Keith Chen: Could your language affect your ability to save money?

246,260 views ใƒป 2013-02-19

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Translator: Timothy Covell Reviewer: Morton Bast
0
0
7000
๋ฒˆ์—ญ: Matilda Kim ๊ฒ€ํ† : K Bang
00:15
The global economic financial crisis has reignited public interest
1
15760
4500
์„ธ๊ณ„ ๊ฒฝ์ œ์˜ ๊ธˆ์œต ์œ„๊ธฐ๋Š” ๋Œ€์ค‘๋“ค๋กœ ํ•˜์—ฌ๊ธˆ
00:20
in something that's actually one of the oldest questions in economics,
2
20260
3416
๊ฒฝ์ œํ•™์—์„œ ๊ฐ€์žฅ ์˜ค๋ž˜๋œ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜์— ๊ด€์‹ฌ์„ ๊ฐ€์ง€๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค.
00:23
dating back to at least before Adam Smith.
3
23676
2684
์•„๋‹ด ์Šค๋ฏธ์Šค ์‹œ๋Œ€ ์ด์ „์˜ ์งˆ๋ฌธ์ด์ง€์š”.
00:26
And that is, why is it that countries with seemingly similar economies and institutions
4
26360
5484
๊ทธ ๋ฌธ์ œ๋Š” "์™ธ๊ฒฌ์ƒ ๋น„์Šทํ•œ ๊ฒฝ์ œ์™€ ์ฒด์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋‚˜๋ผ๋“ค์—์„œ
00:31
can display radically different savings behavior?
5
31844
3249
์™œ ์ฒ ์ €ํ•˜๊ฒŒ ๋‹ค๋ฅธ ์ €์ถ• ์Šต๊ด€์„ ๊ฐ–๋Š”๊ฐ€?"์ž…๋‹ˆ๋‹ค.
00:35
Now, many brilliant economists have spent their entire lives working on this question,
6
35093
4534
๋งŽ์€ ํ›Œ๋ฅญํ•œ ๊ฒฝ์ œํ•™์ž๋“ค์ด ์ธ์ƒ์„ ๋ฐ”์ณ ์ด ๋ฌธ์ œ๋ฅผ ์—ฐ๊ตฌํ•œ ๋•์—
00:39
and as a field we've made a tremendous amount of headway
7
39627
3417
์ด ๋ถ„์•ผ๋Š” ์—„์ฒญ๋‚œ ๋ฐœ์ „์„ ์ด๋ฃจ์–ด๋ƒˆ๊ณ 
00:43
and we understand a lot about this.
8
43044
2433
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋งŽ์€ ์ดํ•ด๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
00:45
What I'm here to talk with you about today is an intriguing new hypothesis
9
45477
3634
์˜ค๋Š˜ ์—ฌ๊ธฐ์„œ ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„๋“ค๊ณผ ๋‚˜๋ˆ„๋ ค๋Š” ์ด์•ผ๊ธฐ๋Š”
00:49
and some surprisingly powerful new findings that I've been working on
10
49111
4032
์ œ๊ฐ€ ์—ฐ๊ตฌํ•˜๋ฉด์„œ ์ฐพ์•„๋‚ธ ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ์‚ฌ์‹ค๋“ค์ž…๋‹ˆ๋‹ค.
00:53
about the link between the structure of the language you speak
11
53143
4706
๊ทธ๊ฒƒ์€ ์‚ฌ๋žŒ๋“ค์ด ์‚ฌ์šฉํ•˜๋Š” ์–ธ์–ด์˜ ๊ตฌ์กฐ์™€
00:57
and how you find yourself with the propensity to save.
12
57864
4396
์ €์ถ• ์Šต๊ด€ ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ์— ๊ด€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:02
Let me tell you a little bit about savings rates, a little bit about language,
13
62260
3067
๋จผ์ € ์ €์ถ•๋ฅ ๊ณผ ์–ธ์–ด ๊ฐ๊ฐ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ 
01:05
and then I'll draw that connection.
14
65327
2350
์ด ๋‘˜์„ ์—ฐ๊ฒฐ์ง€์–ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
01:07
Let's start by thinking about the member countries of the OECD,
15
67677
4567
์šฐ์„  OECD, ์ฆ‰ ๊ฒฝ์ œ ํ˜‘๋ ฅ ๊ฐœ๋ฐœ ๊ธฐ๊ตฌ์— ์†ํ•ด ์žˆ๋Š”
01:12
or the Organization of Economic Cooperation and Development.
16
72244
3301
์—ฌ๋Ÿฌ ๋‚˜๋ผ๋ถ€ํ„ฐ ์‚ดํŽด๋ณด์ฃ .
01:15
OECD countries, by and large, you should think about these
17
75545
3899
์‚ฌ๋žŒ๋“ค์€ ๋Œ€์ฒด๋กœ OECD์— ์†ํ•œ ๋‚˜๋ผ๋ผ๊ณ  ํ•˜๋ฉด
01:19
as the richest, most industrialized countries in the world.
18
79444
2638
์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ๋ถ€์œ ํ•˜๊ณ  ๊ฐ€์žฅ ์‚ฐ์—…ํ™”๋œ ๋‚˜๋ผ๋“ค์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
01:22
And by joining the OECD, they were affirming a common commitment
19
82082
4050
OECD์— ๊ฐ€์ž…ํ•œ๋‹ค๋Š” ๊ฒƒ์€ ๋ฏผ์ฃผ์ฃผ์˜, ์ž์œ  ์‹œ์žฅ๊ณผ ๋ฌด์—ญ์—
01:26
to democracy, open markets and free trade.
20
86132
3438
๋™์˜ํ•œ๋‹ค๊ณ  ํ™•์ธํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
01:29
Despite all of these similarities, we see huge differences in savings behavior.
21
89570
4685
์ด๋ ‡๊ฒŒ ๋งŽ์€ ๋น„์Šทํ•œ ์ ๋“ค์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ €์ถ• ์Šต๊ด€์—์„œ๋Š” ํฐ ์ฐจ์ด๊ฐ€ ๋“œ๋Ÿฌ๋‚ฉ๋‹ˆ๋‹ค.
01:34
So all the way over on the left of this graph,
22
94255
2450
์ด ๊ทธ๋ž˜ํ”„์˜ ์™ผ์ชฝ์„ ๋ณด์‹œ๋ฉด ๋งŽ์€ OECD ๊ตญ๊ฐ€๊ฐ€
01:36
what you see is many OECD countries saving over a quarter of their GDP every year,
23
96705
4734
๋งค๋…„ ๊ตญ๋ฏผ์ด์ƒ์‚ฐ์˜ 1/4 ์ด์ƒ์„ ์ €์ถ•ํ•˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:41
and some OECD countries saving over a third of their GDP per year.
24
101439
4681
์ผ๋ถ€ ๊ตญ๊ฐ€๋Š” ์—ฐ๊ฐ„ ๊ตญ๋ฏผ์ด์ƒ์‚ฐ์˜ 1/3์ด์ƒ์„ ์ €์ถ•ํ•ฉ๋‹ˆ๋‹ค.
01:46
Holding down the right flank of the OECD, all the way on the other side, is Greece.
