Keith Chen: Could your language affect your ability to save money?

247,725 views ใƒป 2013-02-19

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Timothy Covell Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:15
The global economic financial crisis has reignited public interest
1
15760
4500
ื”ืžืฉื‘ืจ ื”ื›ืœื›ืœื™ ื”ืขื•ืœืžื™ ื”ื›ืœื›ืœื™ ื”ืฆื™ืช ืžื—ื“ืฉ ืืช ื”ืขื ื™ื™ืŸ ื”ืฆื™ื‘ื•ืจื™
00:20
in something that's actually one of the oldest questions in economics,
2
20260
3416
ื‘ืžืฉื”ื• ืฉื”ื•ื ื‘ืืžืช ืื—ืช ื”ืฉืืœื•ืช ื”ืขืชื™ืงื•ืช ื‘ื™ื•ืชืจ ื‘ื›ืœื›ืœื”,
00:23
dating back to at least before Adam Smith.
3
23676
2684
ืฉืจืืฉื™ืชื” ืœืคื—ื•ืช ืœืคื ื™ ืื“ื ืกืžื™ืช.
00:26
And that is, why is it that countries with seemingly similar economies and institutions
4
26360
5484
ื•ื”ื™ื, ืžื“ื•ืข ืžื“ื™ื ื•ืช ืขื ื›ืœื›ืœื•ืช ื•ืžื•ืกื“ื•ืช ื“ื•ืžื™ื ืœื›ืื•ืจื”
00:31
can display radically different savings behavior?
5
31844
3249
ื™ื›ื•ืœื•ืช ืœื”ืฆื™ื’ ื”ืชื ื”ื’ื•ืช ื—ื™ืกื›ื•ืŸ ืฉื•ื ื” ?
00:35
Now, many brilliant economists have spent their entire lives working on this question,
6
35093
4534
ื›ืขืช, ื›ืœื›ืœื ื™ื ืžื‘ืจื™ืงื™ื ืจื‘ื™ื ื”ืฉืงื™ืขื• ื—ื™ื™ื ืฉืœืžื™ื ื‘ืขื‘ื•ื“ื” ืขืœ ื”ืฉืืœื” ื”ื–ืืช,
00:39
and as a field we've made a tremendous amount of headway
7
39627
3417
ื•ื›ืชื—ื•ื ื”ืชืงื“ืžื ื• ืžืื“
00:43
and we understand a lot about this.
8
43044
2433
ื•ืื ื• ืžื‘ื™ื ื™ื ื”ืจื‘ื” ืขืœ ื›ืš.
00:45
What I'm here to talk with you about today is an intriguing new hypothesis
9
45477
3634
ื”ื“ื‘ืจ ืฉืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื• ื”ื™ื•ื ื”ื•ื ื”ืฉืขืจื” ื—ื“ืฉื” ื•ืžืขื ื™ื™ื ืช
00:49
and some surprisingly powerful new findings that I've been working on
10
49111
4032
ื•ืžืžืฆืื™ื ื—ื“ืฉื™ื ื—ื–ืงื™ื ื•ืžืคืชื™ืขื™ื ืฉืื ื™ ืขื•ื‘ื“ ืขืœื™ื”ื
00:53
about the link between the structure of the language you speak
11
53143
4706
ืขืœ ื”ืงืฉืจ ื‘ื™ืŸ ื”ืžื‘ื ื” ืฉืœ ื”ืฉืคื” ืฉืืชื ื“ื•ื‘ืจื™ื
00:57
and how you find yourself with the propensity to save.
12
57864
4396
ืœื ื˜ื™ื™ื” ืฉืœื›ื ืœื—ืกื•ืš.
01:02
Let me tell you a little bit about savings rates, a little bit about language,
13
62260
3067
ื”ืจืฉื• ืœื™ ืœืกืคืจ ืœื›ื ืงืฆืช ืขืœ ืฉื™ืขื•ืจื™ ื—ื™ืกื›ื•ืŸ, ื•ืงืฆืช ืขืœ ืฉืคื”,
01:05
and then I'll draw that connection.
14
65327
2350
ื•ืœืื—ืจ ืžื›ืŸ ืื ื™ ืืชืืจ ืืช ื”ืงืฉืจ.
01:07
Let's start by thinking about the member countries of the OECD,
15
67677
4567
ื ืชื—ื™ืœ ืœื—ืฉื•ื‘ ืขืœ ื”ื—ื‘ืจื™ื ื‘ืžื“ื™ื ื•ืช ื”-OECD,
01:12
or the Organization of Economic Cooperation and Development.
16
72244
3301
ืื• ื”ืืจื’ื•ืŸ ืœืฉื™ืชื•ืฃ ืคืขื•ืœื” ื•ืคื™ืชื•ื— ื›ืœื›ืœื™.
01:15
OECD countries, by and large, you should think about these
17
75545
3899
ืžื“ื™ื ื•ืช ื”-OECD ื‘ื“ืจืš ื›ืœืœ , ืขืœื™ื›ื ืœื—ืฉื•ื‘ ืขืœื™ื”ืŸ
01:19
as the richest, most industrialized countries in the world.
18
79444
2638
ื›ืขืœ ื”ืžื“ื™ื ื•ืช ื”ืขืฉื™ืจื•ืช ,ื”ืžืชื•ืขืฉื•ืช ื‘ื™ื•ืชืจ ื‘ืขื•ืœื.
01:22
And by joining the OECD, they were affirming a common commitment
19
82082
4050
ื•ืขืœ-ื™ื“ื™ ื”ืฆื˜ืจืคื•ืช ืœ-OECD, ื”ืŸ ื”ื‘ื™ืขื• ืžื—ื•ื™ื‘ื•ืช ืžืฉื•ืชืคืช
01:26
to democracy, open markets and free trade.
20
86132
3438
ืœื“ืžื•ืงืจื˜ื™ื”, ืœืฉื•ื•ืงื™ื ืคืชื•ื—ื™ื, ื•ืœืกื—ืจ ื—ื•ืคืฉื™.
01:29
Despite all of these similarities, we see huge differences in savings behavior.
21
89570
4685
ืœืžืจื•ืช ื›ืœ ืงื•ื•ื™ ื”ื“ืžื™ื•ืŸ ื”ืืœื”, ืื ื• ืจื•ืื™ื ื”ื‘ื“ืœื™ื ืขืฆื•ืžื™ื ื‘ื”ืชื ื”ื’ื•ืช ื—ื™ืกื›ื•ืŸ.
01:34
So all the way over on the left of this graph,
22
94255
2450
ืื– ืžืžืฉ ืœืžืขืœื” ื‘ืฆื“ ื™ืžื™ืŸ ืฉืœ ื’ืจืฃ ื–ื”,
01:36
what you see is many OECD countries saving over a quarter of their GDP every year,
23
96705
4734
ืžื” ืฉืืชื ืจื•ืื™ื ื”ื•ื ืฉืžื“ื™ื ื•ืช OECD ืจื‘ื•ืช ื—ื•ืกื›ื•ืช ื™ื•ืชืจ ืžืจื‘ืข ืžื”ืชืž"ื’ ืฉืœื”ื ื‘ื›ืœ ืฉื ื”,
01:41
and some OECD countries saving over a third of their GDP per year.
24
101439
4681
ื•ืžื“ื™ื ื•ืช OECD ืื—ื“ื•ืช ื—ื•ืกื›ื•ืช ืžืขืœ ืœืฉืœื™ืฉ ืžื”ืชืž"ื’ ืฉืœื”ืŸ ืœืฉื ื”.
01:46
Holding down the right flank of the OECD, all the way on the other side, is Greece.
25
106120
4768
ื›ืœ ื”ื“ืจืš ื‘ืฆื“ ื”ืฉื ื™ ื‘ืื’ืฃ ื”ื™ืžื ื™ ืฉืœ OECD, , ื–ื• ื™ื•ื•ืŸ.
01:50
And what you can see is that over the last 25 years,
26
110888
3416
ื•ืžื” ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื”ื•ื ืฉื‘ืžื”ืœืš 25 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
01:54
Greece has barely managed to save more than 10 percent of their GDP.
