Shlomo Benartzi: Saving for tomorrow, tomorrow

234,599 views ใƒป 2012-02-23

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Sigal Tifferet ืžื‘ืงืจ: Ido Dekkers
00:15
I'm going to talk today about saving more,
0
15260
3000
ืื ื™ ืื“ื‘ืจ ื”ื™ื•ื ืขืœ ืื™ืš ืœื—ืกื•ืš ื™ื•ืชืจ,
00:18
but not today, tomorrow.
1
18260
3000
ืื‘ืœ ืœื ื”ื™ื•ื, ืžื—ืจ.
00:21
I'm going to talk about Save More Tomorrow.
2
21260
2000
ืื ื™ ืื“ื‘ืจ ืขืœ "ื—ืกื›ื• ื™ื•ืชืจ ืžื—ืจ".
00:23
It's a program that Richard Thaler
3
23260
2000
ื–ื• ืชื›ื ื™ืช ืฉืจื™ืฆ'ืจื“ ืชืืœืจ
00:25
from the University of Chicago and I
4
25260
2000
ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืฉื™ืงื’ื•, ื•ืื ื™
00:27
devised maybe 15 years ago.
5
27260
3000
ืชื›ื ื ื• ืœืคื ื™ 15 ืฉื ื” ื‘ืขืจืš.
00:30
The program, in a sense,
6
30260
2000
ื”ืชื›ื ื™ืช, ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื,
00:32
is an example of behavioral finance
7
32260
2000
ื”ื™ื ื“ื•ื’ืžื ืœืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™
00:34
on steroids --
8
34260
2000
ืขืœ ืกื˜ืจื•ืื™ื“ื™ื -
00:36
how we could really use behavioral finance.
9
36260
3000
ืื™ืš ื‘ืืžืช ื ื™ืชืŸ ื”ื™ื” ืœื”ืฉืชืžืฉ ื‘ืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™.
00:39
Now you might ask, what is behavioral finance?
10
39260
3000
ืื•ืœื™ ืชืฉืืœื•, ืžื” ื–ื” ืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™?
00:42
So let's think about how we manage our money.
11
42260
3000
ืื– ื‘ื•ืื• ื ื—ืฉื•ื‘ ืขืœ ืื™ืš ืื ื—ื ื• ืžื ื”ืœื™ื ืืช ื”ื›ืกืฃ ืฉืœื ื•.
00:45
Let's start with mortgages.
12
45260
3000
ื‘ื•ืื• ื ืชื—ื™ืœ ืขื ืžืฉื›ื ืชืื•ืช.
00:48
It's kind of a recent topic,
13
48260
2000
ื–ื” ื ื•ืฉื ื“ื™ ืขื“ื›ื ื™,
00:50
at least in the U.S.
14
50260
2000
ืœืคื—ื•ืช ื‘ืืจื”"ื‘.
00:52
A lot of people buy
15
52260
2000
ื”ืจื‘ื” ืื ืฉื™ื ืงื•ื ื™ื
00:54
the biggest house they can afford,
16
54260
3000
ืืช ื”ื‘ื™ืช ื”ื›ื™ ื’ื“ื•ืœ ืฉื”ื ื™ื›ื•ืœื™ื ืœื”ืจืฉื•ืช ืœืขืฆืžื,
00:57
and actually slightly bigger than that.
17
57260
3000
ื•ืœืžืขืฉื” ืงืฆืช ืžืขื‘ืจ ืœื›ืš.
01:00
And then they foreclose.
18
60260
3000
ื•ืื– ืžืขืงืœื™ื ืœื”ื ืืช ื”ื‘ื™ืช.
01:03
And then they blame the banks
19
63260
2000
ื•ื”ื ืžืืฉื™ืžื™ื ืืช ื”ื‘ื ืงื™ื
01:05
for being the bad guys who gave them the mortgages.
20
65260
3000
ืขืœ ื›ืš ืฉื”ื ื”ืจืขื™ื ืฉื ืชื ื• ืœื”ื ืืช ื”ืžืฉื›ื ืชื.
01:08
Let's also think about
21
68260
2000
ื‘ื•ืื• ื ื—ืฉื•ื‘ ื’ื ืขืœ
01:10
how we manage risks --
22
70260
2000
ืื™ืš ืื ื—ื ื• ืžื ื”ืœื™ื ืกื™ื›ื•ื ื™ื -
01:12
for example, investing in the stock market.
23
72260
2000
ืœื“ื•ื’ืžื, ืžืฉืงื™ืขื™ื ื‘ืฉื•ืง ื”ืžื ื™ื•ืช.
01:14
Two years ago, three years ago, about four years ago,
24
74260
3000
ืœืคื ื™ ืฉื ืชื™ื™ื, ืฉืœื•ืฉ, ืืจื‘ืข,
01:17
markets did well.
25
77260
2000
ื”ืฉื•ื•ืงื™ื ื”ืฆืœื™ื—ื• ื™ืคื”.
01:19
We were risk takers, of course.
26
79260
3000
ืื ื—ื ื•, ื›ืžื•ื‘ืŸ, ืœืงื—ื ื• ืกื™ื›ื•ื ื™ื.
01:22
Then market stocks seize
27
82260
2000
ื•ืื– ื”ืžื ื™ื•ืช ื ืคืœื•,
01:24
and we're like, "Wow.
28
84260
2000
ื•ืื ื—ื ื• ื›ืื™ืœื• "ื•ื•ืื•.
01:26
These losses, they feel, emotionally,
29
86260
3000
ื”ื”ืคืกื“ื™ื ื”ืืœื” ื ืจืื™ื ืœื ื•, ืจื’ืฉื™ืช,
01:29
they feel very different
30
89260
3000
ืžืื•ื“ ืฉื•ื ื™ื
01:32
from what we actually thought about it
31
92260
3000
ืžืžื” ืฉื—ืฉื‘ื ื•
01:35
when markets were going up."
32
95260
2000
ื›ืฉื”ืฉื•ื•ืงื™ื ืขืœื•."
01:37
So we're probably not doing a great job
33
97260
3000
ืื– ื›ื ืจืื” ืื ื—ื ื• ืœื ื›"ื› ืžืฆืœื™ื—ื™ื
01:40
when it comes to risk taking.
34
100260
2000
ื›ืฉื–ื” ืžื’ื™ืข ืœืœืงื™ื—ืช ืกื™ื›ื•ื ื™ื.
01:42
How many of you have iPhones?
35
102260
3000
ืœื›ืžื” ืžื›ื ื™ืฉ ืื™ื™ืคื•ืŸ?
01:45
Anyone? Wonderful.
36
105260
3000
ืœืžื™ืฉื”ื•? ื ืคืœื.
01:48
I would bet many more of you
37
108260
3000
ืื ื™ ืžื”ืžืจ ืฉืจื‘ื™ื ื™ื•ืชืจ ืžื›ื
01:51
insure your iPhone --
38
111260
3000
ืžื‘ื˜ื—ื™ื ืืช ื”ืื™ื™ืคื•ืŸ ืฉืœื›ื -
01:54
you're implicitly buying insurance by having an extended warranty.
39
114260
3000
ืืชื ืงื•ื ื™ื ื‘ื™ื˜ื•ื— ื›ืฉืืชื ืžืจื—ื™ื‘ื™ื ืืช ื”ืื—ืจื™ื•ืช.
01:57
What if you lose your iPhone?
40
117260
2000
ืžื” ื™ืงืจื” ืื ืชืื‘ื“ื• ืืช ื”ืื™ื™ืคื•ืŸ?
01:59
What if you do this?
41
119260
2000
ืžื” ื™ืงืจื” ืื ืชืขืฉื• ื›ืš?
02:01
How many of you have kids?
42
121260
2000
ืœื›ืžื” ืžื›ื ื™ืฉ ื™ืœื“ื™ื?
02:03
Anyone?
43
123260
2000
ื™ืฉ ืžื™ืฉื”ื•?
02:05
Keep your hands up
44
125260
2000
ืชืฉืื™ืจื• ืืช ื”ื™ื“ื™ื™ื ืœืžืขืœื”
02:07
if you have sufficient life insurance.
45
127260
3000
ืื ื™ืฉ ืœื›ื ื‘ื™ื˜ื•ื— ื—ื™ื™ื ืžืกืคืง.
02:10
I see a lot of hands coming down.
46
130260
2000
ืื ื™ ืจื•ืื” ื”ืจื‘ื” ื™ื“ื™ื™ื ืฉื™ื•ืจื“ื•ืช.
02:12
I would predict,
47
132260
2000
ืื ื™ ืžื ื‘ื,
02:14
if you're a representative sample,
48
134260
2000
ืื ืืชื ืžื“ื’ื ืžื™ื™ืฆื’,
02:16
that many more of you
49
136260
2000
ืฉืจื‘ื™ื ื™ื•ืชืจ ืžื›ื
02:18
insure your iPhones than your lives,
50
138260
3000
ืžื‘ื˜ื—ื™ื ืืช ื”ืื™ื™ืคื•ืŸ ืžืืฉืจ ืืช ื—ื™ื™ื”ื,
02:21
even when you have kids.
51
141260
2000
ืืคื™ืœื• ื›ืฉื™ืฉ ืœื›ื ื™ืœื“ื™ื.
02:23
We're not doing that well when it comes to insurance.