25
106120
4768
์ด ๊ทธ๋ž˜ํ”„์˜ ์ €์ชฝ ๋ฐ˜๋Œ€ํŽธ์— ๊ทธ๋ฆฌ์Šค๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
01:50
And what you can see is that over the last 25 years,
26
110888
3416
์ง€๋‚œ 25๋…„๊ฐ„
01:54
Greece has barely managed to save more than 10 percent of their GDP.
27
114304
3900
๊ทธ๋ฆฌ์Šค๋Š” ๊ตญ๋‚ด์ด์ƒ์‚ฐ์˜ ๋ถˆ๊ณผ 10%๋งŒ์„ ์ €์ถ•ํ–ˆ์Šต๋‹ˆ๋‹ค.
01:58
It should be noted, of course, that the United States and the U.K. are the next in line.
28
118204
6874
"๋ฌผ๋ก  ๋ฏธ๊ตญ๊ณผ ์˜๊ตญ์ด ๊ทธ ๋‹ค์Œ์œผ๋กœ ์ €์ถ•๋ฅ ์ด ์ ์ง€์š”.
02:05
Now that we see these huge differences in savings rates,
29
125078
2578
์ง€๊ธˆ ์ด๋ ‡๊ฒŒ ์ €์ถ•๋ฅ ์— ํฐ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๋ณด์•˜๋Š”๋ฐ์š”.
02:07
how is it possible that language might have something to do with these differences?
30
127656
3666
์–ธ์–ด๊ฐ€ ์ด๋Ÿฌํ•œ ์ฐจ์ด์™€ ์–ด๋–ค ์ƒ๊ด€์ด ์žˆ์„๊นŒ์š”?
02:11
Let me tell you a little bit about how languages fundamentally differ.
31
131322
3049
์–ธ์–ด๊ฐ€ ๊ทผ๋ณธ์ ์œผ๋กœ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ์ง€ ์กฐ๊ธˆ ์„ค๋ช…ํ•ด๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
02:14
Linguists and cognitive scientists have been exploring this question for many years now.
32
134371
5567
์–ธ์–ดํ•™์ž๋“ค๊ณผ ์ธ์ง€๊ณผํ•™์ž๋“ค์€ ์ˆ˜๋…„๊ฐ„ ์ด ๋ฌธ์ œ๋ฅผ ์—ฐ๊ตฌํ•ด์™”์Šต๋‹ˆ๋‹ค.
02:19
And then I'll draw the connection between these two behaviors.
33
139938
4610
๊ทธ๋Ÿผ ์ด์ œ ์ œ๊ฐ€ ์ด ๋‘˜ ์‚ฌ์ด์˜ ์—ฐ๊ด€์„ฑ์„ ์ด๋Œ์–ด๋‚ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
02:24
Many of you have probably already noticed that I'm Chinese.
34
144548
2608
์—ฌ๋Ÿฌ๋ถ„์€ ์ œ๊ฐ€ ์ค‘๊ตญ๊ณ„๋ผ๋Š” ๊ฒƒ์„ ์•Œ์•„์ฐจ๋ฆฌ์…จ๊ฒ ์ฃ .
02:27
I grew up in the Midwest of the United States.
35
147156
2965
์ €๋Š” ๋ฏธ๊ตญ์˜ ์ค‘์„œ๋ถ€์—์„œ ์ž๋ž์Šต๋‹ˆ๋‹ค.
02:30
And something I realized quite early on
36
150121
2451
์ œ๊ฐ€ ๊ฝค ์–ด๋ฆด์  ๊นจ๋‹ฌ์€ ์‚ฌ์‹ค์€
02:32
was that the Chinese language forced me to speak about and --
37
152572
3591
์ค‘๊ตญ์–ด๋Š” ์ œ๊ฐ€ ๊ฐ€์กฑ์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐํ•˜๊ณ 
02:36
in fact, more fundamentally than that --
38
156163
2891
-์‚ฌ์‹ค ๋‹จ์ง€ ์ด์•ผ๊ธฐ ํ•  ๋ฟ ์•„๋‹ˆ๋ผ
02:39
ever so slightly forced me to think about family in very different ways.
39
159054
4090
๊ฐ€์กฑ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๋„๋ก ๋งŒ๋“ ๋‹ค๋Š” ์ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
02:43
Now, how might that be? Let me give you an example.
40
163144
2077
๊ทธ๋Ÿฐ๊ฒŒ ๋ญ๊ฐ€ ์žˆ์„๊นŒ์š”? ํ•œ๊ฐ€์ง€ ์˜ˆ๋ฅผ ๋“ค์–ด ๋“œ๋ฆฌ์ฃ .
02:45
Suppose I were talking with you and I was introducing you to my uncle.
41
165221
4402
์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ์ด์•ผ๊ธฐ๋ฅผ ํ•˜๋‹ค๊ฐ€ ์ œ ์‚ผ์ดŒ์„ ์†Œ๊ฐœ์‹œ์ผœ๋“œ๋ฆฐ๋‹ค๊ณ  ํ•ด๋ณด์ฃ .
02:49
You understood exactly what I just said in English.
42
169623
2866
์—ฌ๋Ÿฌ๋ถ„์€ ์ œ๊ฐ€ ์˜์–ด๋กœ ๋ง์”€๋“œ๋ฆฐ ๊ทธ๋Œ€๋กœ ์ดํ•ดํ•˜์‹ค ๊ฒ๋‹ˆ๋‹ค.
02:52
If we were speaking Mandarin Chinese with each other, though,
43
172489
2950
๊ทธ๋Ÿฐ๋ฐ ๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ๋ถ๊ฒฝ์–ด๋ฅผ ์‚ฌ์šฉํ–ˆ๋‹ค๋ฉด
02:55
I wouldn't have that luxury.
44
175439
2066
๊ทธ๋ ‡๊ฒŒ ๊ฐ„๋‹จํ•˜์ง€ ์•Š์•˜์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:57
I wouldn't have been able to convey so little information.
45
177505
2833
์ด๋ ‡๊ฒŒ ์ ์€ ์ •๋ณด๋งŒ์„ ์ œ๊ณตํ•˜์ง€ ์•Š์•˜์„ ๊ฒƒ์ด๋ž€ ์ด์•ผ๊ธฐ์ด์ฃ .
03:00
What my language would have forced me to do,
46
180338
2384
์ค‘๊ตญ์–ด๋ฅผ ์‚ฌ์šฉํ–ˆ๋‹ค๋ฉด
03:02
instead of just telling you, "This is my uncle,"
47
182722
2000
"์ด ๋ถ„์ด ์ œ ์‚ผ์ดŒ์ด์„ธ์š”."๋ผ๋Š” ๋ง ๋Œ€์‹ 
03:04
is to tell you a tremendous amount of additional information.
48
184722
3282
๋ถ€๊ฐ€์  ์ •๋ณด๋ฅผ ์—„์ฒญ๋‚˜๊ฒŒ ๋งŽ์ด ๋งํ–ˆ์„ ๊ฒ๋‹ˆ๋‹ค.