27
114304
3900
ื™ื•ื•ืŸ ื‘ืงื•ืฉื™ ื”ืฆืœื™ื—ื” ืœื—ืกื•ืš ื™ื•ืชืจ ืž- 10% ืžื”ืชืž"ื’ ืฉืœื”ื.
01:58
It should be noted, of course, that the United States and the U.K. are the next in line.
28
118204
6874
ื™ืฉ ืœืฆื™ื™ืŸ, ื›ืžื•ื‘ืŸ, ื›ื™ ืืจืฆื•ืช ื”ื‘ืจื™ืช ื•ื‘ื‘ืจื™ื˜ื ื™ื” ื”ืŸ ื”ื‘ืื•ืช ื‘ืชื•ืจ.
02:05
Now that we see these huge differences in savings rates,
29
125078
2578
ืขื›ืฉื™ื• ื›ืฉืื ื—ื ื• ืจื•ืื™ื ื”ื‘ื“ืœื™ื ืขืฆื•ืžื™ื ืืœื” ื‘ืฉื™ืขื•ืจื™ ื”ื—ื™ืกื›ื•ืŸ,
02:07
how is it possible that language might have something to do with these differences?
30
127656
3666
ื›ื™ืฆื“ ื–ื” ืืคืฉืจื™ ืฉื”ืฉืคื” ืขืœื•ืœื” ืœื”ื™ื•ืช ืงืฉื•ืจื” ืœื”ื‘ื“ืœื™ื ื”ืืœื”?
02:11
Let me tell you a little bit about how languages fundamentally differ.
31
131322
3049
ื”ืจืฉื• ืœื™ ืœืกืคืจ ืœื›ื ืžืขื˜ ื›ื™ืฆื“ ืฉืคื•ืช ืฉื•ื ื•ืช ื‘ืžื”ื•ืชืŸ.
02:14
Linguists and cognitive scientists have been exploring this question for many years now.
32
134371
5567
ื‘ืœืฉื ื™ื ื•ืžื“ืขื ื™ื ืงื•ื’ื ื™ื˜ื™ื‘ื™ื ื—ื•ืงืจื™ื ืฉืืœื” ื–ื• ืžื–ื” ืฉื ื™ื ืจื‘ื•ืช.
02:19
And then I'll draw the connection between these two behaviors.
33
139938
4610
ื•ืœืื—ืจ ืžื›ืŸ ืื ื™ ืืฉืจื˜ื˜ ืืช ื”ืงืฉืจ ืฉื‘ื™ืŸ ืฉืชื™ ื”ืชื ื”ื’ื•ื™ื•ืช ืืœื”.
02:24
Many of you have probably already noticed that I'm Chinese.
34
144548
2608
ืจื‘ื™ื ืžื›ื ื‘ื•ื•ื“ืื™ ื›ื‘ืจ ื”ื‘ื—ื™ื ื• ืฉืื ื™ ืกื™ื ื™.
02:27
I grew up in the Midwest of the United States.
35
147156
2965
ื’ื“ืœืชื™ ื‘ืžืขืจื‘ ื”ืชื™ื›ื•ืŸ ืฉืœ ืืจืฆื•ืช ื”ื‘ืจื™ืช.
02:30
And something I realized quite early on
36
150121
2451
ื•ืžืฉื”ื• ืฉื”ื‘ื ืชื™ ื“ื™ ืžื•ืงื“ื
02:32
was that the Chinese language forced me to speak about and --
37
152572
3591
ื”ื™ื” ืฉื”ืฉืคื” ื”ืกื™ื ื™ืช ืื™ืœืฆื” ืื•ืชื™ ืœื“ื‘ืจ ืขืœ- ื•--
02:36
in fact, more fundamentally than that --
38
156163
2891
ืœืžืขืฉื”, ื‘ืื•ืคืŸ ืขืงืจื•ื ื™ ื™ื•ืชืจ ืžืืฉืจ ื–ื”-
02:39
ever so slightly forced me to think about family in very different ways.
39
159054
4090
ืฉื‘ืื•ืคืŸ ื‘ืœืชื™ ืžื•ืจื’ืฉ ื›ืžืขื˜, ืื™ืœืฆื” ืื•ืชื™ ืœื—ืฉื•ื‘ ืขืœ ืžืฉืคื—ื” ื‘ื“ืจื›ื™ื ืฉื•ื ื•ืช ืžืื•ื“.
02:43
Now, how might that be? Let me give you an example.
40
163144
2077
ืขื›ืฉื™ื•, ืื™ืš ื–ื” ื™ื™ืชื›ืŸ? ืื ื™ ืืชืŸ ืœื›ื ื“ื•ื’ืžื.
02:45
Suppose I were talking with you and I was introducing you to my uncle.
41
165221
4402
ื ื ื™ื— ืฉืื ื™ ื”ื™ื™ืชื™ ืžื“ื‘ืจ ืื™ืชืš ื•ื”ื™ื™ืชื™ ืžืฆื™ื’ ืื•ืชืš ื‘ืคื ื™ ื“ื•ื“ื™.
02:49
You understood exactly what I just said in English.
42
169623
2866
ืืชื” ื”ื‘ื ืช ื‘ื“ื™ื•ืง ืžื” ืฉื–ื” ืขืชื” ืืžืจืชื™ ื‘ืื ื’ืœื™ืช.
02:52
If we were speaking Mandarin Chinese with each other, though,
43
172489
2950
ืœื• ื”ื™ื™ื ื• ืžื“ื‘ืจื™ื ืกื™ื ื™ืช ืžื ื“ืจื™ื ื™ืช ื–ื” ืขื ื–ื”, ืื‘ืœ
02:55
I wouldn't have that luxury.
44
175439
2066
ืœื ื”ื™ื” ืœื™ ื”ืขื•ื ื’.
02:57
I wouldn't have been able to convey so little information.
45
177505
2833
ืœื ื”ื™ื™ืชื™ ืžืกื•ื’ืœ ืœื”ืขื‘ื™ืจ ื›ืœ ื›ืš ืžืขื˜.ืžื™ื“ืข.
03:00
What my language would have forced me to do,
46
180338
2384
ืžื” ืฉื”ืฉืคื” ืฉืœื™ ื”ื™ืชื” ืžื›ืจื™ื—ื” ืื•ืชื™ ืœืขืฉื•ืช,
03:02
instead of just telling you, "This is my uncle,"
47
182722
2000
ื‘ืžืงื•ื ืคืฉื•ื˜ ืœืืžืจ, "ื–ื”ื• ื“ื•ื“ื™"
03:04
is to tell you a tremendous amount of additional information.
48
184722
3282
ื”ื•ื ืœืกืคืง ืœืš ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ืžื™ื“ืข ื ื•ืกืฃ.
03:08
My language would force me to tell you
49
188004
1819
ื”ืฉืคื” ืฉืœื™ ื”ื™ืชื” ืžืืœืฆืช ืื•ืชื™ ืœืกืคืจ ืœืš
03:09
whether or not this was an uncle on my mother's side or my father's side,
50
189823
3416
ืื ื–ื” ื“ื•ื“ ืžืฆื“ ืืžื™ ืื• ืžืฆื“ ืื‘ื™,
03:13
whether this was an uncle by marriage or by birth,
51
193239
3084
ืื ื–ื” ื”ื™ื” ื“ื•ื“ ืžื ื™ืฉื•ืื™ืŸ ืื• ืžืœื™ื“ื”,
03:16
and if this man was my father's brother,
52
196323
2232
ื•ืื ื”ืื™ืฉ ื”ื–ื” ื”ื™ื” ืื—ื™ื• ืฉืœ ืื‘ื™,
03:18
whether he was older than or younger than my father.
53
198555
2784
ืื ื”ื•ื ื”ื™ื” ืžื‘ื•ื’ืจ ื™ื•ืชืจ ืื• ืฆืขื™ืจ ื™ื•ืชืจ ืžืื‘ื™.