52
143260
3000
ืื ื—ื ื• ืœื ื›"ื› ืžืฆืœื™ื—ื™ื ื›ืฉื–ื” ืžื’ื™ืข ืœื‘ื™ื˜ื•ื—.
02:26
The average American household
53
146260
4000
ื‘ืืจื”"ื‘, ืžืฉืง ื‘ื™ืช ืžืžื•ืฆืข
02:30
spends 1,000 dollars a year
54
150260
3000
ืžื•ืฆื™ื 1,000 ื“ื•ืœืจ ื‘ืฉื ื”
02:33
on lotteries.
55
153260
2000
ืขืœ ื”ื’ืจืœื•ืช.
02:35
And I know it sounds crazy.
56
155260
3000
ื•ืื ื™ ื™ื•ื“ืข ืฉื–ื” ื ืฉืžืข ืžื˜ื•ืจืฃ.
02:38
How many of you spend a thousand dollars a year on lotteries?
57
158260
3000
ื›ืžื” ืžื›ื ืžื•ืฆื™ืื™ื 1,000 ื“ื•ืœืจ ื‘ืฉื ื” ืขืœ ื”ื’ืจืœื•ืช?
02:41
No one.
58
161260
2000
ืืฃ ืื—ื“.
02:43
So that tells us that the people not in this room
59
163260
3000
ืื– ื–ื” ืื•ืžืจ ืœื ื• ืฉื”ืื ืฉื™ื ืฉืื™ื ื ื›ืืŸ ื‘ื—ื“ืจ
02:46
are spending more than a thousand
60
166260
2000
ืžื•ืฆื™ืื™ื ื™ื•ืชืจ ืž 1,000
02:48
to get the average to a thousand.
61
168260
3000
ื›ื“ื™ ืœื”ื’ื™ืข ืœืžืžื•ืฆืข ืฉืœ 1,000.
02:51
Low-income people
62
171260
2000
ืื ืฉื™ื ื‘ืขืœื™ ื”ื›ื ืกื” ื ืžื•ื›ื”
02:53
spend a lot more than a thousand on lotteries.
63
173260
4000
ืžื•ืฆื™ืื™ื ื”ืจื‘ื” ื™ื•ืชืจ ืž1,000 ืขืœ ื”ื’ืจืœื•ืช.
02:57
So where does it take us?
64
177260
2000
ืื– ืœืืŸ ื–ื” ืœื•ืงื— ืื•ืชื ื•?
02:59
We're not doing a great job managing money.
65
179260
3000
ืื ื—ื ื• ืœื ืขื•ืฉื™ื ืขื‘ื•ื“ื” ื ื”ื“ืจืช ื‘ื ื™ื”ื•ืœ ื›ืกืฃ.
03:02
Behavioral finance is really a combination
66
182260
3000
ืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™ ื”ื•ื ื‘ืืžืช ืฉื™ืœื•ื‘
03:05
of psychology and economics,
67
185260
2000
ืฉืœ ืคืกื™ื›ื•ืœื•ื’ื™ื” ื•ื›ืœื›ืœื”,
03:07
trying to understand
68
187260
2000
ื‘ื ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ
03:09
the money mistakes people make.
69
189260
2000
ืืช ื”ื˜ืขื•ื™ื•ืช ื”ื›ืกืคื™ื•ืช ืฉืื ืฉื™ื ืขื•ืฉื™ื.
03:11
And I can keep standing here
70
191260
2000
ื•ืื ื™ ื™ื›ื•ืœ ืœืขืžื•ื“ ื›ืืŸ
03:13
for the 12 minutes and 53 seconds that I have left
71
193260
4000
ื‘ืฉืืจื™ืช 12 ื”ื“ืงื•ืช ื•53 ื”ืฉื ื™ื•ืช ืฉื ื•ืชืจื• ืœื™
03:17
and make fun of all sorts of ways
72
197260
2000
ื•ืœืฆื—ื•ืง ืขืœ ื›ืœ ืžื™ื ื™ ื“ืจื›ื™ื
03:19
we manage money,
73
199260
2000
ื‘ื”ืŸ ืื ื• ืžื ื”ืœื™ื ื›ืกืฃ,
03:21
and at the end you're going to ask, "How can we help people?"
74
201260
3000
ื•ื‘ืกื•ืฃ ืชืฉืืœื• ืืช ืขืฆืžื›ื: "ืื™ืš ืืคืฉืจ ืœืขื–ื•ืจ ืœืื ืฉื™ื?"
03:24
And that's what I really want to focus on today.
75
204260
3000
ื•ื‘ื–ื” ืื ื™ ื‘ืืžืช ืจื•ืฆื” ืœื”ืชืžืงื“ ื”ื™ื•ื.
03:27
How do we take an understanding
76
207260
2000
ืื™ืš ืœื•ืงื—ื™ื ืืช ื”ื”ื‘ื ื”
03:29
of the money mistakes people make,
77
209260
3000
ืขืœ ื”ื˜ืขื•ื™ื•ืช ื”ื›ืกืคื™ื•ืช ืฉืื ืฉื™ื ืขื•ืฉื™ื,
03:32
and then turning the behavioral challenges
78
212260
3000
ื•ืื– ื”ื•ืคื›ื™ื ืืช ื”ืืชื’ืจื™ื ื”ื”ืชื ื”ื’ื•ืชื™ื™ื
03:35
into behavioral solutions?
79
215260
2000
ืœืคืชืจื•ื ื•ืช ื”ืชื ื”ื’ื•ืชื™ื™ื?
03:37
And what I'm going to talk about today
80
217260
2000
ื•ืื ื™ ืื“ื‘ืจ ื”ื™ื•ื
03:39
is Save More Tomorrow.
81
219260
2000
ืขืœ "ื—ืกื›ื• ื™ื•ืชืจ ืžื—ืจ".
03:41
I want to address the issue
82
221260
2000
ืื ื™ ืจื•ืฆื” ืœื˜ืคืœ ื‘ื ื•ืฉื
03:43
of savings.
83
223260
2000
ืฉืœ ื—ืกื›ื•ื ื•ืช.
03:45
We have on the screen
84
225260
2000
ื™ืฉ ืœื ื• ืขืœ ื”ืžืกืš
03:47
a representative sample
85
227260
2000
ืžื“ื’ื ืžื™ื™ืฆื’
03:49
of 100 Americans.
86
229260
2000
ืฉืœ 100 ืืžืจื™ืงืื™ื™ื.
03:51
And we're going to look at their saving behavior.
87
231260
3000
ื•ืื ื—ื ื• ื ืจืื” ืืช ื”ืชื ื”ื’ื•ืช ื”ื—ืกื›ื•ืŸ ืฉืœื”ื.
03:54
First thing to notice is,
88
234260
2000
ืงื•ื“ื ื›ืœ,
03:56
half of them
89
236260
2000
ืœืžื—ืฆื™ืช ืžื”ื
03:58
do not even have access
90
238260
2000
ืื™ืŸ ืืคื™ืœื• ื’ื™ืฉื”
04:00
to a 401(k) plan.
91
240260
2000
ืœืชื›ื ื™ืช 401k [ืชื›ื ื™ืช ืคื ืกื™ื”].
04:02
They cannot make savings easy.
92
242260
3000
ื”ื ืœื ื™ื›ื•ืœื™ื ืœื—ืกื•ืš ื‘ืงืœื•ืช.
04:05
They cannot have money go away from their paycheck
93
245260
3000
ื”ื ืœื ื™ื›ื•ืœื™ื ืœื”ืคืจื™ืฉ ื›ืกืฃ ืžื”ืฉื›ืจ ืฉืœื”ื
04:08
into a 401(k) plan
94
248260
2000
ืœืชื•ืš ืชื›ื ื™ืช ืคื ืกื™ื”
04:10
before they see it,
95
250260
2000
ืœืคื ื™ ืฉื”ื ืจื•ืื™ื ืื•ืชื•,
04:12
before they can touch it.
96
252260
2000
ืœืคื ื™ ืฉื”ื ื™ื›ื•ืœื™ื ืœื’ืขืช ื‘ื•.
04:14
What about the remaining half of the people?
97
254260
3000
ืžื” ืœื’ื‘ื™ ื”ืžื—ืฆื™ืช ื”ื ื•ืกืคืช?
04:17
Some of them elect not to save.
98
257260
3000
ื—ืœืง ืžื”ื ื‘ื•ื—ืจื™ื ืฉืœื ืœื—ืกื•ืš.
04:20
They're just too lazy.
99
260260
2000
ื”ื ืคืฉื•ื˜ ืขืฆืœื ื™ื™ื ืžื“ื™.
04:22
They never get around to logging into a complicated website
100
262260
3000
ื”ื ืœื ืžื’ื™ืขื™ื ืœื–ื” ืฉื”ื ื™ืชื—ื‘ืจื• ืœืืชืจ ืžืกื•ื‘ืš
04:25
and doing 17 clicks to join the 401(k) plan.
101
265260
3000
ื•ื™ืœื—ืฆื• 17 ืคืขื ื›ื“ื™ ืœื”ืฆื˜ืจืฃ ืœืชื›ื ื™ืช 401k.
04:28
And then they have to decide how they're going to invest
102
268260
2000
ื•ืื– ื”ื ืฆืจื™ื›ื™ื ืœื”ื—ืœื™ื˜ ืื™ืš ื”ื ื”ื•ืœื›ื™ื ืœื”ืฉืงื™ืข
04:30
in their 52 choices,
103
270260
2000
ื‘52 ื”ืืคืฉืจื•ื™ื•ืช ืฉืœื”ื,
04:32
and they never heard about what is a money market fund.