03:08
My language would force me to tell you
49
188004
1819
์‚ผ์ดŒ์ด ์–ด๋จธ๋‹ˆ์ชฝ ๊ฐ€์กฑ์ธ์ง€ ์•„๋ฒ„์ง€์ชฝ ๊ฐ€์กฑ์ธ์ง€๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์„œ
03:09
whether or not this was an uncle on my mother's side or my father's side,
50
189823
3416
ํ˜ˆ์—ฐ ๊ด€๊ณ„์ธ์ง€ ์‚ฌ๋ˆ ๊ด€๊ณ„์ธ์ง€
03:13
whether this was an uncle by marriage or by birth,
51
193239
3084
์•„๋ฒ„์ง€์˜ ํ˜•์ œ์ธ์ง€
03:16
and if this man was my father's brother,
52
196323
2232
๊ทธ๋ ‡๋‹ค๋ฉด ์•„๋ฒ„์ง€์˜ ํ˜•์ธ์ง€ ๋™์ƒ์ธ์ง€
03:18
whether he was older than or younger than my father.
53
198555
2784
๋“ฑ์˜ ์ •๋ณด๋ฅผ ํ•จ๊ป˜ ๋งํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
03:21
All of this information is obligatory. Chinese doesn't let me ignore it.
54
201339
4133
์ค‘๊ตญ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ฌด์‹œํ•  ์ˆ˜ ์—†๋Š” ๋‚ด์šฉ๋“ค์ด๊ณ  ํ•„์ˆ˜์ ์œผ๋กœ ๋”ฐ๋ฅด๋Š” ์ •๋ณด์˜ˆ์š”.
03:25
And in fact, if I want to speak correctly,
55
205472
2166
๋” ์ •ํ™•ํ•˜๊ฒŒ ๋งํ•˜์ž๋ฉด
03:27
Chinese forces me to constantly think about it.
56
207638
3117
์ค‘๊ตญ์–ด๋Š” ์ œ๊ฐ€ ๊ฐ€์กฑ์— ๋Œ€ํ•ด ๋Š์ž„์—†์ด ์ƒ๊ฐํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
03:30
Now, that fascinated me endlessly as a child,
57
210755
3949
์–ด๋ ธ์„ ๋•Œ ์ €๋Š” ์ด ์‚ฌ์‹ค์ด ๊ฝค๋‚˜ ํฅ๋ฏธ๋กœ์› ์Šต๋‹ˆ๋‹ค.
03:34
but what fascinates me even more today as an economist
58
214704
3235
ํ•˜์ง€๋งŒ ์ด์ œ ๊ฒฝ์ œํ•™์ž๋กœ์„œ ์ €๋ฅผ ๋” ๋งค๋ฃŒ์‹œํ‚ค๋Š” ๊ฒƒ์€
03:37
is that some of these same differences carry through to how languages speak about time.
59
217939
5301
์ด๋Ÿฌํ•œ ์–ธ์–ด๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ์‹œ๊ฐ„์— ๋Œ€ํ•ด ๋งํ•˜๋Š” ๋ฐฉ์‹์—์„œ๋„ ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
03:43
So for example, if I'm speaking in English, I have to speak grammatically differently
60
223240
4249
์˜ˆ๋ฅผ ๋“ค์–ด ์ œ๊ฐ€ ์˜์–ด๋กœ ์ด์•ผ๊ธฐํ•˜๋ฉด ๋ฌธ๋ฒ•์ ์œผ๋กœ ๋‹ค๋ฅด๊ฒŒ ์ด์•ผ๊ธฐํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
03:47
if I'm talking about past rain, "It rained yesterday,"
61
227489
2733
๊ณผ๊ฑฐ์˜ ๋น„์— ๋Œ€ํ•ด์„œ๋Š”,"์–ด์ œ ๋น„๊ฐ€ ์™”์—ˆ์–ด์š”."๋ผ๊ณ  ์ด์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค.
03:50
current rain, "It is raining now,"
62
230222
2232
ํ˜„์žฌ์˜ ๋น„๋Š”, "์ง€๊ธˆ ๋น„๊ฐ€ ์˜ต๋‹ˆ๋‹ค" ๋ผ๊ณ  ์ด์•ผ๊ธฐํ•˜์ฃ .
03:52
or future rain, "It will rain tomorrow."
63
232454
2434
๋ฏธ๋ž˜์˜ ๊ฒฝ์šฐ, "๋‚ด์ผ ๋น„๊ฐ€ ์˜ฌ ๊ฒƒ์ž…๋‹ˆ๋‹ค."๋ผ๊ณ  ํ•˜๊ฒ ์ฃ .
03:54
Notice that English requires a lot more information with respect to the timing of events.
64
234888
4827
์˜์–ด๋Š” ์–ด๋–ค ์‚ฌ๊ฑด์˜ ์‹œ๊ฐ„์— ๋Œ€ํ•ด ๋งŽ์€ ์ •๋ณด๋ฅผ ํ•„์š”๋กœ ํ•ฉ๋‹ˆ๋‹ค.
03:59
Why? Because I have to consider that
65
239715
2007
์™œ์ผ๊นŒ์š”?
04:01
and I have to modify what I'm saying to say, "It will rain," or "It's going to rain."
66
241722
4783
"๋‚ด์ผ ๋น„๊ฐ€ ์˜ฌ๊ฒƒ์ž…๋‹ˆ๋‹ค."๋ผ๊ณ  ๋งํ•˜๋ ค๋ฉด ์ƒ๊ฐ์„ ํ•ด์•ผ ํ•˜๋‹ˆ๊นŒ์š”.
04:06
It's simply not permissible in English to say, "It rain tomorrow."
67
246505
4116
๋‹จ์ˆœํžˆ "๋‚ด์ผ ๋น„๊ฐ€ ์˜ค๋‹ค."๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์—†๋Š” ์–ธ์–ด์ธ ๊ฒƒ์ด์ง€์š”.
04:10
In contrast to that, that's almost exactly what you would say in Chinese.
68
250621
4184
๋ฐ˜๋ฉด, ์ค‘๊ตญ์–ด๋กœ๋Š” ๋ฐ”๋กœ ๊ทธ๋ ‡๊ฒŒ ๋งํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:14
A Chinese speaker can basically say something
69
254805
2316
์ค‘๊ตญ์–ด๋ฅผ ํ•˜๋Š” ์‚ฌ๋žŒ์€ ์˜์–ด ์‚ฌ์šฉ์ž๊ฐ€ ๋“ฃ๊ธฐ์—
04:17
that sounds very strange to an English speaker's ears.
70
257121
2584
๋งค์šฐ ์–ด์ƒ‰ํ•œ ๋ง์„ ํ•ฉ๋‹ˆ๋‹ค.
04:19
They can say, "Yesterday it rain," "Now it rain," "Tomorrow it rain."
71
259705
4567
"์–ด์ œ ์˜ค๋‹ค ๋น„," "์ง€๊ธˆ ์˜ค๋‹ค ๋น„," "๋‚ด์ผ ์˜ค๋‹ค ๋น„"์™€ ๊ฐ™์ด ๋งํ•˜์ง€์š”.
04:24
In some deep sense, Chinese doesn't divide up the time spectrum
72
264272
3863
์–ด๋–ค ์˜๋ฏธ์—์„œ ์ค‘๊ตญ์–ด๋Š” ์‹œ๊ฐ„์˜ ๋ฒ”์œ„๋ฅผ ๋‚˜๋ˆ„์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
04:28
in the same way that English forces us to constantly do in order to speak correctly.
73
268135
6433
์˜์–ด์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ๋งํ•˜๋ ค๊ณ  ์ง€์†์ ์œผ๋กœ ์‹œ์ œ๋ฅผ ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ ๋ง์ด์—์š”.