03:21
All of this information is obligatory. Chinese doesn't let me ignore it.
54
201339
4133
ื›ืœ ื”ืžื™ื“ืข ื”ื–ื” ื”ื•ื ื—ื•ื‘ื”. ื”ืกื™ื ื™ืช ืœื ืžืจืฉื” ืœื™ ืœื”ืชืขืœื ืžืžื ื•.
03:25
And in fact, if I want to speak correctly,
55
205472
2166
ื•ืœืžืขืฉื”, ืื ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ื‘ืฆื•ืจื” ื ื›ื•ื ื”,
03:27
Chinese forces me to constantly think about it.
56
207638
3117
ื”ืกื™ื ื™ืช ืžืืœืฆืช ืื•ืชื™ ืœื—ืฉื•ื‘ ื›ืœ ื”ื–ืžืŸ ืขืœ ื›ืš.
03:30
Now, that fascinated me endlessly as a child,
57
210755
3949
ื›ืขืช, ื›ื™ืœื“, ื–ื” ืจื™ืชืง ืื•ืชื™ ืžืื“,
03:34
but what fascinates me even more today as an economist
58
214704
3235
ืืš ืžื” ืฉืžืจืชืง ืื•ืชื™ ืขื•ื“ ื™ื•ืชืจ ื”ื™ื•ื ื›ื›ืœื›ืœืŸ
03:37
is that some of these same differences carry through to how languages speak about time.
59
217939
5301
ื”ื•ื ืฉื—ืœืง ืžื”ื‘ื“ืœื™ื ืืœื” ืขืฆืžื ืžืœืžื“ื™ื ื›ื™ืฆื“ ืฉืคื•ืช ืžื“ื‘ืจื•ืช ืขืœ ื–ืžืŸ.
03:43
So for example, if I'm speaking in English, I have to speak grammatically differently
60
223240
4249
ื›ืš ืœืžืฉืœ, ืื ืื ื™ ืžื“ื‘ืจ ื‘ืื ื’ืœื™ืช, ืขืœื™ ืœื“ื‘ืจ ื‘ืื•ืคืŸ ืฉื•ื ื” ืžื‘ื—ื™ื ื” ื“ืงื“ื•ืงื™ืช
03:47
if I'm talking about past rain, "It rained yesterday,"
61
227489
2733
ืื ืื ื™ ืžื“ื‘ืจ ืขืœ ื’ืฉื ืฉื”ื™ื”, "ื™ืจื“ ื’ืฉื ืืชืžื•ืœ"
03:50
current rain, "It is raining now,"
62
230222
2232
ื”ื’ืฉื ื”ื ื•ื›ื—ื™, "ื™ื•ืจื“ ื’ืฉื ืขื›ืฉื™ื•"
03:52
or future rain, "It will rain tomorrow."
63
232454
2434
ืื• ื’ืฉื ื‘ืขืชื™ื“, "ื™ืจื“ ื’ืฉื ืžื—ืจ."
03:54
Notice that English requires a lot more information with respect to the timing of events.
64
234888
4827
ืฉื™ืžื• ืœื‘ ืฉืื ื’ืœื™ืช ื“ื•ืจืฉืช ื”ืจื‘ื” ื™ื•ืชืจ ืžื™ื“ืข ืœื’ื‘ื™ ื”ืขื™ืชื•ื™ ืฉืœ ื”ืื™ืจื•ืขื™ื.
03:59
Why? Because I have to consider that
65
239715
2007
ืžื“ื•ืข? ื›ื™ ืขืœื™ ืœืฉืงื•ืœ ื–ืืช
04:01
and I have to modify what I'm saying to say, "It will rain," or "It's going to rain."
66
241722
4783
ื•ืขืœื™ ืœืฉื ื•ืช ืืช ืžื” ืฉืื ื™ ืื•ืžืจ ื•ืœื•ืžืจ, "ื™ืจื“ ื’ืฉื", ืื• "ื”ื•ืœืš ืœืจื“ืช ื’ืฉื."
04:06
It's simply not permissible in English to say, "It rain tomorrow."
67
246505
4116
ื–ื” ืคืฉื•ื˜ ืืกื•ืจ ืœื•ืžืจ ื‘ืื ื’ืœื™ืช , "ื™ื•ืจื“ ื’ืฉื ืžื—ืจ."
04:10
In contrast to that, that's almost exactly what you would say in Chinese.
68
250621
4184
ื‘ื ื™ื’ื•ื“ ืœื–ื”, ืฉื–ื” ื›ืžืขื˜ ื‘ื“ื™ื•ืง ืžื” ืฉื”ื™ื™ืชื ืื•ืžืจื™ื ื‘ืกื™ื ื™ืช.
04:14
A Chinese speaker can basically say something
69
254805
2316
ื“ื•ื‘ืจ ืกื™ื ื™ืช ื™ื›ื•ืœ ื‘ืขืฆื ืœื•ืžืจ ืžืฉื”ื•
04:17
that sounds very strange to an English speaker's ears.
70
257121
2584
ืฉื ืฉืžืข ืžืื•ื“ ืžื•ื–ืจ ืœืื•ื–ื ื™ื• ืฉืœ ื“ื•ื‘ืจ ืื ื’ืœื™ืช.
04:19
They can say, "Yesterday it rain," "Now it rain," "Tomorrow it rain."
71
259705
4567
ื”ื ื™ื›ื•ืœื™ื ืœื•ืžืจ, "ืืชืžื•ืœ ื™ื•ืจื“ ื’ืฉื," "ืขื›ืฉื™ื• ื™ื•ืจื“ ื’ืฉื," "ืžื—ืจ ื™ื•ืจื“ ื’ืฉื."
04:24
In some deep sense, Chinese doesn't divide up the time spectrum
72
264272
3863
ื‘ืžื•ื‘ืŸ ืขืžื•ืง ื›ืœืฉื”ื•, ื”ืกื™ื ื™ืช ืœื ืžื—ืœืงืช ืืช ื˜ื•ื•ื— ื”ื–ืžืŸ
04:28
in the same way that English forces us to constantly do in order to speak correctly.
73
268135
6433
ื‘ืื•ืชื• ืื•ืคืŸ ืฉืื ื’ืœื™ืช ืžืืœืฆืช ืื•ืชื ื• ื›ืœ ื”ื–ืžืŸ ืœืขืฉื•ืช ื›ื“ื™ ืœื“ื‘ืจ ื ื›ื•ืŸ.
04:34
Is this difference in languages
74
274568
1584
ื”ืื ื”ื‘ื“ืœ ื–ื” ื‘ืฉืคื•ืช
04:36
only between very, very distantly related languages, like English and Chinese?
75
276152
4195
ืงื™ื™ื ืจืง ื‘ื™ืŸ ืฉืคื•ืช ืžืจื•ื—ืงื•ืช ื–ื• ืžื–ื•, ื›ืžื• ืื ื’ืœื™ืช ื•ืกื™ื ื™ืช?
04:40
Actually, no.
76
280347
958
ืœืžืขืฉื”, ืœื.
04:41
So many of you know, in this room, that English is a Germanic language.
77
281305
3733
ื›ืš ืฉืจื‘ื™ื ืžื›ื ื™ื•ื“ืขื™ื, ื‘ืื•ืœื ื”ื–ื”, ืฉืื ื’ืœื™ืช ื”ื™ื ืฉืคื” ื’ืจืžืื ื™ืช.
04:45
What you may not have realized is that English is actually an outlier.
78
285038
3915
ืžื” ืฉืื•ืœื™ ืœื ื”ื‘ื ืชื ื–ื” ืฉืื ื’ืœื™ืช ื”ื™ื ืœืžืขืฉื” ื—ืจื™ื’ื”.
04:48
It is the only Germanic language that requires this.
79
288953
3250
ื”ื™ื ื”ืฉืคื” ื”ื’ืจืžืื ื™ืช ื”ื™ื—ื™ื“ื” ืฉื“ื•ืจืฉืช ื–ืืช.