104
272260
4000
ื•ื”ื ืžืขื•ืœื ืœื ืฉืžืขื• ืขืœ ืงืจืŸ ื›ืกืคื™ืช [ืงืจืŸ ื ืืžื ื•ืช ืกื•ืœื™ื“ื™ืช].
04:36
And they get overwhelmed and the just don't join.
105
276260
2000
ื•ื–ื” ืคืฉื•ื˜ ื™ื•ืชืจ ืžื“ื™ ืขื‘ื•ืจื, ื•ื”ื ืœื ืžืฆื˜ืจืคื™ื.
04:38
How many people end up saving to a 401(k) plan?
106
278260
5000
ื›ืžื” ืื ืฉื™ื ื‘ืกื•ืฃ ื—ื•ืกื›ื™ื ื‘ืชื›ื ื™ืช 401k?
04:43
One third of Americans.
107
283260
3000
ืฉืœื™ืฉ ืžื”ืืžืจื™ืงืื™ื.
04:46
Two thirds are not saving now.
108
286260
2000
ืฉื ื™ ืฉืœื™ืฉ ืœื ื—ื•ืกื›ื™ื ื›ืจื’ืข.
04:48
Are they saving enough?
109
288260
2000
ื”ืื ื”ื ื—ื•ืกื›ื™ื ืžืกืคื™ืง?
04:50
Take out those
110
290260
2000
ืชื•ืฆื™ืื• ืืช ืืœื”
04:52
who say they save too little.
111
292260
2000
ืฉืื•ืžืจื™ื ืฉื”ื ื—ื•ืกื›ื™ื ืžืขื˜ ืžื“ื™.
04:54
One out of 10
112
294260
2000
ืื—ื“ ืžืขืฉืจื”
04:56
are saving enough.
113
296260
3000
ื—ื•ืกืš ืžืกืคื™ืง.
04:59
Nine out of 10
114
299260
2000
9 ืžืขืฉืจื”
05:01
either cannot save through their 401(k) plan,
115
301260
3000
ืœื ื™ื›ื•ืœื™ื ืœื—ืกื•ืš ื“ืจืš ืชื›ื ื™ืช 401k,
05:04
decide not to save -- or don't decide --
116
304260
3000
ืžื—ืœื™ื˜ื™ื ืฉืœื ืœื—ืกื•ืš, ืื• ืœื ืžื—ืœื™ื˜ื™ื,
05:07
or save too little.
117
307260
3000
ืื• ื—ื•ืกื›ื™ื ืžืขื˜ ืžื“ื™.
05:10
We think we have a problem
118
310260
2000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื™ืฉ ืœื ื• ื‘ืขื™ื”
05:12
of people saving too much.
119
312260
2000
ืฉืœ ืื ืฉื™ื ืฉื—ื•ืกื›ื™ื ื™ื•ืชืจ ืžื“ื™.
05:14
Let's look at that.
120
314260
2000
ื‘ื•ืื• ื ื‘ื“ื•ืง ืืช ื–ื”.
05:16
We have one person --
121
316260
2000
ื™ืฉ ืœื ื• ืื“ื ืื—ื“ -
05:18
well, actually we're going to slice him in half
122
318260
3000
ื˜ื•ื‘, ื‘ืขืฆื ื ืฆื˜ืจืš ืœื—ืฆื•ืช ืื•ืชื•
05:21
because it's less than one percent.
123
321260
3000
ื›ื™ ื–ื” ืคื—ื•ืช ืžืื—ื•ื– ืื—ื“.
05:24
Roughly half a percent of Americans
124
324260
3000
ื‘ืขืจืš ืžื—ืฆื™ืช ืื—ื•ื– ืžื”ืืžืจื™ืงืื™ื
05:27
feel that they save too much.
125
327260
5000
ื—ืฉื™ื ืฉื”ื ื—ื•ืกื›ื™ื ื™ื•ืชืจ ืžื“ื™.
05:32
What are we going to do about it?
126
332260
2000
ืžื” ื ืขืฉื” ื‘ืงืฉืจ ืœื–ื”?
05:34
That's what I really want to focus on.
127
334260
2000
ื‘ื–ื” ืื ื™ ื‘ืืžืช ืจื•ืฆื” ืœื”ืชืžืงื“.
05:36
We have to understand
128
336260
2000
ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœื”ื‘ื™ืŸ
05:38
why people are not saving,
129
338260
2000
ืœืžื” ืื ืฉื™ื ืœื ื—ื•ืกื›ื™ื,
05:40
and then we can hopefully flip
130
340260
2000
ื•ืื– ืื•ืœื™ ื ื•ื›ืœ ืœื”ืคื•ืš
05:42
the behavioral challenges
131
342260
2000
ืืช ื”ืืชื’ืจื™ื ื”ื”ืชื ื”ื’ื•ืชื™ื™ื
05:44
into behavioral solutions,
132
344260
2000
ืœืคืชืจื•ื ื•ืช ื”ืชื ื”ื’ื•ืชื™ื™ื,
05:46
and then see how powerful it might be.
133
346260
3000
ื•ืื– ืœืจืื•ืช ืขื“ ื›ืžื” ื–ื” ื™ืขื–ื•ืจ.
05:49
So let me divert for a second
134
349260
2000
ืื– ืชื ื• ืœื™ ืœืกื˜ื•ืช ืจื’ืข
05:51
as we're going to identify the problems,
135
351260
2000
ื›ื“ื™ ืœื–ื”ื•ืช ืืช ื”ื‘ืขื™ื•ืช,
05:53
the challenges, the behavioral challenges,
136
353260
3000
ื”ืืชื’ืจื™ื, ื”ืืชื’ืจื™ื ื”ื”ืชื ื”ื’ื•ืชื™ื™ื,
05:56
that prevent people from saving.
137
356260
2000
ืฉืžื•ื ืขื™ื ืžืื ืฉื™ื ืœื—ืกื•ืš.
05:58
I'm going to divert and talk about bananas and chocolate.
138
358260
4000
ืื ื™ ืืกื˜ื” ื•ืื“ื‘ืจ ืขืœ ื‘ื ื ื•ืช ื•ืฉื•ืงื•ืœื“.
06:02
Suppose we had another wonderful TED event next week.
139
362260
3000
ื ื ื™ื— ืฉื”ื™ื” ืœื ื• ืขื•ื“ ืืจื•ืข TED ื ืคืœื ื‘ืฉื‘ื•ืข ื”ื‘ื,
06:05
And during the break
140
365260
2000
ื•ื‘ื”ืคืกืงื”
06:07
there would be a snack
141
367260
2000
ื”ื™ื” ื—ื˜ื™ืฃ
06:09
and you could choose bananas or chocolate.
142
369260
2000
ื•ื™ื›ื•ืœืชื ืœื‘ื—ื•ืจ ื‘ื™ืŸ ื‘ื ื ื•ืช ืœื‘ื™ืŸ ืฉื•ืงื•ืœื“.
06:11
How many of you think you would like to have bananas
143
371260
3000
ื›ืžื” ืžื›ื ื—ื•ืฉื‘ื™ื ืฉื”ื™ื™ืชื ืจื•ืฆื™ื ืืช ื”ื‘ื ื ื•ืช
06:14
during this hypothetical TED event next week?
144
374260
2000
ื‘ืžื”ืœืš ืืจื•ืข ื” TED ื”ื”ื™ืคื•ื˜ื˜ื™ ื”ื–ื” ื‘ืฉื‘ื•ืข ื”ื‘ื?
06:16
Who would go for bananas?
145
376260
2000
ืžื™ ื”ื™ื” ื‘ื•ื—ืจ ื‘ื‘ื ื ื•ืช?
06:18
Wonderful.
146
378260
2000
ื ืคืœื.
06:20
I predict scientifically
147
380260
2000
ืื ื™ ืžื ื‘ื ื‘ืื•ืคืŸ ืžื“ืขื™
06:22
74 percent of you will go for bananas.
148
382260
3000
74% ื™ื‘ื—ืจื• ื‘ื‘ื ื ื•ืช.
06:25
Well that's at least what one wonderful study predicted.
149
385260
4000
ื–ื” ืœืคื—ื•ืช ืžื” ืฉื ื™ื‘ื ืžื—ืงืจ ืื—ื“ ื ืคืœื.
06:30
And then count down the days
150
390260
3000
ื•ืื– ืชื—ื›ื• ืฉื‘ื•ืข
06:33
and see what people ended up eating.
151
393260
4000
ื•ืชืจืื• ืžื” ืื ืฉื™ื ืื›ืœื• ื‘ืกื•ืฃ.
06:38
The same people that imagined themselves
152
398260
3000
ืื•ืชื ืื ืฉื™ื ืฉื“ืžื™ื™ื ื• ืืช ืขืฆืžื
06:41
eating the bananas
153
401260
2000
ืื•ื›ืœื™ื ื‘ื ื ื•ืช,
06:43
ended up eating chocolates
154
403260
2000
ื‘ืกื•ืฃ ืื›ืœื• ืฉื•ืงื•ืœื“
06:45
a week later.
155
405260
2000
ืฉื‘ื•ืข ืœืื—ืจ ืžื›ืŸ.