04:34
Is this difference in languages
74
274568
1584
์–ธ์–ด๊ฐ„์˜ ์ด๋Ÿฐ ์ฐจ์ด๊ฐ€
04:36
only between very, very distantly related languages, like English and Chinese?
75
276152
4195
์˜์–ด์™€ ์ค‘๊ตญ์–ด์—์„œ ๊ฐ™์ด ์—ฐ๊ด€์„ฑ์ด ๋‚ฎ์€ ์–ธ์–ด ์‚ฌ์ด์—๋งŒ ์žˆ์„๊นŒ์š”?
04:40
Actually, no.
76
280347
958
์•„๋‹™๋‹ˆ๋‹ค.
04:41
So many of you know, in this room, that English is a Germanic language.
77
281305
3733
๋งŽ์€ ๋ถ„๋“ค์ด ์•Œ๊ณ  ๊ณ„์‹œ๋“ฏ์ด ์˜์–ด๋Š” ๊ฒŒ๋ฅด๋งŒ์–ด์ž…๋‹ˆ๋‹ค.
04:45
What you may not have realized is that English is actually an outlier.
78
285038
3915
ํ•˜์ง€๋งŒ ์‚ฌ์‹ค ์˜์–ด๋Š” ์—ฌํƒ€ ๊ฒŒ๋ฅด๋งŒ์–ด์™€๋Š” ์กฐ๊ธˆ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
04:48
It is the only Germanic language that requires this.
79
288953
3250
๊ฒŒ๋ฅด๋งŒ์–ด ์ค‘ ์œ ์ผํ•˜๊ฒŒ ์ด๋Ÿฌํ•œ ์—„๊ฒฉํ•œ ์‹œ๊ฐ„ ๊ด€๋…์„ ์š”๊ตฌํ•˜์ง€์š”.
04:52
For example, most other Germanic language speakers
80
292203
2884
์˜ˆ๋ฅผ ๋“ค์–ด ๋‹ค๋ฅธ ๊ฒŒ๋ฅด๋งŒ์–ด ์‚ฌ์šฉ์ž๋“ค์€
04:55
feel completely comfortable talking about rain tomorrow
81
295087
3017
๋‚ด์ผ ๋น„๊ฐ€ ์˜ค๋Š”๊ฒƒ์— ๋Œ€ํ•ด ์ด๋ ‡๊ฒŒ ์ด์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค.
04:58
by saying, "Morgen regnet es,"
82
298104
1966
"Morgen regnet es,"
05:00
quite literally to an English ear, "It rain tomorrow."
83
300070
3900
์˜์–ด๋กœ ์ง์—ญํ•˜์ž๋ฉด, "๋น„ ์˜ค๋‹ค ๋‚ด์ผ." ์ •๋„๊ฐ€ ๋˜๊ฒ ๋„ค์š”.
05:03
This led me, as a behavioral economist, to an intriguing hypothesis.
84
303970
5067
ํ–‰๋™ ๊ฒฝ์ œํ•™์ž๋กœ์„œ ์ €๋Š” ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํฅ๋ฏธ๋กœ์šด ๊ฐ€์„ค์„ ์„ธ์šฐ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
05:09
Could how you speak about time, could how your language forces you to think about time,
85
309037
4249
์‹œ๊ฐ„์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ์ด์•ผ๊ธฐํ•˜๋Š”์ง€,
์‚ฌ์šฉํ•˜๋Š” ์–ธ์–ด๊ฐ€ ์‹œ๊ฐ„์— ๋Œ€ํ•ด ์–ผ๋งˆ๋‚˜ ์ƒ๊ฐํ•˜๊ฒŒ ํ•˜๋Š” ์ง€๊ฐ€
05:13
affect your propensity to behave across time?
86
313286
3751
์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ํ–‰๋™ ๊ฒฝํ–ฅ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”๊ฐ€?
05:17
You speak English, a futured language.
87
317037
2900
์˜์–ด๋Š” ๋ฏธ๋ž˜ ์ง€ํ–ฅ์ ์ธ ์–ธ์–ด์ž…๋‹ˆ๋‹ค.
05:19
And what that means is that every time you discuss the future,
88
319937
3167
๊ทธ๊ฒƒ์€ ๋ฏธ๋ž˜์— ๋Œ€ํ•ด ์–˜๊ธฐํ•  ๋•Œ๋งˆ๋‹ค,
05:23
or any kind of a future event,
89
323104
1567
์•„๋‹ˆ๋ฉด ๋ฏธ๋ž˜์— ์ผ์–ด๋‚  ์–ด๋–ค ๊ฒƒ์ด๋“  ์ด์•ผ๊ธฐ ํ•  ๋•Œ,
05:24
grammatically you're forced to cleave that from the present
90
324671
3399
๋ฌธ๋ฒ•์ ์œผ๋กœ ๊ทธ๊ฒƒ์„ ํ˜„์žฌ์™€๋Š” ๊ตฌ๋ณ„ํ•ด์„œ
05:28
and treat it as if it's something viscerally different.
91
328070
2633
๋šœ๋ ทํ•˜๊ฒŒ ๋‹ค๋ฅด๊ฒŒ ํ‘œํ˜„ํ•œ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
05:30
Now suppose that that visceral difference
92
330703
2500
์ด ๋šœ๋ ทํ•œ ์ฐจ์ด๊ฐ€
05:33
makes you subtly dissociate the future from the present every time you speak.
93
333203
4200
๋ง์„ ํ•  ๋•Œ๋งˆ๋‹ค ํ˜„์žฌ์™€ ๋ฏธ๋ž˜๋ฅผ ๋ฏธ๋ฌ˜ํ•˜๊ฒŒ ๊ตฌ๋ณ„ํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•ฉ์‹œ๋‹ค.
05:37
If that's true and it makes the future feel
94
337403
1913
๊ทธ๋ ‡๊ฒŒ ํ•จ์œผ๋กœ์จ ๋ฏธ๋ž˜๊ฐ€
05:39
like something more distant and more different from the present,
95
339316
2983
ํ˜„์žฌ์™€๋Š” ๊ฑฐ๋ฆฌ๊ฐ€ ์žˆ๊ณ , ๋‹ค๋ฅด๊ฒŒ ๋Š๊ปด์ง„๋‹ค๋ฉด
05:42
that's going to make it harder to save.
96
342299
2654
์ €์ถ•ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋–จ์–ด์ง€๊ฒ ์ง€์š”.
05:44
If, on the other hand, you speak a futureless language,
97
344953
2551
๋ฐ˜๋Œ€๋กœ, ๋งŒ์•ฝ์— ๋ฏธ๋ž˜์˜ ๊ด€๋…์ด ์•ฝํ•œ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋ฉด
05:47
the present and the future, you speak about them identically.
98
347504
3383
ํ˜„์žฌ์™€ ๋ฏธ๋ž˜๋ฅผ ๋™๋“ฑํ•˜๊ฒŒ ์ด์•ผ๊ธฐํ•˜๊ฒŒ ๋˜๊ฒ ์ฃ .
05:50
If that subtly nudges you to feel about them identically,
99
350887
2983
๋งŒ์•ฝ ๋ฌด์˜์‹์ค‘์— ์ด ๋‘˜์„ ๊ฐ™๊ฒŒ ์—ฌ๊ธฐ๊ฒŒ ๋œ๋‹ค๋ฉด
05:53
that's going to make it easier to save.