04:52
For example, most other Germanic language speakers
80
292203
2884
ืœื“ื•ื’ืžื”, ืจื•ื‘ ื“ื•ื‘ืจื™ ื”ืฉืคื•ืช ื”ื’ืจืžืื ื™ื•ืช ื”ืื—ืจื•ืช
04:55
feel completely comfortable talking about rain tomorrow
81
295087
3017
ืžืจื’ื™ืฉื•ืช ืœื’ืžืจื™ ื‘ื ื•ื— ื›ืฉื”ื ืžื“ื‘ืจื™ื ืขืœ ื’ืฉื ืฉื™ื•ืจื“ ืžื—ืจ
04:58
by saying, "Morgen regnet es,"
82
298104
1966
ื•ืื•ืžืจื™ื, "ืžื—ืจ ื™ื•ืจื“ ื’ืฉื,"
05:00
quite literally to an English ear, "It rain tomorrow."
83
300070
3900
ืคืฉื•ื˜ื• ื›ืžืฉืžืขื• ืœืื•ื–ืŸ ืื ื’ืœื™ืช "ื™ื•ืจื“ ื’ืฉื ืžื—ืจ"
05:03
This led me, as a behavioral economist, to an intriguing hypothesis.
84
303970
5067
ื–ื” ื”ื‘ื™ื ืื•ืชื™ ื›ื›ืœื›ืœืŸ ื”ืชื ื”ื’ื•ืชื™, ืœื”ื™ืคื•ืชื™ื–ื” ืžืกืงืจื ืช.
05:09
Could how you speak about time, could how your language forces you to think about time,
85
309037
4249
ื”ืื ื”ืื•ืคืŸ ืฉื‘ื• ืืชื ืžื“ื‘ืจื™ื ืขืœ ื–ืžืŸ, ื”ืื ื”ืื•ืคืŸ ื‘ื• ื”ืฉืคื” ืฉืœืš ื›ื•ืคื” ืขืœื™ืš ืœื—ืฉื•ื‘ ืขืœ ื–ืžืŸ,
05:13
affect your propensity to behave across time?
86
313286
3751
ืžืฉืคื™ืข ืœืื•ืจืš ื–ืžืŸ ืขืœ ื”ื ื˜ื™ื™ื” ื”ื”ืชื ื”ื’ื•ืชื™ืช ืฉืœืš ?
05:17
You speak English, a futured language.
87
317037
2900
ืืชื” ืžื“ื‘ืจ ืื ื’ืœื™ืช, ืฉืคื” ืฉื™ืฉ ื‘ื” ื–ืžืŸ ืขืชื™ื“.
05:19
And what that means is that every time you discuss the future,
88
319937
3167
ื•ื–ื” ืื•ืžืจ ืฉื‘ื›ืœ ืคืขื ืฉืืชื” ื“ืŸ ื‘ืขืชื™ื“,
05:23
or any kind of a future event,
89
323104
1567
ืื• ื‘ื›ืœ ืกื•ื’ ืฉืœ ืื™ืจื•ืข ืขืชื™ื“ื™,
05:24
grammatically you're forced to cleave that from the present
90
324671
3399
ืžื‘ื—ื™ื ื” ื“ืงื“ื•ืงื™ืช ืืชื” ื ืืœืฅ ืœื”ืคืจื™ื“ ืื•ืชื• ืžื”ื”ื•ื•ื”
05:28
and treat it as if it's something viscerally different.
91
328070
2633
ื•ืœื ื”ื•ื’ ื‘ื• ื›ืื™ืœื• ื”ื•ื ืžืฉื”ื• ืฉื•ื ื” ื‘ืื•ืคืŸ ืื™ื ืกื˜ื™ื ืงื˜ื™ื‘ื™.
05:30
Now suppose that that visceral difference
92
330703
2500
ื›ืขืช, ื ื ื™ื— ืฉื”ื‘ื“ืœ ืื™ื ืกื˜ื™ื ืงื˜ื™ื‘ื™ ื–ื”
05:33
makes you subtly dissociate the future from the present every time you speak.
93
333203
4200
ื’ื•ืจื ืœืš ื‘ืขื“ื™ื ื•ืช ืœื ืชืง ืืช ื”ืขืชื™ื“ ืžื”ื”ื•ื•ื” ื‘ื›ืœ ืคืขื ืฉืืชื” ืžื“ื‘ืจ.
05:37
If that's true and it makes the future feel
94
337403
1913
ืื ื–ื” ื ื›ื•ืŸ ื–ื” ื’ื•ืจื ืœืš ืœื”ืจื’ื™ืฉ ืฉื”ืขืชื™ื“
05:39
like something more distant and more different from the present,
95
339316
2983
ื”ื•ื ื›ืžื• ืžืฉื”ื• ืจื—ื•ืง ื™ื•ืชืจ ื•ืฉื•ื ื” ื™ื•ืชืจ ืžื”ื”ื•ื•ื”,
05:42
that's going to make it harder to save.
96
342299
2654
ืžื” ืฉืžืงืฉื” ืขืœื™ืš ืœื—ืกื•ืš.
05:44
If, on the other hand, you speak a futureless language,
97
344953
2551
ืื, ืœืขื•ืžืช ื–ืืช, ืืชื” ืžื“ื‘ืจ ื‘ืฉืคื” ืœืœื ื–ืžืŸ ืขืชื™ื“,
05:47
the present and the future, you speak about them identically.
98
347504
3383
ื”ื”ื•ื•ื” ื•ื”ืขืชื™ื“, ืืชื” ืžื“ื‘ืจ ืขืœื™ื”ืŸ ื‘ืื•ืคืŸ ื–ื”ื”.
05:50
If that subtly nudges you to feel about them identically,
99
350887
2983
ืื ื–ื” ื‘ืื•ืคืŸ ืžืขื•ื“ืŸ ืžื ื™ืข ืื•ืชืš ืœื—ื•ืฉ ืื•ืชื ื‘ืื•ืคืŸ ื–ื”ื”,
05:53
that's going to make it easier to save.
100
353870
2384
ื–ื” ื”ื•ืœืš ืœื”ืงืœ ืขืœื™ืš ืœื—ืกื•ืš.
05:56
Now this is a fanciful theory.
101
356254
2550
ื›ืขืช ื–ื•ื”ื™ ืชื™ืื•ืจื™ื” ื“ืžื™ื•ื ื™ืช.
05:58
I'm a professor, I get paid to have fanciful theories.
102
358804
2900
ืื ื™ ืคืจื•ืคืกื•ืจ, ื•ืžืฉืœืžื™ื ืœื™ ืœืคืชื— ืชื™ืื•ืจื™ื•ืช ื“ืžื™ื•ื ื™ื•ืช.
06:01
But how would you actually go about testing such a theory?
103
361704
4234
ืื‘ืœ ืื™ืš ื‘ืขืฆื ื‘ื•ื“ืงื™ื ืชื™ืื•ืจื™ื” ื›ื–ื•?
06:05
Well, what I did with that was to access the linguistics literature.
104
365938
4066
ื•ื‘ื›ืŸ, ืžื” ืฉืขืฉื™ืชื™ ืขื ื–ื” ื”ื™ื” ืœืคื ื•ืช ืœืกืคืจื•ืช ืฉืœ ื”ื‘ืœืฉื ื•ืช.
06:10
And interestingly enough, there are pockets of futureless language speakers
105
370004
4383
ื•ื“ื™ ืžืขื ื™ื™ืŸ, ืฉื™ืฉ ื›ื™ืกื™ื ืฉืœ ื“ื•ื‘ืจื™ ืฉืคื” ืœืœื ื–ืžืŸ ืขืชื™ื“
06:14
situated all over the world.
106
374387
1933
ืฉืžืžื•ืงืžื™ื ื‘ื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื.
06:16
This is a pocket of futureless language speakers in Northern Europe.
107
376320
3366
ื–ื”ื• ื›ื™ืก ืฉืœ ื“ื•ื‘ืจื™ ืฉืคื” ืœืœื ื–ืžืŸ ืขืชื™ื“ ื‘ืฆืคื•ืŸ ืื™ืจื•ืคื”.
