•˜๊ฒŒ ๋˜๋ฉด,
14:52
I learn how to choose.
360
892260
2000
์ €๋Š” ์„ ํƒํ•˜๋Š” ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.
14:54
Even though choosing gearshift
361
894260
3000
๊ธฐ์–ด๋ฅผ ๊ณ ๋ฅด๋Š” ๊ฒƒ์ด ์ €์—๊ฒŒ ์ œ ์ธํ…Œ๋ฆฌ์–ด ์žฅ์‹์˜
14:57
doesn't tell me anything about my preferences for interior decor,
362
897260
3000
์„ ํ˜ธ๋„์— ๋Œ€ํ•ด ์•Œ๋ ค์ฃผ๋Š” ๋ฐ”๋Š” ์—†์ง€๋งŒ
15:00
it still prepares me for how to choose.
363
900260
3000
๊ทธ๋ž˜๋„ ์–ด๋–ป๊ฒŒ ์„ ํƒํ•˜๋Š”์ง€ ์ค€๋น„์‹œ์ผœ์ค๋‹ˆ๋‹ค.
15:03
It also gets me excited about this big product that I'm putting together,
364
903260
3000
์ œ๊ฐ€ ์ƒˆ๋กœ ๋งŒ๋“ค๊ณ  ์žˆ๋Š” ์ด ํฐ ์ œํ’ˆ์— ๋Œ€ํ•ด ์‹ ์ด ๋‚˜๊ฒŒ ํ•ด์„œ
15:06
so I'm more willing to be motivated
365
906260
2000
์ œ๊ฐ€ ๋” ๊ฐœ์ž…ํ•˜๋„๋ก
15:08
to be engaged.
366
908260
2000
๋™๊ธฐ๋ฅผ ๋ถ€์—ฌ์‹œ์ผœ์ค๋‹ˆ๋‹ค.
15:10
So let me recap.
367
910260
2000
๊ทธ๋Ÿฌ๋‹ˆ ๋‹ค์‹œ ์ •๋ฆฌํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
15:12
I have talked about four techniques
368
912260
3000
์ €๋Š” ์„ ํƒ ๊ณผ๋ถ€ํ™”์˜ ๋ฌธ์ œ์ ์„ ์™„ํ™”์‹œํ‚ฌ
15:15
for mitigating the problem of choice overload --
369
915260
3000
4๊ฐ€์ง€ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ๋งํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค--
15:18
cut -- get rid of the extraneous alternatives;
370
918260
3000
์ค„์ด๊ธฐ--์“ธ๋ชจ์—†๋Š” ๋Œ€์•ˆ๋“ค์„ ์—†์• ๋ฒ„๋ฆฌ์ž;
15:21
concretize -- make it real;
371
921260
3000
๊ตฌ์ฒดํ™”์‹œํ‚ค๊ธฐ--์‹ค์ œ๋กœ ๋งŒ๋“ค์ž;
15:24
categorize -- we can handle more categories, less choices;
372
924260
4000
๋ถ„๋ฅ˜ํ•˜๊ธฐ--์šฐ๋ฆฌ๋Š” ์„ ํƒ๋“ค๋ณด๋‹ค๋Š” ๋” ๋งŽ์€ ๋ฒ”์ฃผ๋“ค์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋‹ค;
15:28
condition for complexity.
373
928260
3000
๋ณต์žกํ•จ์„ ์œ„ํ•œ ์กฐ๊ฑด.
15:31
All of these techniques that I'm describing to you today
374
931260
3000
์ œ๊ฐ€ ์˜ค๋Š˜ ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋Š” ์ด ๋ชจ๋“  ๊ธฐ์ˆ ๋“ค์€
15:34
are designed to help you manage your choices --
375
934260
3000
๋‹น์‹ ์˜ ์„ ํƒ์„ ํ•ด๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ๋””์ž์ธ ๋˜์–ด ์žˆ๊ณ --
15:37
better for you, you can use them on yourself,
376
937260
3000
๋‹น์‹ ์„ ์œ„ํ•ด ๋” ์ข‹๊ณ , ์Šค์Šค๋กœ ์จ ๋ณด์‹ค ์ˆ˜๋„ ์žˆ๊ณ ,
15:40
better for the people that you are serving.
377
940260
2000
๋‹น์‹ ์ด ๊ทผ๋ฌดํ•˜๋Š” ๊ณณ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ๋„ ์ข‹์Šต๋‹ˆ๋‹ค.
15:42
Because I believe that the key
378
942260
2000
์ €๋Š” ์„ ํƒ์—์„œ ์ตœ๋Œ€์˜ ๊ฒฐ๊ณผ๋ฅผ
15:44
to getting the most from choice
379
944260
2000
๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ๋Š” ๋น„๋ฒ•์€ ์„ ํƒ์— ๋Œ€ํ•ด
15:46
is to be choosy about choosing.
380
946260
3000
๊นŒ๋‹ค๋กœ์›Œ์ง€๋Š” ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ธฐ ๋•Œ๋ฌธ์ด์ง€์š”.
15:49
And the more we're able to be choosy about choosing
381
949260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์„ ํƒ๋“ค์— ๋Œ€ํ•ด ๋” ๊นŒ๋‹ค๋กœ์›Œ ์งˆ ๋•Œ์—,
15:51
the better we will be able
382
951260
2000
์šฐ๋ฆฌ๋Š” ์„ ํƒ์˜ ๊ธฐ์ˆ ์„ ์‹คํ–‰ํ•ด ๋ณผ
15:53
to practice the art of choosing.
383
953260
2000
๊ธฐํšŒ๋ฅผ ๋” ๊ฐ€์ง€๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:55
Thank you very much.
384
955260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
15:57
(Applause)
385
957260
2000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7