Shlomo Benartzi: Saving for tomorrow, tomorrow

234,599 views ใƒป 2012-02-23

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Jeong-Lan Kinser ๊ฒ€ํ† : Jay J. Kim
00:15
I'm going to talk today about saving more,
0
15260
3000
์ €๋Š” ์ข€ ๋” ์ €์ถ•ํ•˜๋Š” ๋ฒ•์— ๋Œ€ํ•ด ๋งํ•˜๋ ค๊ณ  ํ•˜๋Š”๋ฐ,
00:18
but not today, tomorrow.
1
18260
3000
์˜ค๋Š˜์ด ์•„๋‹ˆ๋ผ, ๋‚ด์ผ ๋” ์ €์ถ•ํ•˜๋Š” ๊ฒƒ ๋ง์ž…๋‹ˆ๋‹ค.
00:21
I'm going to talk about Save More Tomorrow.
2
21260
2000
์ €๋Š” '๋‚ด์ผ ๋” ์ €์ถ•ํ•˜๊ธฐ'์— ๋Œ€ํ•ด ๋งํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
00:23
It's a program that Richard Thaler
3
23260
2000
์ด๊ฒƒ์€ ์‹œ์นด๊ณ  ๋Œ€ํ•™์˜ ๋ฆฌ์ฒ˜๋“œ ํ…Œ์ผ๋Ÿฌ(Richard Thaler)์™€ ์ œ๊ฐ€
00:25
from the University of Chicago and I
4
25260
2000
์•ฝ 15๋…„ ์ „์—
00:27
devised maybe 15 years ago.
5
27260
3000
๊ณ ์•ˆํ•ด ๋‚ธ ํ”„๋กœ๊ทธ๋žจ์ž…๋‹ˆ๋‹ค.
00:30
The program, in a sense,
6
30260
2000
์ด ํ”„๋กœ๊ทธ๋žจ์€ ์–ด๋–ค ์˜๋ฏธ์—์„œ๋Š”
00:32
is an example of behavioral finance
7
32260
2000
๊ธฐ์กด์˜ ํ–‰๋™ ๊ธˆ์œตํ•™๋ณด๋‹ค ํ›จ์”ฌ ๊ฐ•๋ ฅํ•œ
00:34
on steroids --
8
34260
2000
ํ•œ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:36
how we could really use behavioral finance.
9
36260
3000
์–ด๋–ป๊ฒŒ ์šฐ๋ฆฌ๊ฐ€ ์ง„์งœ๋กœ ํ–‰๋™ ๊ธˆ์œตํ•™์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€์— ๋Œ€ํ•œ ๊ฒƒ์ธ๋ฐ์š”,
00:39
Now you might ask, what is behavioral finance?
10
39260
3000
์•„๋งˆ ์—ฌ๋Ÿฌ๋ถ„์€, 'ํ–‰๋™ ๊ธˆ์œตํ•™์ด ๋ญ์ง€?'๋ผ๊ณ  ๊ถ๊ธˆํ•ดํ•˜์‹ค ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
00:42
So let's think about how we manage our money.
11
42260
3000
์šฐ๋ฆฌ๊ฐ€ ๋ˆ์„ ์–ด๋–ป๊ฒŒ ๊ด€๋ฆฌํ•˜๋Š” ์ง€์— ๋Œ€ํ•ด ํ•œ ๋ฒˆ ์ƒ๊ฐํ•ด ๋ด…์‹œ๋‹ค.
00:45
Let's start with mortgages.
12
45260
3000
๋Œ€์ถœ(๋ชจ๊ธฐ์ง€)์— ๋Œ€ํ•œ ์ด์•ผ๊ธฐ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด๋ณด์ฃ .
00:48
It's kind of a recent topic,
13
48260
2000
์ตœ์†Œ ๋ฏธ๊ตญ์—์„œ ๋งŒํผ์€
00:50
at least in the U.S.