100
353870
2384
์ €์ถ•์„ ๋” ํ•˜๊ฒŒ ๋ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:56
Now this is a fanciful theory.
101
356254
2550
์ด๊ฒƒ์€ ๊ทธ๋Ÿด๋“ฏํ•œ ์ด๋ก ์ž…๋‹ˆ๋‹ค.
05:58
I'm a professor, I get paid to have fanciful theories.
102
358804
2900
์ €๋Š” ๊ต์ˆ˜์ด๊ณ , ๊ทธ๋Ÿด๋“ฏํ•œ ์ด๋ก ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ˆ˜๋ฅผ ๋ฐ›์Šต๋‹ˆ๋‹ค.
06:01
But how would you actually go about testing such a theory?
103
361704
4234
ํ•˜์ง€๋งŒ ์ด ์ด๋ก ์„ ์‹ค์ œ๋กœ ์–ด๋–ป๊ฒŒ ์‹คํ—˜ํ•ด ๋ณผ ์ˆ˜ ์žˆ์„๊นŒ์š”?
06:05
Well, what I did with that was to access the linguistics literature.
104
365938
4066
์ €๋Š” ์–ธ์–ดํ•™ ๋ฌธํ—Œ์„ ๋’ค์ ธ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
06:10
And interestingly enough, there are pockets of futureless language speakers
105
370004
4383
๋งค์šฐ ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ๋ฏธ๋ž˜ ๊ด€๋…์ด ์•ฝํ•œ ์–ธ์–ด๋Š”
06:14
situated all over the world.
106
374387
1933
์ „ ์„ธ๊ณ„์ ์œผ๋กœ ๊ฝค ๋งŽ์•˜์Šต๋‹ˆ๋‹ค.
06:16
This is a pocket of futureless language speakers in Northern Europe.
107
376320
3366
์ด๊ฒƒ์€ ๋ถ์œ ๋Ÿฝ์—์„œ ์ด๋Ÿฌํ•œ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์˜ ๋ถ„ํฌ์ž…๋‹ˆ๋‹ค.
06:19
Interestingly enough, when you start to crank the data,
108
379686
2901
ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ์ด ์ž๋ฃŒ๋ฅผ ๋ถ„์„ํ•ด๋ณด๋ฉด,
06:22
these pockets of futureless language speakers all around the world
109
382587
3233
์ด๋Ÿฌํ•œ ์–ธ์–ด๋“ค์„ ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์€
06:25
turn out to be, by and large, some of the world's best savers.
110
385820
3934
๋Œ€์ฒด๋กœ ๋งŽ์€ ์ €์ถ•์„ ํ•˜๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:29
Just to give you a hint of that,
111
389754
2166
์ด ์‚ฌ์‹ค์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ
06:31
let's look back at that OECD graph that we were talking about.
112
391920
2750
์•ž์— ๋ณด์—ฌ๋“œ๋ ธ๋˜ OECD ๊ทธ๋ž˜ํ”„๋ฅผ ๋‹ค์‹œ ๋ณด์‹œ์ฃ .
06:34
What you see is that these bars are systematically taller
113
394670
3384
์—ฌ๋Ÿฌ๋ถ„์ด ๋ณด์‹œ๋Š”๋Œ€๋กœ
06:38
and systematically shifted to the left
114
398054
2132
๋ฏธ๋ž˜ ๊ด€๋…์ด ๊ฐ•ํ•œ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š”
06:40
compared to these bars which are the members of the OECD that speak futured languages.
115
400186
4518
๊ตญ๊ฐ€๋“ค์— ๋น„ํ•ด์„œ ๋ง‰๋Œ€๊ฐ€ ๋” ๋†’๊ณ  ์™ผ์ชฝ์œผ๋กœ ์น˜์šฐ์ณ ์žˆ์Šต๋‹ˆ๋‹ค.
06:44
What is the average difference here?
116
404704
1463
๋Œ€์ฒด์ ์œผ๋กœ ์–ด๋Š ์ •๋„์˜ ์ฐจ์ด์ผ๊นŒ์š”?
06:46
Five percentage points of your GDP saved per year.
117
406167
3286
์—ฐ๊ฐ„ ๊ตญ๋ฏผ์ด์ƒ์‚ฐ์˜ 5%๋ฅผ ๋” ์ €์ถ•ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:49
Over 25 years that has huge long-run effects on the wealth of your nation.
118
409453
4734
๊ทธ๋ฆฌ๊ณ  ์ง€๋‚œ 25๋…„๊ฐ„ ์ถ•์ ๋œ ์ด ์ฐจ์ด๊ฐ€ ๊ตญ๊ฐ€์˜ ๋ถ€์— ์žฅ๊ธฐ์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์ณค์Šต๋‹ˆ๋‹ค.
06:54
Now while these findings are suggestive,
119
414187
2700
์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์„ค๋“๋ ฅ์ด ์žˆ๊ธฐ๋Š” ํ•˜์ง€๋งŒ
06:56
countries can be different in so many different ways
120
416887
2066
๊ตญ๊ฐ€๋“ค์ด ๋งค์šฐ ๋‹ค์–‘ํ•œ ์ฐจ์ด๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ ๋•Œ๋ฌธ์—
06:58
that it's very, very difficult sometimes to account for all of these possible differences.
121
418953
4384
์ด๋Ÿฌํ•œ ์ฐจ์ด์ ์„ ๋ชจ๋‘ ๊ณ ๋ คํ•˜๊ธฐ๋Š” ๋งค์šฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
07:03
What I'm going to show you, though, is something that I've been engaging in for a year,
122
423337
4032
์ œ๊ฐ€ ๋ณด์—ฌ๋“œ๋ฆด ์ž๋ฃŒ๋Š” ์ผ๋…„๊ฐ„ ์ œ๊ฐ€ ํ•œ ์ผ์ธ๋ฐ์š”,
07:07
which is trying to gather all of the largest datasets
123
427369
2323
๊ฒฝ์ œํ•™์ž๋กœ์„œ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š”
07:09
that we have access to as economists,
124
429692
2292
๊ฐ€๋Šฅํ•œ ํ•œ ์ตœ๋Œ€ํ•œ์˜ ์ž๋ฃŒ๋ฅผ ์ทจํ•ฉํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:11
and I'm going to try and strip away all of those possible differences,
125
431984
3382
์ €๋Š” ์ฐจ์ด๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ชจ๋“  ๋ถ€๋ถ„์„ ์—†์• ์„œ
07:15
hoping to get this relationship to break.
126
435366
2654
์ด ์—ฐ๊ด€์„ฑ์„ ๊นจ๋ณด๋ ค๊ณ  ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:18
And just in summary, no matter how far I push this, I can't get it to break.
127
438020
5031
๋ฏธ๋ฆฌ ๋ง์”€๋“œ๋ฆฌ๋ฉด, ๋ฉ€๋งˆ๋‚˜ ๋งŽ์€ ์ž๋ฃŒ๋ฅผ ๋ณด๋“  ์ด ๋‘˜์˜ ์—ฐ๊ด€์„ฑ์„ ๊นฐ ์ˆ˜ ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
07:23
Let me show you how far you can do that.
128
443051
1765
์–ด๋Š ์ •๋„๊นŒ์ง€ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
07:24
One way to imagine that is I gather large datasets from around the world.