06:19
Interestingly enough, when you start to crank the data,
108
379686
2901
ื“ื™ ืžืขื ื™ื™ืŸ, ืฉื›ืืฉืจ ืžืชื—ื™ืœื™ื ืœืฉื—ืง ืขื ื”ื ืชื•ื ื™ื,
06:22
these pockets of futureless language speakers all around the world
109
382587
3233
ื›ื™ืกื™ื ืืœื” ืฉืœ ื“ื•ื‘ืจื™ ืฉืคื” ืœืœื ื–ืžืŸ ืขืชื™ื“ ื‘ืจื—ื‘ื™ ื”ืขื•ืœื
06:25
turn out to be, by and large, some of the world's best savers.
110
385820
3934
ืžืชื‘ืจืจื™ื, ืขืœ ืคื™ ืจื•ื‘, ืฉื”ื ืื—ื“ื™ื ืžื”ื—ื•ืกื›ื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื.
06:29
Just to give you a hint of that,
111
389754
2166
ืจืง ื›ื“ื™ ืœืชืช ืœื›ื ืจืžื– ืœื›ืš,
06:31
let's look back at that OECD graph that we were talking about.
112
391920
2750
ื‘ื•ืื• ื ืฉื•ื‘ ื•ื ืกืชื›ืœ ื‘ืื•ืชื• ื’ืจืฃ ืฉืœ ื”-OECD ืฉื“ื™ื‘ืจื ื• ืขืœื™ื•.
06:34
What you see is that these bars are systematically taller
113
394670
3384
ืžื” ืฉืืชื ืจื•ืื™ื ื–ื” ืฉื”ื‘ืจื™ื ื”ืืœื” ื”ื ื’ื‘ื•ื”ื™ื ื‘ืื•ืคืŸ ืฉื™ื˜ืชื™
06:38
and systematically shifted to the left
114
398054
2132
ื•ืฉืกื˜ื• ื‘ืื•ืคืŸ ืฉื™ื˜ืชื™ ืœืฉืžืืœ
06:40
compared to these bars which are the members of the OECD that speak futured languages.
115
400186
4518
ืœืขื•ืžืช ื‘ืจื™ื ืืœื” ืฉื”ื ื—ื‘ืจื™ ื”-OECD ืฉื“ื•ื‘ืจื™ื ืฉืคื•ืช ืฉื™ืฉ ื‘ื”ืŸ ื–ืžืŸ ืขืชื™ื“.
06:44
What is the average difference here?
116
404704
1463
ืžื” ื”ื”ื‘ื“ืœ ื”ืžืžื•ืฆืข ื›ืืŸ?
06:46
Five percentage points of your GDP saved per year.
117
406167
3286
ื—ืžืฉ ื ืงื•ื“ื•ืช ืื—ื•ื– ืœืฉื ื” ืžื”ืชืž"ื’ ืฉืœื›ื ื ื—ืกื›ื• .
06:49
Over 25 years that has huge long-run effects on the wealth of your nation.
118
409453
4734
ื‘ืžืฉืš 25 ืฉื ื” ื™ืฉ ืœื›ืš ื”ืฉืคืขื•ืช ืขืฆื•ืžื•ืช ืืจื•ื›ื•ืช ื˜ื•ื•ื— ืขืœ ื”ื”ื•ืŸ ืฉืœ ื”ืื•ืžื” ืฉืœื›ื.
06:54
Now while these findings are suggestive,
119
414187
2700
ืขื›ืฉื™ื• ื‘ืขื•ื“ ืžืžืฆืื™ื ืืœื” ืžืจืžื–ื™ื
06:56
countries can be different in so many different ways
120
416887
2066
ืžื“ื™ื ื•ืช ื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ืฉื•ื ื•ืช ื–ื• ืžื–ื• ื‘ื›ืœ ื›ืš ื”ืจื‘ื” ื“ืจื›ื™ื
06:58
that it's very, very difficult sometimes to account for all of these possible differences.
121
418953
4384
ืฉื–ื” ืžืื•ื“, ืžืื•ื“ ืงืฉื” ืœืคืขืžื™ื ืœื”ื•ื•ืช ื”ืกื‘ืจ ืขื‘ื•ืจ ื›ืœ ื”ื”ื‘ื“ืœื™ื ื”ืืคืฉืจื™ื™ื ื”ืืœื”.
07:03
What I'm going to show you, though, is something that I've been engaging in for a year,
122
423337
4032
ืžื” ืฉืื ื™ ื”ื•ืœืš ืœื”ืจืื•ืช ืœื›ื, ืื‘ืœ, ื–ื” ืžืฉื”ื• ืฉืื ื™ ืขื•ืกืง ื‘ื• ื›ื‘ืจ ื‘ืžืฉืš ืฉื ื”,
07:07
which is trying to gather all of the largest datasets
123
427369
2323
ืื ื™ ืžื ืกื” ืœืืกื•ืฃ ืืช ื›ืœ ืžืขืจื›ื™ ื”ื ืชื•ื ื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ
07:09
that we have access to as economists,
124
429692
2292
ืฉืœื”ื ื™ืฉ ืœื ื• ื’ื™ืฉื” ื›ื›ืœื›ืœื ื™ื,
07:11
and I'm going to try and strip away all of those possible differences,
125
431984
3382
ื•ืื ื™ ืžืชื›ื•ื•ืŸ ืœื ืกื•ืช ืœื”ืกื™ืจ ืืช ื›ืœ ื”ื”ื‘ื“ืœื™ื ื”ืืคืฉืจื™ื™ื ื”ืœืœื•,
07:15
hoping to get this relationship to break.
126
435366
2654
ื‘ืชืงื•ื•ื” ืฉืงืฉืจ ื’ื•ืžืœื™ืŸ ื–ื” ื™ืชื ืชืง.
07:18
And just in summary, no matter how far I push this, I can't get it to break.
127
438020
5031
ื•ืจืง ืœืกื™ื›ื•ื, ืœื ืžืฉื ื” ื›ืžื” ืจื—ื•ืง ืื ื™ ื“ื•ื—ืฃ ืืช ื–ื”, ืื ื™ ืœื ื™ื›ื•ืœ ืœื’ืจื•ื ืœื• ืœื”ืชื ืชืง.
07:23
Let me show you how far you can do that.
128
443051
1765
ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ื›ืžื” ืจื—ื•ืง ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื”.
07:24
One way to imagine that is I gather large datasets from around the world.
129
444816
4633
ืื—ืช ื”ื“ืจื›ื™ื ืœื“ืžื™ื™ืŸ ื–ืืช ื”ื™ื - ืื ื™ ืื•ืกืฃ ืžืื’ืจื™ ื ืชื•ื ื™ื ืžื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื.
07:29
So for example, there is the Survey of Health, [Aging] and Retirement in Europe.
130
449449
3734
ื›ืš ืœืžืฉืœ, ื™ืฉ ืกืงืจ ื‘ืจื™ืื•ืช, [ื”ื–ื“ืงื ื•ืช] ื•ืคืจื™ืฉื” ื‘ืื™ืจื•ืคื”.
07:33
From this dataset you actually learn that retired European families
131
453183
3834
ืขืœ ืคื™ ืžืื’ืจ ื”ื ืชื•ื ื™ื ืืชื ื‘ืขืฆื ืœื•ืžื“ื™ื ืฉืžืฉืคื—ื•ืช ืื™ืจื•ืคืื™ื•ืช ื‘ื’ืžืœืื•ืช
07:37
are extremely patient with survey takers.
132
457017
2633
ื”ืŸ ืžืื•ื“ ืกื‘ืœื ื™ื•ืช ืขื ืกื•ืงืจื™ื.
07:39
(Laughter)
133
459650
1916
(ืฆื—ื•ืง)
07:41
So imagine that you're a retired household in Belgium and someone comes to your front door.