06:47
Self-control
156
407260
2000
ืฉืœื™ื˜ื” ืขืฆืžื™ืช
06:49
is not a problem in the future.
157
409260
3000
ืื™ื ื” ื‘ืขื™ื” ื‘ืขืชื™ื“.
06:52
It's only a problem now
158
412260
2000
ื”ื™ื ื‘ืขื™ื” ืจืง ื‘ืจื’ืข ื–ื”
06:54
when the chocolate is next to us.
159
414260
4000
ื›ืืฉืจ ื”ืฉื•ืงื•ืœื“ ื ืžืฆื ืœื™ื“ื™ื ื•.
06:58
What does it have to do with time and savings,
160
418260
3000
ืื™ืš ื–ื” ืงืฉื•ืจ ืœื–ืžืŸ ื•ื—ืกื›ื•ื ื•ืช,
07:01
this issue of immediate gratification?
161
421260
3000
ื”ื ื•ืฉื ื”ื–ื” ืฉืœ ืกื™ืคื•ืง ืžื™ื™ื“ื™?
07:04
Or as some economists call it, present bias.
162
424260
4000
ืื• ื›ืžื• ืฉื—ืœืง ืžื”ื›ืœื›ืœื ื™ื ืงื•ืจืื™ื ืœื• "ื”ื˜ื™ื™ืช ื”ื”ื•ื•ื”".
07:08
We think about saving. We know we should be saving.
163
428260
2000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื—ืกื›ื•ื ื•ืช. ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืกื•ืš.
07:10
We know we'll do it next year, but today let us go and spend.
164
430260
3000
ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื ืขืฉื” ื–ืืช ื‘ืฉื ื” ื”ื‘ืื”, ืื‘ืœ ื”ื™ื•ื - ื‘ื•ืื• ื ืœืš ืœื‘ื–ื‘ื–.
07:13
Christmas is coming,
165
433260
2000
ื—ื’ ื”ืžื•ืœื“ ืžืชืงืจื‘,
07:15
we might as well buy a lot of gifts for everyone we know.
166
435260
3000
ื‘ื•ืื• ื ืงื ื” ืžืชื ื•ืช ืœื›ืœ ืžื™ ืฉืื ื—ื ื• ืžื›ื™ืจื™ื.
07:18
So this issue of present bias
167
438260
4000
ืื– ื”ื ื•ืฉื ืฉืœ ื”ื˜ื™ื™ืช ื”ื”ื•ื•ื”
07:22
causes us to think about saving,
168
442260
2000
ื’ื•ืจื ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ื—ืกื›ื•ืŸ,
07:24
but end up spending.
169
444260
2000
ืื‘ืœ ื‘ืกื•ืฃ ืœื”ื•ืฆื™ื ื›ืกืฃ.
07:26
Let me now talk
170
446260
2000
ื‘ื•ืื• ื ื“ื‘ืจ ืขื›ืฉื™ื•
07:28
about another behavioral obstacle to saving
171
448260
2000
ืขืœ ืžื›ืฉื•ืœ ื”ืชื ื”ื’ื•ืชื™ ื ื•ืกืฃ ืœื—ืกื›ื•ืŸ
07:30
having to do with inertia.
172
450260
2000
ืฉืงืฉื•ืจ ืœืื™ื ืจืฆื™ื”.
07:32
But again, a little diversion
173
452260
2000
ืื‘ืœ ืฉื•ื‘, ืกื˜ื™ื™ื” ืงืœื”
07:34
to the topic of organ donation.
174
454260
3000
ืœื ื•ืฉื ืฉืœ ืชืจื•ืžืช ืื™ื‘ืจื™ื.
07:37
Wonderful study comparing different countries.
175
457260
3000
ืžื—ืงืจ ื ืคืœื ืžืฉื•ื•ื” ื‘ื™ืŸ ืžื“ื™ื ื•ืช ืฉื•ื ื•ืช.
07:40
We're going to look at two similar countries,
176
460260
3000
ืื ื—ื ื• ื ื‘ื—ืŸ ืฉืชื™ ืžื“ื™ื ื•ืช ื“ื•ืžื•ืช,
07:43
Germany and Austria.
177
463260
3000
ื’ืจืžื ื™ื” ื•ืื•ืกื˜ืจื™ื”.
07:46
And in Germany,
178
466260
2000
ื•ื‘ื’ืจืžื ื™ื”,
07:48
if you would like to donate your organs --
179
468260
2000
ืื ืชืจืฆื• ืœืชืจื•ื ืืช ื”ืื™ื‘ืจื™ื ืฉืœื›ื -
07:50
God forbid something really bad
180
470260
2000
ื—ืก ื•ื—ืœื™ืœื” ืื ื™ืงืจื” ืœื›ื
07:52
happens to you --
181
472260
2000
ืžืฉื”ื• ื ื•ืจื -
07:54
when you get your driving license or an I.D.,
182
474260
3000
ื›ืฉืชืงื‘ืœื• ืืช ืจืฉื™ื•ืŸ ื”ื ื”ื™ื’ื” ืฉืœื›ื, ืื• ืช.ื–.,
07:57
you check the box saying,
183
477260
2000
ืืชื ืžืกืžื ื™ื ืชื™ื‘ื” ืฉืื•ืžืจืช:
07:59
"I would like to donate my organs."
184
479260
2000
"ืื ื™ ืจื•ืฆื” ืœืชืจื•ื ืืช ื”ืื™ื‘ืจื™ื ืฉืœื™."
08:01
Not many people like checking boxes.
185
481260
2000
ืจื•ื‘ ื”ืื ืฉื™ื ืœื ืื•ื”ื‘ื™ื ืœืกืžืŸ ืชื™ื‘ื•ืช.
08:03
It takes effort. You need to think.
186
483260
2000
ื–ื” ื“ื•ืจืฉ ืžืืžืฅ. ืฆืจื™ืš ืœื—ืฉื•ื‘ ืขืœ ื–ื”.
08:05
Twelve percent do.
187
485260
3000
12% ืขื•ืฉื™ื ื–ืืช.
08:08
Austria, a neighboring country,
188
488260
3000
ืื•ืกื˜ืจื™ื”, ืžื“ื™ื ื” ืฉื›ื ื”,
08:11
slightly similar, slightly different.
189
491260
2000
ืžืขื˜ ื“ื•ืžื”, ืžืขื˜ ืฉื•ื ื”.
08:13
What's the difference?
190
493260
2000
ืžื” ื”ื”ื‘ื“ืœ?
08:15
Well, you still have choice.
191
495260
2000
ื•ื‘ื›ืŸ, ืขื“ื™ื™ืŸ ื™ืฉ ืœื›ื ื‘ืจื™ืจื”.
08:17
You will decide
192
497260
2000
ืืชื ืฆืจื™ื›ื™ื ืœื”ื—ืœื™ื˜
08:19
whether you want to donate your organs or not.
193
499260
3000
ืื ืืชื ืจื•ืฆื™ื ืœืชืจื•ื ืืช ืื™ื‘ืจื™ื›ื, ืื• ืœื.
08:22
But when you get your driving license,
194
502260
2000
ืื‘ืœ ื›ืฉืืชื ืžืงื‘ืœื™ื ืืช ืจืฉื™ื•ืŸ ื”ื ื”ื™ื’ื”,
08:24
you check the box
195
504260
2000
ืืชื ืžืกืžื ื™ื ืืช ื”ืชื™ื‘ื”
08:26
if you do not want to donate your organ.
196
506260
4000
ืื ืืชื ืœื ืจื•ืฆื™ื ืœืชืจื•ื ืื™ื‘ืจื™ื.
08:30
Nobody checks boxes.
197
510260
2000
ืืฃ ืื—ื“ ืœื ืžืกืžืŸ ืชื™ื‘ื•ืช.
08:32
That's kind of too much effort.
198
512260
2000
ื–ื” ื™ื•ืชืจ ืžื“ื™ ืžืืžืฅ, ื›ืื™ืœื•.
08:34
One percent check the box. The rest do nothing.
199
514260
3000
1% ืžืกืžืŸ ืืช ื”ืชื™ื‘ื”. ื”ืฉืืจ ืœื ืขื•ืฉื™ื ื›ืœื•ื.
08:37
Doing nothing is very common.
200
517260
2000
ืœื ืœืขืฉื•ืช ื›ืœื•ื ื–ื” ืžืื•ื“ ืฉื›ื™ื—.
08:39
Not many people check boxes.
201
519260
3000
ืœื ื”ืจื‘ื” ืื ืฉื™ื ืžืกืžื ื™ื ืชื™ื‘ื•ืช.
08:42
What are the implications
202
522260
2000
ืžื” ื”ื”ืฉืœื›ื•ืช
08:44
to saving lives
203
524260
2000
ืœื”ืฆืœืช ื—ื™ื™ื
08:46
and having organs available?
204
526260
3000
ื•ืœื›ืš ืฉื™ื”ื™ื• ืื™ื‘ืจื™ื ื–ืžื™ื ื™ื?
08:49
In Germany, 12 percent check the box.
205
529260
2000
ื‘ื’ืจืžื™ื ื” 12% ืžืกืžื ื™ื ืืช ื”ืชื™ื‘ื”.
08:51
Twelve percent are organ donors.
206
531260
3000
12% ื”ื ืชื•ืจืžื™ ืื™ื‘ืจื™ื.