14
50260
2000
์ตœ๊ทผ์—๋„ ํฐ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ๋Š” ๋‚ด์šฉ์ด์ฃ .
00:52
A lot of people buy
15
52260
2000
๋งŽ์€ ์‚ฌ๋žŒ๋“ค์€
00:54
the biggest house they can afford,
16
54260
3000
๊ทธ๋“ค์ด ์žฅ๋งŒํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ๊ฐ€์žฅ ํฐ ์ง‘์„ ์‚ฌ๊ณ ,
00:57
and actually slightly bigger than that.
17
57260
3000
์‚ฌ์‹ค ๊ทธ๊ฒƒ๋ณด๋‹ค๋„ ์กฐ๊ธˆ ๋” ํฐ ๊ฑธ ์‚ฝ๋‹ˆ๋‹ค.
01:00
And then they foreclose.
18
60260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋“ค์€ ์ง‘์ด ์ฐจ์••๋‹นํ•˜์ฃ .
01:03
And then they blame the banks
19
63260
2000
๊ทธ๋Ÿฌ๋ฉด ๊ทธ๋“ค์€ ๊ทธ๋“ค์—๊ฒŒ ๋ˆ์„ ๋นŒ๋ ค ์ค€
01:05
for being the bad guys who gave them the mortgages.
20
65260
3000
์€ํ–‰์„ ์š•ํ•˜๋ฉฐ ํƒ“ํ•ฉ๋‹ˆ๋‹ค.
01:08
Let's also think about
21
68260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ
01:10
how we manage risks --
22
70260
2000
์œ„ํ—˜์„ ๊ด€๋ฆฌํ•˜๋Š”๊ฐ€ ๋˜ํ•œ ์ƒ๊ฐํ•ด ๋ด…์‹œ๋‹ค.
01:12
for example, investing in the stock market.
23
72260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, ์ฃผ์‹ ํˆฌ์ž์— ๊ด€ํ•ด ์ด์•ผ๊ธฐ๋ฅผ ํ•˜๋ฉด์š”,
01:14
Two years ago, three years ago, about four years ago,
24
74260
3000
2๋…„, 3๋…„, 4๋…„ ์ „๋งŒ ํ•ด๋„
01:17
markets did well.
25
77260
2000
์‹œ์žฅ ์ƒํ™ฉ์€ ์ข‹์•˜์Šต๋‹ˆ๋‹ค.
01:19
We were risk takers, of course.
26
79260
3000
๋ฌผ๋ก  ์šฐ๋ฆฌ๋Š” ๋ชจํ—˜์‹ฌ ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์ด์ฃ !
01:22
Then market stocks seize
27
82260
2000
ํ•˜์ง€๋งŒ ์‹œ์žฅ ์ƒํ™ฉ์ด ๋‚˜๋น ์ง€๊ณ 
01:24
and we're like, "Wow.
28
84260
2000
์šฐ๋ฆฌ๋Š” "์™€" ํ•˜๋ฉฐ,
01:26
These losses, they feel, emotionally,
29
86260
3000
์†์‹ค๋“ค์— ๋Œ€ํ•ด ๊ทธ๋“ค์ด ๋Š๋ผ๋Š” ๊ฐ์ •์€
01:29
they feel very different
30
89260
3000
์‹œ์žฅ ์ƒํ™ฉ์ด ์ข‹์„ ๋•Œ์—
01:32
from what we actually thought about it
31
92260
3000
๊ทธ๋“ค์ด ๊ฒช๊ฒŒ๋˜๋ฆฌ๋ผ ์˜ˆ์ƒํ–ˆ๋˜ ๊ฐ์ •๊ณผ๋Š”
01:35
when markets were going up."
32
95260
2000
์•„์ฃผ ์•„์ฃผ ๋‹ค๋ฅด๋‹ค"๋Š” ๊ฒƒ์„ ์•Œ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
01:37
So we're probably not doing a great job
33
97260
3000
๊ทธ๋Ÿฌ๋‹ˆ ์šฐ๋ฆฌ๋Š” ์–ด์ฉŒ๋ฉด ์œ„ํ—˜์„ ๊ฐ์ˆ˜ํ•˜๋Š” ๋ฐ์—๋Š”
01:40
when it comes to risk taking.