134
461566
4384
ืื– ืชืืจื• ืœืขืฆืžื›ื ืฉืืชื ืžืฉืง ื‘ื™ืช ืฉืœ ื’ืžืœืื™ื ื‘ื‘ืœื’ื™ื” ื•ืžื™ืฉื”ื• ืžื’ื™ืข ืœื“ืœืช ื”ื›ื ื™ืกื” ืฉืœื›ื
07:45
"Excuse me, would you mind if I peruse your stock portfolio?
135
465950
4584
"ืกืœื—ื• ืœื™, ืื™ื›ืคืช ืœื›ื ืื ืืขื™ื™ืŸ ื‘ืชื™ืง ื”ื”ืฉืงืขื•ืช ืฉืœื›ื?
07:50
Do you happen to know how much your house is worth? Do you mind telling me?
136
470534
3532
ื”ืื ื‘ืžืงืจื” ืืชื ื™ื•ื“ืขื™ื ืžื” ืฉื•ื•ื™ื• ืฉืœ ื”ื‘ื™ืช ืฉืœื›ื? ื”ืื ืื›ืคืช ืœื›ื ืœื•ืžืจ ืœื™?
07:54
Would you happen to have a hallway that's more than 10 meters long?
137
474066
3267
ื”ืื ื‘ืžืงืจื” ื™ืฉ ืœื›ื ืžืกื“ืจื•ืŸ ืืจื•ืš ื™ื•ืชืจ ืž- 10 ืžื˜ืจื™ื?
07:57
If you do, would you mind if I timed how long it took you to walk down that hallway?
138
477333
4501
ืื ื›ืŸ, ืื™ื›ืคืช ืœื›ื ืื ืืชื–ืžืŸ ื›ืžื” ื–ืžืŸ ืœืงื— ืœื›ื ืœืœื›ืช ืœืื•ืจืš ื”ืžืกื“ืจื•ืŸ ื”ื–ื”?
08:01
Would you mind squeezing as hard as you can, in your dominant hand, this device
139
481834
3897
ื”ืื ืื™ื›ืคืช ืœืš ืœืœื—ื•ืฅ ื‘ื™ื“ ื”ื—ื–ืงื” ืฉืœืš ืขืœ ื”ืชืงืŸ ื–ื”, ื—ื–ืง ื›ื›ืœ ืฉืชื•ื›ืœ,
08:05
so I can measure your grip strength?
140
485731
1512
ื›ืš ืฉืื•ื›ืœ ืœืžื“ื•ื“ ืืช ื—ื•ื–ืง ื”ืื—ื™ื–ื” ืฉืœืš?
08:07
How about blowing into this tube so I can measure your lung capacity?"
141
487243
4023
ืžื” ืœื’ื‘ื™ ื ืฉื™ืคื” ืœืชื•ืš ื”ืฆื™ื ื•ืจ ื”ื–ื”, ื›ืš ืฉืื•ื›ืœ ืœืžื“ื•ื“ ืืช ื ืคื— ื”ืจื™ืื•ืช ืฉืœืš?"
08:11
The survey takes over a day.
142
491266
2884
ื”ืกืงืจ ืœื•ืงื— ืžืขืœ ื™ื•ื.
08:14
(Laughter)
143
494150
1483
(ืฆื—ื•ืง)
08:15
Combine that with a Demographic and Health Survey
144
495633
3900
ืฉืœื‘ื• ืืช ื–ื” ืขื ืกืงืจ ื‘ืจื™ืื•ืชื™ ื•ื“ืžื•ื’ืจืคื™
08:19
collected by USAID in developing countries in Africa, for example,
145
499533
4450
ืฉื ืืกืฃ ืขืœ-ื™ื“ื™ USAID ื‘ืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช ื‘ืืคืจื™ืงื”, ืœื“ื•ื’ืžื”,
08:23
which that survey actually can go so far as to directly measure the HIV status
146
503983
5151
ืฉืกืงืจ ื–ื” ืœืžืขืฉื” ื™ื›ื•ืœ ืœื”ืจื—ื™ืง ืœื›ืช ืขื“ ื›ื“ื™ ืœืžื“ื•ื“ ื™ืฉื™ืจื•ืช ืžืฆื‘ ืฉืœ HIV
08:29
of families living in, for example, rural Nigeria.
147
509134
3099
ืฉืœ ืžืฉืคื—ื•ืช, ืฉืžืชื’ื•ืจืจื•ืช, ืœื“ื•ื’ืžื”, ื‘ื ื™ื’ืจื™ื” ื”ื›ืคืจื™ืช.
08:32
Combine that with a world value survey,
148
512233
1901
ืœืฉืœื‘ ืืช ื–ื” ืขื ืขืจื›ื™ ืกืงืจ ืขื•ืœืžื™,
08:34
which measures the political opinions and, fortunately for me, the savings behaviors
149
514134
4433
ืฉืžื•ื“ื“ ืืช ื”ื“ืขื•ืช ื”ืคื•ืœื™ื˜ื™ื•ืช, ื•ืœืžืจื‘ื” ื”ืžื–ืœ ืขื‘ื•ืจื™, ืืช ื”ื”ืชื ื”ื’ื•ืช ื‘ื ื•ืฉื ื—ื™ืกื›ื•ืŸ
08:38
of millions of families in hundreds of countries around the world.
150
518567
4699
ืฉืœ ืžื™ืœื™ื•ื ื™ ืžืฉืคื—ื•ืช ื‘ืžืื•ืช ืžื“ื™ื ื•ืช ื‘ืจื—ื‘ื™ ื”ืขื•ืœื.
08:43
Take all of that data, combine it, and this map is what you get.
151
523266
3818
ืœืงื—ืช ืืช ื›ืœ ื”ื ืชื•ื ื™ื ืœืฆืจืฃ ืื•ืชื, ื•ืžืคื” ื–ื• ื”ื™ื ืžื” ืฉืชืงื‘ืœื•.
08:47
What you find is nine countries around the world
152
527084
2250
ืžื” ืฉืชื•ื›ืœื• ืœืžืฆื•ื ื”ื•ื ืฉืชืฉืข ืžื“ื™ื ื•ืช ื‘ืจื—ื‘ื™ ื”ืขื•ืœื
08:49
that have significant native populations
153
529334
2652
ืฉืœื”ืŸ ื‘ืขื™ืงืจ ืื•ื›ืœื•ืกื™ื•ืช ื™ืœื™ื“ื™ื•ืช
08:51
which speak both futureless and futured languages.
154
531986
4047
ืฉื“ื•ื‘ืจืจื•ืช ืฉืคื•ืช ื‘ืขืœื•ืช ื–ืžืŸ ืขืชื™ื“, ื•ืฉืคื•ืช ืœืœื ื–ืžืŸ ืขืชื™ื“.
08:56
And what I'm going to do is form statistical matched pairs
155
536033
3534
ื•ืžื” ืฉืื ื™ ื”ื•ืœืš ืœืขืฉื•ืช ื”ื•ื ืœื™ืฆื•ืจ ื–ื•ื’ื•ืช ืžืชืื™ืžื™ื ืกื˜ื˜ื™ืกื˜ื™ืช
08:59
between families that are nearly identical on every dimension that I can measure,
156
539567
5593
ื‘ื™ืŸ ืžืฉืคื—ื•ืช ื›ืžืขื˜ ื–ื”ื•ืช ื‘ื›ืœ ืžืžื“ ืฉืื ื™ ื™ื›ื•ืœ ืœืžื“ื•ื“,
09:05
and then I'm going to explore whether or not the link between language and savings holds
157
545160
3537
ื•ืื– ืื ื™ ื”ื•ืœืš ืœื—ืงื•ืจ ื‘ืื ื”ืงืฉืจ ื‘ื™ืŸ ื”ืฉืคื” ืœื‘ื™ืŸ ื”ื—ื™ืกื›ื•ืŸ ืชื•ืคืฉ ืื• ืœื
09:08
even after controlling for all of these levels.
158
548697
3483
ื’ื ืœืื—ืจ ืคื™ืงื•ื— ืขืœ ื›ืœ ื”ืจืžื•ืช ื”ืœืœื•.