08:54
Huge shortage of organs,
207
534260
2000
ื™ืฉ ืžื—ืกื•ืจ ืขืฆื•ื ื‘ืื™ื‘ืจื™ื,
08:56
God forbid, if you need one.
208
536260
2000
ืืœื•ื”ื™ื ื™ืฉืžื•ืจ, ืื ืชื–ื“ืงืงื• ืœื›ืš.
08:58
In Austria, again, nobody checks the box.
209
538260
3000
ื‘ืื•ืกื˜ืจื™ื”, ืฉื•ื‘, ืืฃ ืื—ื“ ืœื ืžืกืžืŸ ืืช ื”ืชื™ื‘ื”,
09:01
Therefore, 99 percent of people
210
541260
3000
ืœื›ืŸ 99% ืžื”ืื ืฉื™ื
09:04
are organ donors.
211
544260
2000
ื”ื ืชื•ืจืžื™ ืื™ื‘ืจื™ื.
09:06
Inertia, lack of action.
212
546260
2000
ืื™ื ืจืฆื™ื”, ื—ื•ืกืจ ืคืขื•ืœื”.
09:08
What is the default setting
213
548260
2000
ืžื”ื™ ื‘ืจื™ืจืช ื”ืžื—ื“ืœ
09:10
if people do nothing,
214
550260
2000
ืื ืื ืฉื™ื ืœื ืขื•ืฉื™ื ื“ื‘ืจ,
09:12
if they keep procrastinating, if they don't check the boxes?
215
552260
3000
ืื ื”ื ืžืžืฉื™ื›ื™ื ืœื”ืฉืชื”ื•ืช, ืื ื”ื ืœื ืžืกืžื ื™ื ืืช ื”ืชื™ื‘ื”?
09:15
Very powerful.
216
555260
2000
ืžืื•ื“ ื—ื–ืง.
09:17
We're going to talk
217
557260
2000
ืื ื—ื ื• ื ื“ื‘ืจ
09:19
about what happens if people are overwhelmed and scared
218
559260
4000
ืขืœ ืžื” ืงื•ืจื” ื›ืฉืื ืฉื™ื ืžืคื•ื—ื“ื™ื ื•ืžื‘ื•ืœื‘ืœื™ื
09:23
to make their 401(k) choices.
219
563260
3000
ืžื›ื“ื™ ืœืงื‘ืœ ืืช ื”ื—ืœื˜ื•ืช ื”ืคื ืกื™ื” ืฉืœื”ื.
09:26
Are we going to make them automatically join the plan,
220
566260
3000
ื”ืื ื ื›ืจื™ื— ืื•ืชื ืœื”ืฆื˜ืจืฃ ืœืชื›ื ื™ืช ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™,
09:29
or are they going to be left out?
221
569260
2000
ืื• ืฉื”ื ื™ื™ืฉืืจื• ื‘ื—ื•ืฅ?
09:31
In too many 401(k) plans,
222
571260
3000
ื‘ื™ื•ืชืจ ืžื“ื™ ืชื›ื ื™ื•ืช 401k,
09:34
if people do nothing,
223
574260
2000
ืื ืื ืฉื™ื ืœื ืขื•ืฉื™ื ื“ื‘ืจ,
09:36
it means they're not saving for retirement,
224
576260
3000
ื–ื” ืื•ืžืจ ืฉื”ื ืœื ื—ื•ืกื›ื™ื ืœืคื ืกื™ื”,
09:39
if they don't check the box.
225
579260
2000
ืื ื”ื ืœื ืžืกืžื ื™ื ืืช ื”ืชื™ื‘ื”.
09:41
And checking the box takes effort.
226
581260
3000
ื•ืกื™ืžื•ืŸ ื”ืชื™ื‘ื” ื“ื•ืจืฉ ืžืืžืฅ.
09:44
So we've chatted about a couple of behavioral challenges.
227
584260
3000
ืื– ื“ื™ื‘ืจื ื• ืขืœ ื›ืžื” ืืชื’ืจื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื.
09:47
One more before we flip the challenges into solutions,
228
587260
3000
ืขื•ื“ ืื—ื“ ืœืคื ื™ ืฉื ื”ืคื•ืš ืืช ื”ืืชื’ืจื™ื ืœืคืชืจื•ื ื•ืช,
09:50
having to do with monkeys and apples.
229
590260
2000
ืงืฉื•ืจ ืœืงื•ืคื™ื ื•ืชืคื•ื—ื™ื.
09:52
No, no, no, this is a real study
230
592260
2000
ืœื, ืœื, ืœื, ื–ื” ืžื—ืงืจ ืืžื™ืชื™
09:54
and it's got a lot to do with behavioral economics.
231
594260
4000
ื•ื”ื•ื ืงืฉื•ืจ ืžืื•ื“ ืœื›ืœื›ืœื” ื”ืชื ื”ื’ื•ืชื™ืช.
09:58
One group of monkeys gets an apple, they're pretty happy.
232
598260
3000
ืงื‘ื•ืฆื” ืื—ืช ืฉืœ ืงื•ืคื™ื ืžืงื‘ืœืช ืชืคื•ื—, ื”ื ื“ื™ ืฉืžื—ื™ื.
10:01
The other group gets two apples, one is taken away.
233
601260
2000
ื”ืงื‘ื•ืฆื” ื”ืฉื ื™ื™ื” ืžืงื‘ืœืช ืฉื ื™ ืชืคื•ื—ื™ื, ื•ืื—ื“ ื ืœืงื— ืžื”ื.
10:03
They still have an apple left.
234
603260
2000
ืขื“ื™ื™ืŸ ื ื•ืชืจ ืœื”ื ืชืคื•ื— ืื—ื“.
10:05
They're really mad.
235
605260
3000
ื”ื ืžืžืฉ ืขืฆื‘ื ื™ื™ื.
10:08
Why have you taken our apple?
236
608260
3000
ืœืžื” ืœืงื—ืชื ืœื ื• ืืช ื”ืชืคื•ื—?
10:11
This is the notion of loss aversion.
237
611260
3000
ื–ื” ื”ืขืงืจื•ืŸ ืฉืœ ืฉื ืืช ื”ืคืกื“.
10:14
We hate losing stuff,
238
614260
2000
ืื ื—ื ื• ืฉื•ื ืื™ื ืœื”ืคืกื™ื“ ื“ื‘ืจื™ื,
10:16
even if it doesn't mean a lot of risk.
239
616260
3000
ืืคื™ืœื• ืื ื–ื” ืœื ื›ืจื•ืš ื‘ืกื™ื›ื•ืŸ ืจื‘.
10:19
You would hate to go to the ATM,
240
619260
3000
ื”ื™ื™ืชื ืฉื•ื ืื™ื ืœืœื›ืช ืœื›ืกืคื•ืžื˜,
10:22
take out 100 dollars
241
622260
2000
ืœื”ื•ืฆื™ื $100,
10:24
and notice that you lost one of those $20 bills.
242
624260
2000
ื•ืœืจืื•ืช ืฉืื™ื‘ื“ืชื ืฉื˜ืจ ืื—ื“ ืฉืœ $20.
10:26
It's very painful,
243
626260
2000
ื–ื” ื›ื•ืื‘ ืžืื•ื“,
10:28
even though it doesn't mean anything.
244
628260
2000
ืืคื™ืœื• ืฉืื™ืŸ ืœื–ื” ืžืฉืžืขื•ืช.
10:30
Those 20 dollars might have been a quick lunch.
245
630260
4000
ื” $20 ื”ืืœื” ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืืจื•ื—ืช ืฆื”ืจื™ื™ื ืžื”ื™ืจื”.
10:34
So this notion of loss aversion
246
634260
4000
ืื– ื”ืจืขื™ื•ืŸ ืฉืœ ืฉื ืืช ื”ืคืกื“
10:38
kicks in when it comes to savings too,
247
638260
3000
ืคื•ืขืœ ื’ื ื‘ื”ืงืฉืจ ืฉืœ ื—ืกื›ื•ื ื•ืช,
10:41
because people, mentally
248
641260
2000
ื›ื™ ื”ืจื‘ื” ืื ืฉื™ื, ื‘ืื•ืคืŸ ืžื ื˜ืœื™
10:43
and emotionally and intuitively
249
643260
3000
ืจื’ืฉื™ ื•ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™,
10:46
frame savings as a loss
250
646260
2000
ืžืกื•ื•ื’ื™ื ื—ืกื›ื•ื ื•ืช ื›ื”ืคืกื“
10:48
because I have to cut my spending.
251
648260
3000
ื›ื™ ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืฆืžืฆื ืืช ื”ื”ื•ืฆืื•ืช.
10:51
So we talked about
252
651260
2000
ืื– ื“ื™ื‘ืจื ื• ืขืœ
10:53
all sorts of behavioral challenges
253
653260
2000
ื›ืœ ืžื™ื ื™ ืืชื’ืจื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื
10:55
having to do with savings eventually.
254
655260
4000
ื”ืงืฉื•ืจื™ื ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืœื—ืกื›ื•ื ื•ืช.
10:59
Whether you think about immediate gratification,
255
659260
3000
ืื ืชื—ืฉื‘ื• ืขืœ ืกื™ืคื•ืง ืžื™ื™ื“ื™,
11:02
and the chocolates versus bananas,
256
662260
3000
ืขืœ ื”ืฉื•ืงื•ืœื“ื™ื ืžื•ืœ ื”ื‘ื ื ื•ืช,
11:05
it's just painful to save now.