129
444816
4633
ํ•œ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์€ ๋จผ์ € ๋งŽ์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:29
So for example, there is the Survey of Health, [Aging] and Retirement in Europe.
130
449449
3734
์˜ˆ๋ฅผ ๋“ค์–ด ์œ ๋Ÿฝ์—๋Š” ๊ฑด๊ฐ•, (๋…ธํ™”) ๊ทธ๋ฆฌ๊ณ  ์€ํ‡ด์˜ ์—ฐ๊ด€์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:33
From this dataset you actually learn that retired European families
131
453183
3834
์ด ์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ์€ํ‡ดํ•œ ์œ ๋Ÿฝ์˜ ๊ฐ€๊ตฌ๋“ค์€ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์—๊ฒŒ
07:37
are extremely patient with survey takers.
132
457017
2633
๋งค์šฐ ์ธ๋‚ด์‹ฌ์„ ๊ฐ–๊ณ  ๋Œ€ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:39
(Laughter)
133
459650
1916
(์›ƒ์Œ)
07:41
So imagine that you're a retired household in Belgium and someone comes to your front door.
134
461566
4384
์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์ด ๋ฒจ๊ธฐ์—์— ์‚ฌ๋Š” ํ‡ด์ง์ž์ธ๋ฐ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋ฌธ์„ ๋‘๋“œ๋ฆฐ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด ๋ด…์‹œ๋‹ค.
07:45
"Excuse me, would you mind if I peruse your stock portfolio?
135
465950
4584
"์‹ค๋ก€ํ•ฉ๋‹ˆ๋‹ค๋งŒ, ์ฃผ์‹ ๋ณด์œ  ํ˜„ํ™ฉ์„ ์ข€ ์•Œ๋ ค์ฃผ์‹ค ์ˆ˜ ์žˆ์„๊นŒ์š”?
07:50
Do you happen to know how much your house is worth? Do you mind telling me?
136
470534
3532
์‚ด๊ณ  ๊ณ„์‹  ์ฃผํƒ์˜ ๊ฐ€๊ฒฉ์„ ์•Œ๊ณ  ๊ณ„์‹œ๋ฉด ํ˜น์‹œ ์•Œ๋ ค์ฃผ์‹ค ์ˆ˜ ์žˆ์„๊นŒ์š”?
07:54
Would you happen to have a hallway that's more than 10 meters long?
137
474066
3267
๋ณต๋„์˜ ๊ธธ์ด๊ฐ€ 10๋ฏธํ„ฐ ์ด์ƒ์ธ๊ฐ€์š”?
07:57
If you do, would you mind if I timed how long it took you to walk down that hallway?
138
477333
4501
๋งŒ์•ฝ ๊ทธ๋ ‡๋‹ค๋ฉด ๊ทธ ๋ณต๋„๋ฅผ ๊ฑธ์–ด ์ง€๋‚˜๋Š”๋ฐ ์‹œ๊ฐ„์ด ์–ผ๋งˆ๋‚˜ ๊ฑธ๋ฆฌ๋Š”์ง€ ์žฌ๋ด๋„ ๋ ๊นŒ์š”?
08:01
Would you mind squeezing as hard as you can, in your dominant hand, this device
139
481834
3897
์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ์†์œผ๋กœ ์ด ๊ธฐ๊ตฌ๋ฅผ ์ตœ๋Œ€ํ•œ ์„ธ๊ฒŒ ์ฅ์–ด๋ณด์„ธ์š”.
08:05
so I can measure your grip strength?
140
485731
1512
์•…๋ ฅ์„ ์ธก์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
08:07
How about blowing into this tube so I can measure your lung capacity?"
141
487243
4023
ํ๊ธฐ๋Šฅ ์ธก์ •์„ ์œ„ํ•ด ์ด ํŠœ๋ธŒ๋ฅผ ๋ถˆ์–ด์ฃผ์‹ค ์ˆ˜ ์žˆ์„๊นŒ์š”?"
08:11
The survey takes over a day.
142
491266
2884
์ด๋Ÿฐ ์กฐ์‚ฌ๋Š” ํ•˜๋ฃจ๋„ ๋” ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค.
08:14
(Laughter)
143
494150
1483
(์›ƒ์Œ)
08:15
Combine that with a Demographic and Health Survey
144
495633
3900
์ด ๊ฒฐ๊ณผ๋ฅผ ์ธ๊ตฌ ํ†ต๊ณ„ ๊ทธ๋ฆฌ๊ณ  ๊ฑด๊ฐ• ์กฐ์‚ฌ ์ž๋ฃŒ์™€ ํ•ฉ์ณ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
08:19
collected by USAID in developing countries in Africa, for example,
145
499533
4450
USAID๊ฐ€ ์•„ํ”„๋ฆฌ์นด์˜ ๊ฐœ๋ฐœ๋„์ƒ๊ตญ์—์„œ ์‹ค์‹œํ•œ ์กฐ์‚ฌ์ธ๋ฐ
08:23
which that survey actually can go so far as to directly measure the HIV status
146
503983
5151
๋‚˜์ด์ง€๋ฆฌ์•„ ์‹œ๊ณจ ๋งˆ์„์— ์‚ฌ๋Š” ๊ฐ€์ •์˜
08:29
of families living in, for example, rural Nigeria.
147
509134
3099
HIV ๊ฐ์—ผ ํ˜„ํ™ฉ์„ ์ง์ ‘์ ์œผ๋กœ ์•Œ ์ˆ˜ ์žˆ๋Š” ์ž๋ฃŒ์ž…๋‹ˆ๋‹ค.
08:32
Combine that with a world value survey,
148
512233
1901
์ด ์ž๋ฃŒ๋ฅผ ์„ธ๊ณ„ ๊ฐ๊ตญ์— ์žˆ๋Š”
08:34
which measures the political opinions and, fortunately for me, the savings behaviors
149
514134
4433
์ˆ˜๋ฐฑ๋งŒ ๊ฐ€์ •์˜
08:38
of millions of families in hundreds of countries around the world.
150
518567
4699
์ •์น˜์  ๊ฒฌํ•ด๋‚˜ ์ €์ถ• ์Šต๊ด€ ๋“ฑ์„ ์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ์™€ ํ•ฉ์ณ๋ณด์ฃ .
08:43
Take all of that data, combine it, and this map is what you get.
151
523266
3818
์ด ๋ชจ๋“  ๊ฒฐ๊ณผ๋ฅผ ํ•ฉ์นœ ๋ชจ์Šต์ž…๋‹ˆ๋‹ค.
08:47
What you find is nine countries around the world
152
527084
2250
์—ฌ๊ธฐ ๋ณด์‹œ๋ฉด
08:49
that have significant native populations
153
529334
2652
๋ฏธ๋ž˜ ์ง€ํ–ฅ์  ๋˜๋Š” ๋ฏธ๋ž˜ ๊ด€๋…์ด ์—†๋Š” ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š”
08:51
which speak both futureless and futured languages.