09:12
What are the characteristics we can control for?
159
552180
2217
ืžื” ื”ื ื”ืžืืคื™ื™ื ื™ื ืฉืื ื• ื™ื›ื•ืœื™ื ืœืคืงื— ืขืœื™ื”ื?
09:14
Well I'm going to match families on country of birth and residence,
160
554397
2764
ื˜ื•ื‘ ืื ื™ ืขื•ืžื“ ืœื”ืชืื™ื ืžืฉืคื—ื•ืช ืขืœ ืคื™ ืืจืฅ ืœื™ื“ื” ื•ืžื’ื•ืจื™ื,
09:17
the demographics -- what sex, their age --
161
557161
2402
ื”ื“ืžื•ื’ืจืคื™ื” - ื”ืžื™ืŸ, ื”ื’ื™ืœ ืฉืœื”ื-
09:19
their income level within their own country,
162
559563
2134
ืจืžืช ื”ื”ื›ื ืกื” ืฉืœื”ื ื‘ืชื•ืš ืžื“ื™ื ืชื,
09:21
their educational achievement, a lot about their family structure.
163
561697
3015
ื”ื”ื™ืฉื’ื™ื ื”ื—ื™ื ื•ื›ื™ื™ื ืฉืœื”ื, ื”ืจื‘ื” ืขืœ ืžื‘ื ื” ื”ืžืฉืคื—ื” ืฉืœื”ื.
09:24
It turns out there are six different ways to be married in Europe.
164
564712
3518
ืžืชื‘ืจืจ ืฉื™ืฉื ืŸ 6 ื“ืจื›ื™ื ืฉื•ื ื•ืช ืœื”ื™ื ืฉื ื‘ืื™ืจื•ืคื”.
09:28
And most granularly, I break them down by religion
165
568230
4200
ืฉื‘ืื•ืคืŸ ื”ื’ืจืขื™ื ื™ ื‘ื™ื•ืชืจ , ืื ื™ ืžืคืจื™ื“ ืื•ืชื ืขืœ ืคื™ ื”ื“ืช
09:32
where there are 72 categories of religions in the world --
166
572430
3315
ื”ื™ื›ืŸ ืฉื™ืฉ 72 ืงื˜ื’ื•ืจื™ื•ืช ืฉืœ ื“ืชื•ืช ื‘ืขื•ืœื -
09:35
so an extreme level of granularity.
167
575745
1717
ื›ืš ืฉื–ื• ืจืžื” ืงื™ืฆื•ื ื™ืช ืฉืœ ื’ืจืขื™ื ื™ื•ืช.
09:37
There are 1.4 billion different ways that a family can find itself.
168
577462
4533
ืงื™ื™ืžื•ืช 1.4 ืžื™ืœื™ืืจื“ ืฉืœ ื“ืจื›ื™ื ืฉื•ื ื•ืช ืฉืžืฉืคื—ื” ื™ื›ื•ืœื” ืœืžืฆื•ื ืืช ืขืฆืžื”.
09:41
Now effectively everything I'm going to tell you from now on
169
581995
4049
ื›ืขืช ื›ืœ ืžื” ืฉืื ื™ ื”ื•ืœืš ืœื•ืžืจ ืœื›ื ืžืขืชื” ื•ืื™ืœืš
09:46
is only comparing these basically nearly identical families.
170
586044
3050
ืจืง ืžืฉื•ื•ื” ื‘ื™ืŸ ืžืฉืคื—ื•ืช ืืœื• ืฉื‘ืขืฆื ื›ืžืขื˜ ื–ื”ื•ืช.
09:49
It's getting as close as possible to the thought experiment
171
589094
2500
ื–ื” ืžืชื—ื™ืœ ืœื”ื™ื•ืช ืงืจื•ื‘ ื›ื›ืœ ื”ืืคืฉืจ ืœื ื™ืกื•ื™ ืžื—ืฉื‘ืชื™
09:51
of finding two families both of whom live in Brussels
172
591594
2933
ืฉืœ ืžืฆื™ืืช ืฉืชื™ ืžืฉืคื—ื•ืช ืฉืฉืชื™ื”ืŸ ื—ื™ื•ืช ื‘ื‘ืจื™ืกืœ
09:54
who are identical on every single one of these dimensions,
173
594527
3000
ืฉื”ืŸ ื–ื”ื•ืช ื‘ื›ืœ ืื—ื“ ื•ืื—ื“ ืžื”ืžืžื“ื™ื ื”ืืœื”,
09:57
but one of whom speaks Flemish and one of whom speaks French;
174
597527
3116
ืื‘ืœ ืื—ืช ืžื”ืŸ ื“ื•ื‘ืจืช ืคืœืžื™ืช, ื•ืื—ืช ืžื”ืŸ ื“ื•ื‘ืจืช ืฆืจืคืชื™ืช;
10:00
or two families that live in a rural district in Nigeria,
175
600643
2717
ืื• ืฉืชื™ ืžืฉืคื—ื•ืช ืฉื—ื™ื•ืช ื‘ืื–ื•ืจ ื›ืคืจื™ ื‘ื ื™ื’ืจื™ื”,
10:03
one of whom speaks Hausa and one of whom speaks Igbo.
176
603360
3833
ืื—ืช ืžื”ืŸ ื“ื•ื‘ืจืช ื”ืื•ืกื”, ื•ืื—ืช ืžื”ืŸ ื“ื•ื‘ืจืช ืื™ื’ื‘ื•.
10:07
Now even after all of this granular level of control,
177
607193
3884
ืขื›ืฉื™ื• ื’ื ืœืื—ืจ ื›ืœ ื–ื” ื‘ืจืžื” ื”ื’ืจืขื™ื ื™ืช ืฉืœ ื‘ืงืจื”,
10:11
do futureless language speakers seem to save more?
178
611077
3166
ื”ืื ืžืฉืคื—ืช ื“ื•ื‘ืจื™ ื”ืฉืคื” ืœืœื ื–ืžืŸ ืขืชื™ื“, ื ืจืื™ืช ื›ื›ื–ื• ืฉื—ื•ืกื›ืช ื™ื•ืชืจ?
10:14
Yes, futureless language speakers, even after this level of control,
179
614243
3653
ื›ืŸ, ื“ื•ื‘ืจื™ ื”ืฉืคื” ืœืœื ื–ืžืŸ ืขืชื™ื“, ื’ื ืื—ืจื™ ืจืžืช ื‘ืงืจื” ื–ื•,
10:17
are 30 percent more likely to report having saved in any given year.
180
617896
3698
ื ื•ื˜ื™ื ืœื“ื•ื•ื— ืขืœ ื›ืš ืฉื—ืกื›ื• ื‘ืฉื ื” ืžืกื•ื™ืžืช ื›ืœืฉื”ื™ 30 ืื—ื•ื– ื™ื•ืชืจ .
10:21
Does this have cumulative effects?
181
621594
1816
ื”ืื ื™ืฉ ื‘ื›ืš ืืคืงื˜ื™ื ืžืฆื˜ื‘ืจื™ื?
10:23
Yes, by the time they retire, futureless language speakers, holding constant their income,
182
623410
4420
ื›ืŸ,ื‘ื–ืžืŸ ืฉื”ื ืคื•ืจืฉื™ื ืžื”ืขื‘ื•ื“ื”, ื“ื•ื‘ืจื™ ื”ืฉืคื” ืœืœื ื–ืžืŸ ืขืชื™ื“, ืฉืฉื•ืžืจื™ื ืขืœ ื”ื”ื›ื ืกื” ืฉืœื”ื ื‘ื“ืจืš ืงื‘ืข,
10:27
are going to retire with 25 percent more in savings.
183
627830
3068
ืขื•ืžื“ื™ื ืœืคืจื•ืฉ ืขื ื—ืกื›ื•ื ื•ืช ืฉืœ 25 ืื—ื•ื– ื™ื•ืชืจ.
10:30
Can we push this data even further?