257
665260
3000
ื–ื” ื›ื•ืื‘ ืžื“ื™ ืœื—ืกื•ืš ื›ืจื’ืข.
11:08
It's a lot more fun
258
668260
2000
ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ื›ื™ืฃ
11:10
to spend now.
259
670260
2000
ืœื‘ื–ื‘ื– ื›ืจื’ืข.
11:12
We talked about inertia and organ donations
260
672260
3000
ื“ื™ื‘ืจื ื• ืขืœ ืื™ื ืจืฆื™ื” ื•ืขืœ ืชืจื•ืžื•ืช ืื™ื‘ืจื™ื
11:15
and checking the box.
261
675260
2000
ื•ืขืœ ืœืกืžืŸ ืืช ื”ืชื™ื‘ื”.
11:17
If people have to check a lot of boxes
262
677260
2000
ืื ืื ืฉื™ื ืฆืจื™ื›ื™ื ืœืกืžืŸ ื”ืจื‘ื” ืชื™ื‘ื•ืช,
11:19
to join a 401(k) plan,
263
679260
2000
ืขืœ ืžื ืช ืœื”ืฆื˜ืจืฃ ืœืชื›ื ื™ืช 401k,
11:21
they're going to keep procrastinating
264
681260
2000
ืื– ื”ื ื™ืžืฉื™ื›ื• ืœื“ื—ื•ืช
11:23
and not join.
265
683260
2000
ื•ืœื ืœื”ืฆื˜ืจืฃ.
11:25
And last, we talked about loss aversion,
266
685260
2000
ื•ืื—ืจื•ืŸ, ื“ื™ื‘ืจื ื• ืขืœ ืฉื ืืช ื”ืคืกื“,
11:27
and the monkeys and the apples.
267
687260
2000
ื”ืงื•ืคื™ื ื•ื”ืชืคื•ื—ื™ื.
11:29
If people frame mentally
268
689260
3000
ืื ืื ืฉื™ื ืžืกื•ื•ื’ื™ื ื‘ืื•ืคืŸ ืžื ื˜ืœื™
11:32
saving for retirement as a loss,
269
692260
3000
ื—ืกื›ื•ืŸ ืœืคื ืกื™ื” ื›ื”ืคืกื“,
11:35
they're not going to be saving for retirement.
270
695260
3000
ืื– ื”ื ืœื ื™ื—ืกื›ื• ืœืคื ืกื™ื”.
11:38
So we've got these challenges,
271
698260
2000
ืื– ื”ืืชื’ืจื™ื ื”ืืœื” ืขื•ืžื“ื™ื ืžื•ืœื ื•,
11:40
and what Richard Thaler and I
272
700260
2000
ื•ืžื” ืฉืจื™ืฆ'ืจื“ ืชืœืจ ื•ืื ื™
11:42
were always fascinated by --
273
702260
2000
ื”ื•ืงืกืžื ื• ืžืžื ื• -
11:44
take behavioral finance,
274
704260
2000
ืื ื ื™ืงื— ืืช ื”ืžื™ืžื•ืŸ ื”ื”ืชื ื”ื’ื•ืชื™,
11:46
make it behavioral finance on steroids
275
706260
2000
ื ื”ืคื•ืš ืื•ืชื• ืœืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™ ืขืœ ืกื˜ืจื•ืื™ื“ื™ื,
11:48
or behavioral finance 2.0
276
708260
2000
ืื• ืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™ 2.0,
11:50
or behavioral finance in action --
277
710260
2000
ืื• ืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™ ื‘ืคืขื•ืœื” -
11:52
flip the challenges into solutions.
278
712260
4000
ื ื”ืคื•ืš ืืช ื”ืืชื’ืจื™ื ืœืคืชืจื•ื ื•ืช.
11:56
And we came up with an embarrassingly simple solution
279
716260
3000
ื•ื”ื’ืขื ื• ืœืคืชืจื•ืŸ ืžื‘ื™ืš ื‘ืคืฉื˜ื•ืชื•
11:59
called Save More, not today, Tomorrow.
280
719260
4000
ื”ื ืงืจื "ื—ืกื›ื• ื™ื•ืชืจ, ืœื ื”ื™ื•ื, ืžื—ืจ."
12:03
How is it going to solve the challenges
281
723260
2000
ืื™ืš ื–ื” ื™ืคืชื•ืจ ืืช ื”ืืชื’ืจื™ื
12:05
we chatted about?
282
725260
2000
ืขืœื™ื”ื ื“ื™ื‘ืจื ื•?
12:07
If you think about the problem
283
727260
2000
ืื ืชื—ืฉื‘ื• ืขืœ ื”ื‘ืขื™ื”
12:09
of bananas versus chocolates,
284
729260
2000
ืฉืœ ื‘ื ื ื•ืช ืœืขื•ืžืช ืฉื•ืงื•ืœื“ื™ื,
12:11
we think we're going to eat bananas next week.
285
731260
3000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื ืื›ืœ ื‘ื ื ื” ื‘ืฉื‘ื•ืข ื”ื‘ื.
12:14
We think we're going to save more next year.
286
734260
3000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื ื—ืกื•ืš ื™ื•ืชืจ ื‘ืฉื ื” ื”ื‘ืื”.
12:17
Save More Tomorrow
287
737260
3000
"ื—ืกื›ื• ื™ื•ืชืจ ืžื—ืจ"
12:20
invites employees
288
740260
2000
ืžื–ืžื™ืŸ ืžืขืกื™ืงื™ื
12:22
to save more maybe next year --
289
742260
2000
ืœื—ืกื•ืš ื™ื•ืชืจ ืื•ืœื™ ื‘ืฉื ื” ื”ื‘ืื” -
12:24
sometime in the future
290
744260
2000
ืžืชื™ ืฉื”ื•ื ื‘ืขืชื™ื“
12:26
when we can imagine ourselves
291
746260
2000
ื›ืฉืื ื• ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืืช ืขืฆืžื ื•
12:28
eating bananas,
292
748260
2000
ืื•ื›ืœื™ื ื‘ื ื ื•ืช,
12:30
volunteering more in the community,
293
750260
2000
ืžืชื ื“ื‘ื™ื ื™ื•ืชืจ ื‘ืงื”ื™ืœื”,
12:32
exercising more and doing all the right things on the planet.
294
752260
4000
ืžืชืืžื ื™ื ื™ื•ืชืจ ื•ืขื•ืฉื™ื ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ื ื›ื•ื ื™ื ื‘ืขื•ืœื.
12:36
Now we also talked about checking the box
295
756260
3000
ืขื›ืฉื™ื•, ื“ื™ื‘ืจื ื• ื’ื ืขืœ ืกื™ืžื•ืŸ ื”ืชื™ื‘ื”
12:39
and the difficulty of taking action.
296
759260
3000
ื•ื”ืงื•ืฉื™ ืœื ืงื•ื˜ ื‘ืคืขื•ืœื”.
12:42
Save More Tomorrow
297
762260
2000
"ื—ืกื›ื• ื™ื•ืชืจ ืžื—ืจ"
12:44
makes it easy.
298
764260
2000
ื”ื•ืคืš ืืช ื–ื” ืœืงืœ.
12:46
It's an autopilot.
299
766260
2000
ื–ื” ื˜ื™ื™ืก ืื•ื˜ื•ืžื˜ื™.
12:48
Once you tell me you would like to save more in the future,
300
768260
4000
ื‘ืจื’ืข ืฉืชืืžืจื• ืœื™ ืฉืืชื ืจื•ืฆื™ื ืœื—ืกื•ืš ื™ื•ืชืจ ื‘ืขืชื™ื“,
12:52
let's say every January
301
772260
2000
ื ื ื™ื— ื‘ื›ืœ ื™ื ื•ืืจ ืฉื™ื’ื™ืข,
12:54
you're going to be saving more automatically
302
774260
3000
ืืชื ืขื•ืžื“ื™ื ืœื—ืกื•ืš ื™ื•ืชืจ ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™
12:57
and it's going to go away from your paycheck to the 401(k) plan
303
777260
3000
ื•ื–ื” ื™ืจื“ ืžื”ืชืœื•ืฉ ืฉืœื›ื ืœืชื›ื ื™ืช ื”ืคื ืกื™ื”
13:00
before you see it, before you touch it,
304
780260
2000
ืœืคื ื™ ืฉืชืจืื• ืืช ื–ื”, ืœืคื ื™ ืฉืชื’ืขื• ื‘ื–ื”,
13:02
before you get the issue
305
782260
2000
ืœืคื ื™ ืฉืชืชืงืœื• ื‘ื‘ืขื™ื”
13:04
of immediate gratification.
306
784260
3000
ืฉืœ ืกื™ืคื•ืง ืžื™ื™ื“ื™.
13:07
But what are we going to do about the monkeys
307
787260
3000
ืื‘ืœ ืžื” ื ืขืฉื” ื‘ื ื•ื’ืข ืœืงื•ืคื™ื
13:10
and loss aversion?
308
790260
2000
ื•ืฉื ืืช ื”ืคืกื“?