34
100260
2000
๋ณ„๋กœ ์ž˜ํ•˜๊ณ  ์žˆ์ง€ ๋ชปํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:42
How many of you have iPhones?
35
102260
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘ ๋ช‡ ๋ช…์ด ์•„์ดํฐ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‚˜์š”?
01:45
Anyone? Wonderful.
36
105260
3000
๋ˆ„๊ตฌ๋ผ๋„ ์žˆ๋‚˜์š”? ๋Œ€๋‹จํ•˜๊ตฐ์š”.
01:48
I would bet many more of you
37
108260
3000
์•„๋งˆ๋„ ์—ฌ๊ธฐ ์žˆ๋Š” ๋ถ„๋“ค ์ค‘ ๋” ๋งŽ์€ ๋ถ„๋“ค์ด
01:51
insure your iPhone --
38
111260
3000
์•„์ดํฐ์— ๋ณดํ—˜์„ ๋“ค ๊ฒƒ์ž…๋‹ˆ๋‹ค--
01:54
you're implicitly buying insurance by having an extended warranty.
39
114260
3000
๋‹น์‹ ์€ ๊ตฌ๋งค ํ›„์—๋„ ์ œํ’ˆ ๋ณด์ฆ์— ๋Œ€ํ•œ ๋ณดํ—˜์„ ์ž์‹ ๋„ ๋ชจ๋ฅด๊ฒŒ ์‚ฌ๊ฒŒ ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:57
What if you lose your iPhone?
40
117260
2000
๋‹น์‹ ์ด ์•„์ดํฐ์„ ์žƒ์–ด๋ฒ„๋ฆฌ๊ฒŒ ๋  ๋•Œ๋‚˜,
01:59
What if you do this?
41
119260
2000
์ด๋Ÿฐ์ €๋Ÿฐ ์‚ฌ๊ณ ๊ฐ€ ์ผ์–ด๋‚  ๋•Œ๋ฅผ ๋Œ€๋น„ํ•ด์„œ์š”.
02:01
How many of you have kids?
42
121260
2000
์–ผ๋งˆ๋‚˜ ๋งŽ์€ ๋ถ„๋“ค์ด ์ž๋…€๋ฅผ ๋‘๊ณ  ๊ณ„์‹œ์ฃ ?
02:03
Anyone?
43
123260
2000
๊ณ„์‹ ๊ฐ€์š”?
02:05
Keep your hands up
44
125260
2000
์ด ์ค‘์— ์ถฉ๋ถ„ํ•œ ์ƒ๋ช… ๋ณดํ—˜์— ๋“  ๋ถ„๋“ค์€
02:07
if you have sufficient life insurance.
45
127260
3000
์†์„ ๊ณ„์† ๋“ค์–ด ์ฃผ์„ธ์š”.
02:10
I see a lot of hands coming down.
46
130260
2000
์†์„ ๋‚ด๋ฆฌ์‹œ๋Š” ๋ถ„๋“ค์ด ๋งŽ์ด ๋ณด์ด๋„ค์š”.
02:12
I would predict,
47
132260
2000
์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„์ด ์ง‘๋‹ต์„ ๋Œ€ํ‘œํ• ๋งŒํ•œ ์ƒ˜ํ”Œ์ด๋ผ๋ฉด
02:14
if you're a representative sample,
48
134260
2000
์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘ ์•„๋งˆ๋„ ๋” ๋งŽ์€ ๋ถ„๋“ค์ด
02:16
that many more of you
49
136260
2000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋ชฉ์ˆจ๋ณด๋‹ค๋„
02:18
insure your iPhones than your lives,
50
138260
3000
์•„์ดํฐ์— ๋” ๋ณดํ—˜์„ ๋“ค์–ด์•ผ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ• ๊ฒ๋‹ˆ๋‹ค.