184
630898
2481
ื”ืื ืื ื• ื™ื›ื•ืœ ืœืงื—ืช ืืช ื”ื ืชื•ื ื™ื ื”ืืœื” ื”ืœืื”?
10:33
Yes, because I just told you, we actually collect a lot of health data as economists.
185
633379
5299
ื›ืŸ, ื›ื™ ื–ื” ืขืชื” ืืžืจืชื™ ืœื›ื, ืื ื—ื ื• ื›ื›ืœื›ืœื ื™ื. ืœืžืขืฉื” ืื•ืกืคื™ื ื”ืจื‘ื” ื ืชื•ื ื™ื ืขืœ ื‘ืจื™ืื•ืช.
10:38
Now how can we think about health behaviors to think about savings?
186
638678
3883
ื›ืขืช ื›ื™ืฆื“ ืื ื• ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ื”ืชื ื”ื’ื•ื™ื•ืช ื‘ืจื™ืื•ืช ื›ื“ื™ ืœื—ืฉื•ื‘ ืขืœ ื—ื™ืกื›ื•ืŸ?
10:42
Well, think about smoking, for example.
187
642561
2833
ื•ื‘ื›ืŸ, ื—ื™ืฉื‘ื• ืขืœ ืขื™ืฉื•ืŸ, ืœื“ื•ื’ืžื”.
10:45
Smoking is in some deep sense negative savings.
188
645394
3183
ืขื™ืฉื•ืŸ ื‘ืžื•ื‘ืŸ ืขืžื•ืง ืžืกื•ื™ื ื”ื™ื ื• ื—ืกื›ื•ืŸ ืฉืœื™ืœื™ .
10:48
If savings is current pain in exchange for future pleasure,
189
648577
3666
ืื ื”ื—ื™ืกื›ื•ืŸ ื”ื•ื ื›ืื‘ ืขื›ืฉื•ื•ื™ ื‘ืชืžื•ืจื” ืœื”ื ืื” ื‘ืขืชื™ื“,
10:52
smoking is just the opposite.
190
652243
1308
ืขื™ืฉื•ืŸ ื”ื•ื ื‘ื“ื™ื•ืง ื”ื”ืคืš.
10:53
It's current pleasure in exchange for future pain.
191
653551
2859
ื–ื•ื”ื™ ื”ื ืื” ืขื›ืฉื•ื•ื™ืช ื‘ืชืžื•ืจื” ืœื›ืื‘ ื‘ืขืชื™ื“.
10:56
What we should expect then is the opposite effect.
192
656410
2950
ืžื” ืฉืขืœื™ื ื• ืœืฆืคื•ืช ืœื• ืื ื›ืŸ, ื”ื•ื ื”ื”ืฉืคืขื” ื”ื”ืคื•ื›ื”.
10:59
And that's exactly what we find.
193
659360
1768
ื•ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉื’ื™ืœื™ื ื•.
11:01
Futureless language speakers are 20 to 24 percent less likely
194
661128
3767
ืคื—ื•ืช ืกื‘ื™ืจ ื‘-20 ืขื“ 24 ืื—ื•ื–ื™ื ืฉื“ื•ื‘ืจื™ ืฉืคื•ืช ืœืœื ื–ืžืŸ ืขืชื™ื“
11:04
to be smoking at any given point in time compared to identical families,
195
664895
3415
ื™ืขืฉื ื• ื‘ื›ืœ ื–ืžืŸ ื ืชื•ืŸ ืœืขื•ืžืช ืžืฉืคื—ื•ืช ื–ื”ื•ืช,
11:08
and they're going to be 13 to 17 percent less likely
196
668310
2901
ื•ืคื—ื•ืช ืกื‘ื™ืจ ื‘-13 ืขื“ 17 ืื—ื•ื–ื™ื ืฉื”ื ื™ืกื‘ืœื•
11:11
to be obese by the time they retire,
197
671211
2217
ืžื”ืฉืžื ืช ื™ืชืจ ื‘ืขืช ืฉื”ื ืคื•ืจืฉื™ื,
11:13
and they're going to report being 21 percent more likely
198
673428
2463
ื•ื”ื ื™ื“ื•ื•ื—ื• ืฉื‘-21 ืื—ื•ื– ืกื‘ื™ืจ ื™ื•ืชืจ
11:15
to have used a condom in their last sexual encounter.
199
675891
2287
ืฉื”ื ื”ืฉืชืžืฉื• ื‘ืงื•ื ื“ื•ื ื‘ืžืคื’ืฉ ื”ืžื™ื ื™ ื”ืื—ืจื•ืŸ ืฉืœื”ื.
11:18
I could go on and on with the list of differences that you can find.
200
678178
3483
ืื ื™ ื™ื›ื•ืœ ืœื”ืžืฉื™ืš ื•ืœืกืคืจ ืขืœ ืจืฉื™ืžื” ืฉืœ ื”ื‘ื“ืœื™ื ืฉื ื™ืชืŸ ืœืžืฆื•ื.
11:21
It's almost impossible not to find a savings behavior
201
681661
3800
ื–ื” ื›ืžืขื˜ ื‘ืœืชื™ ืืคืฉืจื™ ืœื ืœืžืฆื•ื ื”ืชื ื”ื’ื•ืช ืฉืœ ื—ื™ืกื›ื•ืŸ
11:25
for which this strong effect isn't present.
202
685461
2599
ืฉื‘ื” ื”ืฉืคืขื” ื—ื–ืงื” ื–ื• ืื™ื ื” ื ื•ื›ื—ืช.
11:28
My linguistics and economics colleagues at Yale and I are just starting to do this work
203
688060
4750
ืขืžื™ืชื™ื™ ื”ื‘ืœืฉื ื™ื ื•ื”ื›ืœื›ืœื ื™ื ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ื™ื™ืœ ื•ืื ื™, ืจืง ืžืชื—ื™ืœื™ื ืœืขืฉื•ืช ืขื‘ื•ื“ื” ื–ื•
11:32
and really explore and understand the ways that these subtle nudges
204
692810
5167
ื•ื‘ืืžืช ืœื—ืงื•ืจ ื•ืœื”ื‘ื™ืŸ ืืช ื”ื“ืจื›ื™ื ื‘ื”ืŸ ืืคืงื˜ื™ื ืขื“ื™ื ื™ื ืืœื”
11:37
cause us to think more or less about the future every single time we speak.
205
697977
5395
ื’ื•ืจืžื™ื ืœื ื• ืœื—ืฉื•ื‘ ื™ื•ืชืจ ืื• ืคื—ื•ืช ืขืœ ื”ืขืชื™ื“ ื‘ื›ืœ ืคืขื ืฉืื ื—ื ื• ืžื“ื‘ืจื™ื.
11:43
Ultimately, the goal,
206
703372
2301
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ื”ืžื˜ืจื”,
11:45
once we understand how these subtle effects can change our decision making,
207
705673
4199
ื‘ืจื’ืข ืฉืื ื• ืžื‘ื™ื ื™ื ื›ื™ืฆื“ ืืคืงื˜ื™ื ืขื“ื™ื ื™ื ืืœื” ืžืฉื ื™ื ืืช ื”ื”ื—ืœื˜ื•ืช ืฉืœื ื•,
11:49
we want to be able to provide people tools
208
709872
2950
ืื ื—ื ื• ืจื•ืฆื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืกืคืง ืœืื ืฉื™ื ื›ืœื™ื
11:52
so that they can consciously make themselves better savers
209
712822
2808
ื›ืš ืฉื”ื ื™ื•ื›ืœื• ื‘ืื•ืคืŸ ืžื•ื“ืข ืœื”ืคื•ืš ืืช ืขืฆืžื ืœื—ื•ืกื›ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ
11:55
and more conscious investors in their own future.
210
715630
3259
ื•ืžืฉืงื™ืขื™ื ืžื•ื“ืขื™ื ื™ื•ืชืจ ื‘ืขืชื™ื“ ืฉืœื”ื.
11:58
Thank you very much.
211
718889
2267
ืชื•ื“ื” ืจื‘ื”.
12:01
(Applause)
212
721156
6368
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7