154
531986
4047
์•„ํ™‰๊ฐœ์˜ ๊ตญ๊ฐ€๊ฐ€ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
08:56
And what I'm going to do is form statistical matched pairs
155
536033
3534
์ €๋Š” ์ด๋“ค ๊ตญ๊ฐ€ ์ค‘์—์„œ
08:59
between families that are nearly identical on every dimension that I can measure,
156
539567
5593
๊ฐ€๋Šฅํ•œํ•œ ํ†ต๊ณ„์  ์กฐ๊ฑด์ด ์œ ์‚ฌํ•œ ๋‘ ๊ฐ€์กฑ์„ ๋น„๊ตํ•˜์—ฌ
09:05
and then I'm going to explore whether or not the link between language and savings holds
157
545160
3537
์ด ์™ธ์˜ ๋ชจ๋“  ์กฐ๊ฑด๋“ค์ด ํ†ต์ œ๋œ ์กฐ๊ฑด์—์„œ
09:08
even after controlling for all of these levels.
158
548697
3483
์–ธ์–ด์™€ ์ €์ถ•๋ฅ ์„ ์—ฐ๊ฒฐ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”์ง€ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
09:12
What are the characteristics we can control for?
159
552180
2217
์–ด๋–ค ์กฐ๊ฑด์„ ํ†ต์ œํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
09:14
Well I'm going to match families on country of birth and residence,
160
554397
2764
์šฐ์„  ํƒœ์–ด๋‚œ ๊ตญ๊ฐ€์™€ ๊ฑฐ์ฃผ ์ง€์—ญ,
09:17
the demographics -- what sex, their age --
161
557161
2402
์„ฑ๋ณ„๊ณผ ์—ฐ๋ น,
09:19
their income level within their own country,
162
559563
2134
๊ตญ๋‚ด์—์„œ์˜ ์ˆ˜์ž…,
09:21
their educational achievement, a lot about their family structure.
163
561697
3015
๊ต์œก์  ์„ฑ์ทจ๋„์™€ ๊ฐ€์กฑ ๊ด€๊ณ„ ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
09:24
It turns out there are six different ways to be married in Europe.
164
564712
3518
์œ ๋Ÿฝ์—์„œ ๊ฒฐํ˜ผ์˜ ์œ ํ˜•์€ ์—ฌ์„ฏ ๊ฐ€์ง€๊ฐ€ ์žˆ๋Š”๋ฐ์š”.
09:28
And most granularly, I break them down by religion
165
568230
4200
๊ฐ€์žฅ ์„ธ๋ถ€์ ์œผ๋กœ๋Š”, ์ข…๊ต๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:32
where there are 72 categories of religions in the world --
166
572430
3315
์ „ ์„ธ๊ณ„์—๋Š” 72๊ฐœ์˜ ์ข…๊ต๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
09:35
so an extreme level of granularity.
167
575745
1717
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ƒ๋‹นํžˆ ์„ธ๋ถ€์ ์ž…๋‹ˆ๋‹ค.
09:37
There are 1.4 billion different ways that a family can find itself.
168
577462
4533
๊ฐ€์กฑ์˜ ํ˜•ํƒœ์—๋Š” 14์–ต ์ข…๋ฅ˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
09:41
Now effectively everything I'm going to tell you from now on
169
581995
4049
์ง€๊ธˆ๋ถ€ํ„ฐ ์ œ๊ฐ€ ํ•˜๋Š” ๋ง์€
09:46
is only comparing these basically nearly identical families.
170
586044
3050
๊ธฐ๋ณธ์ ์œผ๋กœ ๊ฑฐ์˜ ๊ฐ™์€ ๊ฐ€์กฑ๋“ค๋งŒ์„ ๋น„๊ตํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:49
It's getting as close as possible to the thought experiment
171
589094
2500
์‚ฌ๊ณ  ์‹คํ—˜๊ณผ ์•„์ฃผ ๊ทผ์ ‘ํ•ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:51
of finding two families both of whom live in Brussels
172
591594
2933
๋ธŒ๋คผ์…€ ์ถœ์‹ ์˜ ๋‘ ๊ฐ€์ •์„ ์ฐพ์•„
09:54
who are identical on every single one of these dimensions,
173
594527
3000
์ด๋“ค์€ ๋ชจ๋“  ์กฐ๊ฑด์ด ์ผ์น˜ํ•˜์ง€๋งŒ
09:57
but one of whom speaks Flemish and one of whom speaks French;
174
597527
3116
ํ•œ ๊ฐ€์ •์€์€ ํ”Œ๋ผ๋ง์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ˜๋ฉด ๋‹ค๋ฅธ ๊ฐ€์ •์€ ๋ถˆ์–ด๋ฅผ ๊ตฌ์‚ฌํ•˜๊ณ ,
10:00
or two families that live in a rural district in Nigeria,
175
600643
2717
์•„๋‹ˆ๋ฉด ๋‚˜์ด์ง€๋ฆฌ์•„์˜ ์‹œ๊ณจ ์ง€์—ญ์— ์‚ฌ๋Š” ๋‘ ๊ฐ€์ •์„ ๊ณ ๋ฅด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:03
one of whom speaks Hausa and one of whom speaks Igbo.
176
603360
3833
ํ•œ ๊ฐ€์ •์€์€ ํ•˜์šฐ์‚ฌ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๋‹ค๋ฅธ ๊ฐ€์ •์€ ์ด๊ทธ๋ณด์šฐ์–ด๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
10:07
Now even after all of this granular level of control,
177
607193
3884
๋ฏธ์„ธํ•œ ํ†ต์ œ๋ฅผ ๊ฑฐ์นœ ํ›„์—๋„
10:11
do futureless language speakers seem to save more?
178
611077
3166
๋ฏธ๋ž˜ ๊ด€๋…์ด ์•ฝํ•œ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ด ์ €์ถ•์„ ๋” ํ•˜๊ณ  ์žˆ์„๊นŒ์š”?
10:14
Yes, futureless language speakers, even after this level of control,
179
614243
3653
๋„ค, ๋ฏธ๋ž˜ ๊ด€๋…์ด ์•ฝํ•œ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์€ ์ด๋Ÿฌํ•œ ํ†ต์ œ๋ฅผ ๊ฐ€ํ•ด๋„
10:17
are 30 percent more likely to report having saved in any given year.
180
617896
3698
์–ด๋–ค ํ•ด์—๋“  1๋…„๋‹น ์ €์ถ• ๊ฐ€๋Šฅ์„ฑ์ด 30%๋‚˜ ๋” ๋†’์Šต๋‹ˆ๋‹ค.
10:21
Does this have cumulative effects?
181
621594
1816
์—ฌ๊ธฐ์— ๋ˆ„์  ํšจ๊ณผ๊ฐ€ ์žˆ์„๊นŒ์š”?
10:23
Yes, by the time they retire, futureless language speakers, holding constant their income,
182
623410
4420
๋„ค, ์€ํ‡ดํ•  ์ฆˆ์Œ์— ๋ฏธ๋ž˜ ๊ด€๋…์ด ์—†๋Š” ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์€
10:27
are going to retire with 25 percent more in savings.
183
627830
3068
์ €์ถ•์œผ๋กœ 25%๋ฅผ ๋” ๊ฐ–๊ณ  ์€ํ‡ดํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:30
Can we push this data even further?
184
630898
2481
์ด ์ž๋ฃŒ๋ฅผ ์ข€ ๋” ์ž์„ธํžˆ ๋“ค์—ฌ๋‹ค๋ณด๋ฉด
10:33
Yes, because I just told you, we actually collect a lot of health data as economists.