13:12
Next January comes
309
792260
2000
ื™ื ื•ืืจ ื”ื‘ื ืžื’ื™ืข
13:14
and people might feel that if they save more,
310
794260
2000
ื•ืื ืฉื™ื ืขืœื•ืœื™ื ืœื—ื•ืฉ ืฉืื ื”ื ื™ื—ืกื›ื• ื™ื•ืชืจ,
13:16
they have to spend less, and that's painful.
311
796260
3000
ื”ื ื—ื™ื™ื‘ื™ื ืœื‘ื–ื‘ื– ืคื—ื•ืช, ื•ื–ื” ืžื›ืื™ื‘.
13:20
Well, maybe it shouldn't be just January.
312
800260
2000
ื˜ื•ื‘, ืื•ืœื™ ืœื ื›ื“ืื™ ืฉื–ื” ื™ื”ื™ื” ืกืชื ื‘ื™ื ื•ืืจ.
13:22
Maybe we should make people save more
313
802260
3000
ืื•ืœื™ ื›ื“ืื™ ืฉื ื›ืจื™ื— ืื ืฉื™ื ืœื—ืกื•ืš ื™ื•ืชืจ
13:25
when they make more money.
314
805260
3000
ื›ืฉื”ื ืžืจื•ื•ื™ื—ื™ื ื™ื•ืชืจ.
13:28
That way, when they make more money, when they get a pay raise,
315
808260
3000
ื›ืš ื›ืฉื”ื ืžืจื•ื•ื™ื—ื™ื ื™ื•ืชืจ, ื›ืฉื”ื ืžืงื‘ืœื™ื ื”ืขืœืื”,
13:31
they don't have to cut their spending.
316
811260
4000
ื”ื ืœื ื—ื™ื™ื‘ื™ื ืœืงืฆืฅ ื‘ื”ื•ืฆืื•ืช ืฉืœื”ื.
13:35
They take a little bit
317
815260
2000
ื”ื ืœื•ืงื—ื™ื ื—ืœืง ืงื˜ืŸ
13:37
of the increase in the paycheck home
318
817260
2000
ืžื”ื”ืขืœืื” ื‘ืชืœื•ืฉ ื”ื‘ื™ืชื”,
13:39
and spend more --
319
819260
2000
ื•ืžื‘ื–ื‘ื–ื™ื ื™ื•ืชืจ -
13:41
take a little bit of the increase
320
821260
2000
ืœื•ืงื—ื™ื ื—ืœืง ืงื˜ืŸ ืžื”ื”ืขืœืื”
13:43
and put it in a 401(k) plan.
321
823260
2000
ื•ืฉืžื™ื ืื•ืชื• ื‘ืชื›ื ื™ืช ื”ืคื ืกื™ื”.
13:45
So that is the program,
322
825260
2000
ืื– ื–ื• ื”ืชื›ื ื™ืช,
13:47
embarrassingly simple,
323
827260
2000
ืžื‘ื™ื›ื” ื‘ืคืฉื˜ื•ืชื”,
13:49
but as we're going to see,
324
829260
2000
ืื‘ืœ ื›ืคื™ ืฉื ืจืื”,
13:51
extremely powerful.
325
831260
2000
ืžืื•ื“ ื—ื–ืงื”.
13:53
We first implemented it,
326
833260
2000
ืœืจืืฉื•ื ื” ื™ื™ืฉืžื ื• ืื•ืชื”,
13:55
Richard Thaler and I,
327
835260
2000
ืจื™ืฆ'ืจื“ ืชืœืจ ื•ืื ื™,
13:57
back in 1998.
328
837260
3000
ืขื•ื“ ื‘ 1998.
14:00
Mid-sized company in the Midwest,
329
840260
3000
ื—ื‘ืจื” ื‘ื™ื ื•ื ื™ืช ื‘ืฆืคื•ืŸ ืžืจื›ื– ืืจื”"ื‘,
14:03
blue collar employees
330
843260
2000
ืขื•ื‘ื“ื™ ืฆื•ื•ืืจื•ืŸ ื›ื—ื•ืœ
14:05
struggling to pay their bills
331
845260
2000
ื”ืžืชืงืฉื™ื ืœืฉืœื ืืช ื”ื—ืฉื‘ื•ื ื•ืช
14:07
repeatedly told us
332
847260
2000
ืืžืจื• ืœื ื• ืฉื•ื‘ ื•ืฉื•ื‘
14:09
they cannot save more right away.
333
849260
3000
ืฉื”ื ืœื ื™ื›ื•ืœื™ื ืœื—ืกื•ืš ืžื™ื“.
14:12
Saving more today is not an option.
334
852260
3000
ืœื—ืกื•ืš ื”ื™ื•ื ืื™ื ื” ืื•ืคืฆื™ื”.
14:15
We invited them to save
335
855260
2000
ื”ื–ืžื ื• ืื•ืชื ืœื—ืกื•ืš
14:17
three percentage points more
336
857260
3000
3% ื ืงื•ื“ื•ืช ื™ื•ืชืจ
14:20
every time they get a pay raise.
337
860260
3000
ื›ืœ ืคืขื ืฉื”ื ืžืงื‘ืœื™ื ื”ืขืœืื” ื‘ืฉื›ืจ.
14:23
And here are the results.
338
863260
3000
ื•ื”ื ื” ื”ืชื•ืฆืื•ืช.
14:26
We're seeing here a three and a half-year period,
339
866260
2000
ืื ื—ื ื• ืจื•ืื™ื ื›ืืŸ ืชืงื•ืคื” ืฉืœ 3.5 ืฉื ื™ื,
14:28
four pay raises,
340
868260
2000
4 ื”ืขืœืื•ืช ืฉื›ืจ,
14:30
people who were struggling to save,
341
870260
2000
ืื ืฉื™ื ืฉื ืื‘ืงื™ื ืœื—ืกื•ืš,
14:32
were saving three percent of their paycheck,
342
872260
2000
ื—ืกื›ื• 3% ืžื”ืฉื›ืจ ืฉืœื”ื,
14:34
three and a half years later
343
874260
2000
3.5 ืฉื ื™ื ืžืื•ื—ืจ ื™ื•ืชืจ
14:36
saving almost four times as much,
344
876260
3000
ื—ืกื›ื• ื›ืžืขื˜ ืคื™ 4 ื™ื•ืชืจ,
14:39
almost 14 percent.
345
879260
3000
ื›ืžืขื˜ 14%.
14:42
And there's shoes and bicycles
346
882260
2000
ื•ื”ื ื” ื ืขืœื™ื™ื ื•ืื•ืคื ื™ื™ื
14:44
and things on this chart
347
884260
2000
ื•ืขื•ื“ ื“ื‘ืจื™ื ืขืœ ื”ื˜ื‘ืœื” ื”ื–ื•
14:46
because I don't want to just throw numbers
348
886260
2000
ื›ื™ ืื ื™ ืœื ืจื•ืฆื” ืกืชื ืœื–ืจื•ืง ืžืกืคืจื™ื
14:48
in a vacuum.
349
888260
2000
ืœื—ืœืœ.
14:50
I want, really, to think about the fact
350
890260
3000
ืื ื™ ืจื•ืฆื” ื‘ืืžืช ืœื—ืฉื•ื‘ ืขืœ ื”ืขื•ื‘ื“ื”
14:53
that saving four times more
351
893260
2000
ืฉื—ืกื›ื•ืŸ ืฉืœ ืคื™ 4 ื™ื•ืชืจ
14:55
is a huge difference
352
895260
2000
ื”ื•ื ื”ื‘ื“ืœ ืขืฆื•ื
14:57
in terms of the lifestyle
353
897260
2000
ื‘ืžื•ื ื—ื™ื ืฉืœ ืกื’ื ื•ืŸ ื”ื—ื™ื™ื
14:59
that people will be able to afford.
354
899260
2000
ืฉื”ืื ืฉื™ื ื”ืืœื” ื™ื›ืœื• ืœื”ืจืฉื•ืช ืœืขืฆืžื.
15:01
It's real.
355
901260
2000
ื–ื” ืืžื™ืชื™.
15:03
It's not just numbers on a piece of paper.
356
903260
3000
ื–ื” ืœื ืจืง ืžืกืคืจื™ื ืขืœ ื—ืชื™ื›ืช ื ื™ื™ืจ.
15:06
Whereas with saving three percent,
357
906260
2000
ื›ืฉืื ืฉื™ื ื—ืกื›ื• 3%,
15:08
people might have to add nice sneakers
358
908260
2000
ื”ื ื™ื›ืœื• ืœื”ื•ืกื™ืฃ ืœืขืฆืžื ื ืขืœื™ื™ื ื™ืคื•ืช
15:10
so they can walk,
359
910260
2000
ื›ื“ื™ ืฉื™ื•ื›ืœื• ืœืœื›ืช,
15:12
because they won't be able to afford anything else,
360
912260
4000
ื›ื™ ื”ื ืœื ื™ื›ื•ืœื™ื ืœื”ืจืฉื•ืช ืœืขืฆืžื ืžืฉื”ื• ืื—ืจ,
15:16
when they save 14 percent
361
916260
2000
ื›ืฉื”ื ื—ื•ืกื›ื™ื 14%,
15:18
they might be able to maybe have nice dress shoes
362
918260
3000
ื”ื ื™ื›ื•ืœื™ื ืื•ืœื™ ืœืงื ื•ืช ืœืขืฆืžื ื ืขืœื™ื™ื ื—ื’ื™ื’ื™ื•ืช
15:21
to walk to the car to drive.