02:21
even when you have kids.
51
141260
2000
์‹ฌ์ง€์–ด ์•„์ด๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ํ•ด๋„์š”.
02:23
We're not doing that well when it comes to insurance.
52
143260
3000
์šฐ๋ฆฌ๋Š” ๋ณดํ—˜ ๋˜ํ•œ ๋ณ„๋กœ ์ž˜ ๊ด€๋ฆฌํ•˜๊ณ  ์žˆ์ง€ ๋ชปํ•˜์ฃ .
02:26
The average American household
53
146260
4000
ํ‰๊ท ์ ์ธ ๋ฏธ๊ตญ์˜ ๊ฐ€๊ณ„๋Š”
02:30
spends 1,000 dollars a year
54
150260
3000
1๋…„์— 1,000 ๋‹ฌ๋Ÿฌ๋ฅผ
02:33
on lotteries.
55
153260
2000
๋ณต๊ถŒ์„ ์‚ฌ๋Š”๋ฐ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
02:35
And I know it sounds crazy.
56
155260
3000
์ด๊ฒŒ ๋ง๋„ ์•ˆ ๋˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋“ค๋ฆฐ๋‹ค๋Š” ๊ฒƒ์€ ์ž˜ ์••๋‹ˆ๋‹ค.
02:38
How many of you spend a thousand dollars a year on lotteries?
57
158260
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘ ๋ช‡ ๋ถ„์ด๋‚˜ 1๋…„์— ๋ณต๊ถŒ์— 1์ฒœ ๋‹ฌ๋Ÿฌ๋ฅผ ์“ฐ์‹œ๋‚˜์š”?
02:41
No one.
58
161260
2000
์•„๋ฌด๋„ ์—†์„ ๊ฒ๋‹ˆ๋‹ค.
02:43
So that tells us that the people not in this room
59
163260
3000
๊ทธ ๋ง์€ ์ด ๊ณณ์— ์žˆ๋Š” ๋ถ„๋“ค์„ ์ œ์™ธํ•œ ์‚ฌ๋žŒ๋“ค์ด
02:46
are spending more than a thousand
60
166260
2000
1,000๋‹ฌ๋Ÿฌ๊ฐ€ ๋„˜๋Š” ์•ก์ˆ˜๋ฅผ ์“ฐ๊ธฐ ๋•Œ๋ฌธ์—
02:48
to get the average to a thousand.
61
168260
3000
ํ‰๊ท ์น˜๊ฐ€ 1,000์ด ๋˜์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•ด์ค๋‹ˆ๋‹ค.
02:51
Low-income people
62
171260
2000
์ €์†Œ๋“์ธต ์‚ฌ๋žŒ๋“ค์€
02:53
spend a lot more than a thousand on lotteries.
63
173260
4000
1,000๋‹ฌ๋Ÿฌ ๋ณด๋‹ค๋„ ํ›จ์”ฌ ๋” ๋งŽ์€ ๋ˆ์„ ๋ณต๊ถŒ์„ ์‚ฌ๋Š”๋ฐ์— ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
02:57
So where does it take us?
64
177260
2000
๊ทธ๋Ÿฌ๋‹ˆ ๊ฒฐ๋ก ์ด ๋ฌด์—‡์ž…๋‹ˆ๊นŒ?
02:59
We're not doing a great job managing money.
65
179260
3000
์šฐ๋ฆฌ๊ฐ€ ๋ˆ์„ ์ž˜ ๊ด€๋ฆฌํ•˜๊ณ  ์žˆ์ง€ ๋ชปํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
03:02
Behavioral finance is really a combination
66
182260
3000
ํ–‰๋™ ๊ธˆ์œตํ•™์€ ์‚ฌ์‹ค ์‚ฌ๋žŒ๋“ค์ด ๋ˆ์— ๋Œ€ํ•ด
03:05
of psychology and economics,
67
185260
2000
๋งŒ๋“œ๋Š” ์‹ค์ˆ˜๋ฅผ ์ดํ•ดํ•˜๋ ค๊ณ  ๋“œ๋Š”
03:07
trying to understand
68
187260
2000
์‹ฌ๋ฆฌํ•™๊ณผ ๊ฒฝ์ œ์˜
03:09
the money mistakes people make.