185
633379
5299
๋„ค, ๊ฒฝ์ œํ•™์ž๋กœ์„œ ์šฐ๋ฆฌ๋Š” ๋งŽ์€ ๊ฑด๊ฐ• ๊ด€๋ จ ์ž๋ฃŒ๋ฅผ ์ˆ˜์ง‘ํ•ฉ๋‹ˆ๋‹ค.
10:38
Now how can we think about health behaviors to think about savings?
186
638678
3883
๊ทธ๋ ‡๋‹ค๋ฉด ์ €์ถ•์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด ๋ณด๊ธฐ ์œ„ํ•ด ๊ฑด๊ฐ•๊ด€๋ จ ์ž๋ฃŒ์—์„œ๋Š” ๋ฌด์—‡์„ ๊ณ ๋ คํ• ๊นŒ์š”?
10:42
Well, think about smoking, for example.
187
642561
2833
์˜ˆ๋ฅผ ๋“ค์–ด ํก์—ฐ์„ ์ƒ๊ฐํ•ด ๋ณด์„ธ์š”.
10:45
Smoking is in some deep sense negative savings.
188
645394
3183
ํก์—ฐ์€ ์–ด๋–ค ๋ฉด์—์„œ ๋ถ€์ •์ ์ธ ์ €์ถ•์ž…๋‹ˆ๋‹ค.
10:48
If savings is current pain in exchange for future pleasure,
189
648577
3666
์ €์ถ•์ด ๋ฏธ๋ž˜์˜ ๊ธฐ์จ์„ ์œ„ํ•œ ํ˜„์žฌ์˜ ๊ณ ํ†ต์ด๋ผ๋ฉด,
10:52
smoking is just the opposite.
190
652243
1308
ํก์—ฐ์€ ๊ทธ๊ฒƒ์˜ ์ • ๋ฐ˜๋Œ€์ž…๋‹ˆ๋‹ค.
10:53
It's current pleasure in exchange for future pain.
191
653551
2859
ํ˜„์žฌ์˜ ๊ธฐ์จ์„ ๋ฏธ๋ž˜์˜ ๊ณ ํ†ต๊ณผ ๋งž๋ฐ”๊พธ๋Š” ๊ฒƒ์ด์ฃ .
10:56
What we should expect then is the opposite effect.
192
656410
2950
๊ทธ๋ ‡๋‹ค๋ฉด ์šฐ๋ฆฌ๋Š” ์ • ๋ฐ˜๋Œ€์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋Œ€ํ•ด์•ผ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:59
And that's exactly what we find.
193
659360
1768
๊ทธ๋ฆฌ๊ณ  ๊ฒฐ๊ณผ๋Š” ์ •ํ™•ํžˆ ๊ทธ๋ ‡๊ฒŒ ๋‚˜์˜ต๋‹ˆ๋‹ค.
11:01
Futureless language speakers are 20 to 24 percent less likely
194
661128
3767
๋ฏธ๋ž˜ ๊ด€๋…์ด ์—†๋Š” ์–ธ์–ด ์‚ฌ์šฉ์ž๋Š”
11:04
to be smoking at any given point in time compared to identical families,
195
664895
3415
๋™์ผํ•œ ๊ฐ€์ •๋ณด๋‹ค ํก์—ฐ ๊ฐ€๋Šฅ์„ฑ์ด 20~24% ๋‚ฎ์•˜๊ณ ,
11:08
and they're going to be 13 to 17 percent less likely
196
668310
2901
์€ํ‡ดํ•  ์ฆˆ์Œ ๋น„๋งŒ์ผ ๊ฐ€๋Šฅ์„ฑ์ด
11:11
to be obese by the time they retire,
197
671211
2217
13~17% ๋‚ฎ์•˜์œผ๋ฉฐ
11:13
and they're going to report being 21 percent more likely
198
673428
2463
๊ฐ€์žฅ ์ตœ๊ทผ์— ๊ฐ€์ง„ ์„ฑ๊ด€๊ณ„์—์„œ
11:15
to have used a condom in their last sexual encounter.
199
675891
2287
์ฝ˜๋”์„ ์‚ฌ์šฉํ–ˆ๋‹ค๊ณ  ๋ณด๊ณ ํ•  ํ™•๋ฅ ์ด 21% ๋” ๋†’์Šต๋‹ˆ๋‹ค.
11:18
I could go on and on with the list of differences that you can find.
200
678178
3483
์ฐจ์ด์ ์€ ์ˆ˜๋„ ์—†์ด ๊ณ„์† ๋‚˜์—ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:21
It's almost impossible not to find a savings behavior
201
681661
3800
์ด๋Ÿฌํ•œ ๊ฐ•๋ ฅํ•œ ๊ฒฐ๊ณผ๋“ค์ด ์žˆ๋Š”๋ฐ
11:25
for which this strong effect isn't present.
202
685461
2599
์ €์ถ•์— ๊ด€๋ จํ•œ ํ–‰๋™์„ ๋ฐœ๊ฒฌํ•˜์ง€ ์•Š์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
11:28
My linguistics and economics colleagues at Yale and I are just starting to do this work
203
688060
4750
์˜ˆ์ผ๋Œ€์— ์žˆ๋Š” ์ €์˜ ์–ธ์–ดํ•™ ๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์ œํ•™ ๋™๋ฃŒ๋“ค๊ณผ ์ €๋Š” ์ด ์ผ์„ ๋ง‰ ์‹œ์ž‘ํ–ˆ๊ณ 
11:32
and really explore and understand the ways that these subtle nudges
204
692810
5167
์ด๋Ÿฐ ์ž‘์€ ์˜ํ–ฅ๋“ค๋กœ ์ธํ•ด์„œ ์šฐ๋ฆฌ๊ฐ€ ๋งํ•  ๋•Œ๋งˆ๋‹ค
11:37
cause us to think more or less about the future every single time we speak.
205
697977
5395
๋ฏธ๋ž˜์— ๋Œ€ํ•ด ๋” ํ˜น์€ ๋œ ์ƒ๊ฐํ•˜๊ฒŒ ๋˜๋Š” ๋ฐฉ์‹์— ๋Œ€ํ•ด ํƒ๊ตฌํ•˜๊ณ  ์ดํ•ดํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
11:43
Ultimately, the goal,
206
703372
2301
์ตœ์ข…์ ์ธ ๋ชฉํ‘œ๋Š”
11:45
once we understand how these subtle effects can change our decision making,
207
705673
4199
์ด๋Ÿฌํ•œ ์ž‘์€ ์˜ํ–ฅ์ด ์šฐ๋ฆฌ์˜ ์˜์‚ฌ ๊ฒฐ์ •์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์ดํ•ดํ•œ ๋‹ค์Œ
11:49
we want to be able to provide people tools
208
709872
2950
์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์ €์ถ•์„ ์žฅ๋ คํ•˜๊ณ 
11:52
so that they can consciously make themselves better savers
209
712822
2808
๋ฏธ๋ž˜์— ๋” ์˜์‹ ์žˆ๋Š” ํˆฌ์ž์ž๊ฐ€ ๋  ์ˆ˜ ์žˆ๋Š”
11:55
and more conscious investors in their own future.
210
715630
3259
๋ฐฉ์•ˆ์„ ์ œ๊ณตํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:58
Thank you very much.
211
718889
2267
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
12:01
(Applause)
212
721156
6368
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7