363
921260
3000
ื›ื“ื™ ืœืœื›ืช ืœืจื›ื‘ ื•ืœื ื”ื•ื’.
15:24
This is a real difference.
364
924260
2000
ื–ื” ื”ื‘ื“ืœ ืืžื™ืชื™.
15:26
By now, about 60 percent of the large companies
365
926260
5000
ืขื“ ื›ื”, ื‘ืขืจืš ืœ 60% ืžื”ื—ื‘ืจื•ืช ื”ื’ื“ื•ืœื•ืช
15:31
actually have programs like this in place.
366
931260
3000
ื™ืฉ ืชื›ื ื™ื•ืช ื›ืืœื”.
15:34
It's been part of the Pension Protection Act.
367
934260
3000
ื–ื” ื”ืคืš ืœื—ืœืง ืžื”ื—ื•ืง ืœื”ื’ื ืช ื”ืคื ืกื™ื”.
15:37
And needless to say that Thaler and I
368
937260
2000
ื•ืžื™ื•ืชืจ ืœื•ืžืจ ืœืชืœืจ ื•ืื ื™
15:39
have been blessed to be part of this program
369
939260
3000
ื‘ื•ืจื›ื ื• ื‘ื›ืš ืฉืื ื• ื—ืœืง ืžื”ืชื›ื ื™ืช ื”ื–ื•
15:42
and make a difference.
370
942260
2000
ื•ืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืคื™ืข.
15:44
Let me wrap
371
944260
2000
ื”ืจืฉื• ืœื™ ืœืกื›ื
15:46
with two key messages.
372
946260
3000
ืขื ืฉื ื™ ืžืกืจื™ื ืขื™ืงืจื™ื™ื.
15:49
One is behavioral finance
373
949260
3000
ื”ืื—ื“ ื”ื•ื ืฉืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™
15:52
is extremely powerful.
374
952260
3000
ื”ื•ื ื—ื–ืง ื‘ื™ื•ืชืจ.
15:55
This is just one example.
375
955260
3000
ื–ื•ื”ื™ ืจืง ื“ื•ื’ืžื ืื—ืช.
15:58
Message two
376
958260
2000
ืžืกืจ ืฉื ื™
16:00
is there's still a lot to do.
377
960260
2000
ื”ื•ื ืฉื™ืฉ ืขื•ื“ ื”ืจื‘ื” ืžื” ืœืขืฉื•ืช.
16:02
This is really the tip of the iceberg.
378
962260
3000
ื–ื”ื• ืจืง ืงืฆื” ื”ืงืจื—ื•ืŸ.
16:05
If you think about people and mortgages
379
965260
3000
ืื ืชื—ืฉื‘ื• ืขืœ ืื ืฉื™ื ื•ืžืฉื›ื ืชืื•ืช
16:08
and buying houses and then not being able to pay for it,
380
968260
3000
ื•ืขืœ ืงื ื™ื™ืช ื‘ืชื™ื ืœืœื ื”ื™ื›ื•ืœืช ืœืฉืœื ืขืœื™ื”ื,
16:11
we need to think about that.
381
971260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ืขืœ ื–ื”.
16:13
If you're thinking about people taking too much risk
382
973260
3000
ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ืื ืฉื™ื ืฉืžืกืชื›ื ื™ื ื™ื•ืชืจ ืžื“ื™,
16:16
and not understanding how much risk they're taking
383
976260
3000
ื•ืœื ืžื‘ื™ื ื™ื ืืช ืจืžืช ื”ืกื™ื›ื•ืŸ ืฉื”ื ืœื•ืงื—ื™ื
16:19
or taking too little risk,
384
979260
2000
ืื• ืžืกืชื›ื ื™ื ืคื—ื•ืช ืžื“ื™,
16:21
we need to think about that.
385
981260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ืขืœ ื–ื”.
16:23
If you think about people spending a thousand dollars a year
386
983260
3000
ืื ืชื—ืฉื‘ื• ืขืœ ืื ืฉื™ื ืฉืžื•ืฆื™ืื™ื $1,000 ื‘ืฉื ื”
16:26
on lottery tickets,
387
986260
2000
ืขืœ ื›ืจื˜ื™ืกื™ ื”ื’ืจืœื”,
16:28
we need to think about that.
388
988260
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื—ืฉื•ื‘ ืขืœ ื–ื”.
16:30
The average actually,
389
990260
2000
ื”ืžืžื•ืฆืข, ื‘ืขืฆื,
16:32
the record is in Singapore.
390
992260
2000
ื”ืฉื™ื ื”ื•ื ื‘ืกื™ื ื’ืคื•ืจ.
16:34
The average household
391
994260
2000
ืžืฉืง ื”ื‘ื™ืช ื”ืžืžื•ืฆืข
16:36
spends $4,000 a year on lottery tickets.
392
996260
3000
ืžื•ืฆื™ื $4,000 ืขืœ ื›ืจื˜ื™ืกื™ ื”ื’ืจืœื”.
16:39
We've got a lot to do,
393
999260
2000
ื™ืฉ ืœื ื• ื”ืจื‘ื” ืžื” ืœืขืฉื•ืช.
16:41
a lot to solve,
394
1001260
2000
ื”ืจื‘ื” ื“ื‘ืจื™ื ืœืคืชื•ืจ,
16:43
also in the retirement area
395
1003260
3000
ื’ื ื‘ืชื—ื•ื ื”ืคื ืกื™ื”
16:46
when it comes to what people do with their money
396
1006260
2000
ื›ืฉื–ื” ื ื•ื’ืข ืœืฉืืœื” ืžื” ืื ืฉื™ื ืขื•ืฉื™ื ื‘ื›ืกืคื
16:48
after retirement.
397
1008260
2000
ืœืื—ืจ ื”ืคืจื™ืฉื”.
16:50
One last question:
398
1010260
2000
ืฉืืœื” ืื—ืช ืื—ืจื•ื ื”:
16:52
How many of you feel comfortable
399
1012260
3000
ื›ืžื” ืžื›ื ืžืจื’ื™ืฉื™ื ื‘ื ื•ื—
16:55
that as you're planning for retirement
400
1015260
2000
ืฉื‘ืขื•ื“ ืืชื ืžืชื›ื ื ื™ื ืืช ื”ืคืจื™ืฉื” ืฉืœื›ื,
16:57
you have a really solid plan
401
1017260
3000
ื™ืฉ ืœื›ื ืชื›ื ื™ืช ืคื ืกื™ื” ื‘ืืžืช ืžื•ืฆืงื”
17:00
when you're going to retire,
402
1020260
2000
ืœืจื’ืข ื‘ื• ืชืฆืื• ืœืคื ืกื™ื”,
17:02
when you're going to claim Social Security benefits,
403
1022260
3000
ื›ืฉืชืคื ื• ืœื‘ื™ื˜ื•ื— ื”ืœืื•ืžื™,
17:05
what lifestyle to expect,
404
1025260
2000
ืœืื™ื–ื” ืกื’ื ื•ืŸ ื—ื™ื™ื ืชืฆืคื•,
17:07
how much to spend every month
405
1027260
2000
ื›ืžื” ื›ืกืฃ ืชื•ืฆื™ืื• ื‘ื›ืœ ื—ื•ื“ืฉ,
17:09
so you're not going to run out of money?
406
1029260
2000
ื›ืš ืฉืœื ืชืคืกื™ื“ื• ืืช ื›ืœ ื”ื›ืกืฃ?
17:11
How many of you feel you have a solid plan for the future
407
1031260
3000
ื›ืžื” ืžื›ื ื—ืฉื™ื ืฉื™ืฉ ืœื›ื ืชื›ื ื™ืช ืžื•ืฆืงื” ืœืขืชื™ื“
17:14
when it comes to post-retirement decisions.
408
1034260
4000
ื›ืฉื–ื” ืžื’ื™ืข ืœื”ื—ืœื˜ื•ืช ืฉืœืื—ืจ ืชืงื•ืคืช ื”ืคืจื™ืฉื”.
17:19
One, two, three, four.
409
1039260
3000
ืื—ื“, ืฉื ื™ื™ื, ืฉืœื•ืฉื”, ืืจื‘ืขื”.
17:22
Less than three percent
410
1042260
2000
ืคื—ื•ืช ืž 3%
17:24
of a very sophisticated audience.
411
1044260
2000
ื‘ืงื”ืœ ืžืื•ื“ ืžืชื•ื—ื›ื.
17:26
Behavioral finance has a long way.
412
1046260
3000
ืœืžื™ืžื•ืŸ ื”ืชื ื”ื’ื•ืชื™ ื™ืฉ ืขื“ื™ื™ืŸ ื“ืจืš ืืจื•ื›ื”.
17:29
There's a lot of opportunities
413
1049260
2000
ื™ืฉื ืŸ ื”ืจื‘ื” ื”ื–ื“ืžื ื•ื™ื•ืช
17:31
to make it powerful again and again and again.
414
1051260
4000
ืœื”ืคื•ืš ืื•ืชื• ืœื›ืœื™ ืžืฉืžืขื•ืชื™ ืฉื•ื‘ ื•ืฉื•ื‘.
17:35
Thank you.
415
1055260
2000
ืชื•ื“ื” ืจื‘ื”.
17:37
(Applause)
416
1057260
2000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7