69
189260
2000
์กฐํ•ฉ์ž…๋‹ˆ๋‹ค.
03:11
And I can keep standing here
70
191260
2000
๊ทธ๋ฆฌ๊ณ  ์ €๋Š” ์ œ๊ฒŒ ๋‚จ์€
03:13
for the 12 minutes and 53 seconds that I have left
71
193260
4000
12๋ถ„ 53์ดˆ ๋™์•ˆ ์—ฌ๊ธฐ ์„œ์„œ
03:17
and make fun of all sorts of ways
72
197260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ˆ์„ ๊ด€๋ฆฌํ•˜๋Š”
03:19
we manage money,
73
199260
2000
์˜จ๊ฐ– ๋ฐฉ๋ฒ•๋“ค์„ ๋ชจ๋‘ ๋น„์›ƒ๊ณ  ๋‚˜๋ฉด
03:21
and at the end you're going to ask, "How can we help people?"
74
201260
3000
์—ฌ๋Ÿฌ๋ถ„์€ "๊ทธ๋Ÿฌ๋ฉด ์šฐ๋ฆฌ๋Š” ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ์ด๋“ค์„ ๋„์šธ ์ˆ˜ ์žˆ์„๊นŒ?"ํ•˜๊ณ  ๋ฌป๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:24
And that's what I really want to focus on today.
75
204260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์ด ์ œ๊ฐ€ ์˜ค๋Š˜ ์ดˆ์ ์„ ๋‘๊ณ  ์‹ถ์€ ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
03:27
How do we take an understanding
76
207260
2000
์–ด๋–ป๊ฒŒ ์šฐ๋ฆฌ๋Š” ์‚ฌ๋žŒ๋“ค์ด
03:29
of the money mistakes people make,
77
209260
3000
๋ˆ์— ๋Œ€ํ•ด ์‹ค์ˆ˜๋“ค์„ ๋ฒ”ํ•˜๋Š”์ง€๋ฅผ ์ดํ•ดํ•˜๊ณ ,
03:32
and then turning the behavioral challenges
78
212260
3000
ํ–‰๋™์  ๋ฌธ์ œ๋“ค์„ ํ–‰๋™์  ํ•ด๊ฒฐ์ฑ…๋“ค๋กœ
03:35
into behavioral solutions?
79
215260
2000
๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์„๊นŒ์š”?
03:37
And what I'm going to talk about today
80
217260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ์˜ค๋Š˜ ๋งํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์€
03:39
is Save More Tomorrow.
81
219260
2000
'๋‚ด์ผ' ๋” ๋งŽ์ด ์ €์ถ•ํ•˜์ž๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:41
I want to address the issue
82
221260
2000
์ €๋Š” ์ €์ถ•์— ๋Œ€ํ•œ ๋ฌธ์ œ๋“ค์„
03:43
of savings.
83
223260
2000
์ œ๊ธฐํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
03:45
We have on the screen
84
225260
2000
์ง€๊ธˆ ํ™”๋ฉด์—
03:47
a representative sample
85
227260
2000
๋ฏธ๊ตญ์„ ๋Œ€ํ‘œํ•˜๋Š” 100๋ช…์˜ ์ƒ˜ํ”Œ์ด
03:49
of 100 Americans.
86
229260
2000
๋‚˜์™€ ์žˆ์Šต๋‹ˆ๋‹ค.
03:51
And we're going to look at their saving behavior.
87
231260
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค์˜ ์ €์ถ•ํ•˜๋Š” ํƒœ๋„๋ฅผ ์•Œ์•„๋ณผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:54
First thing to notice is,
88
234260
2000
์ฒซ ๋ฒˆ์งธ๋กœ ์•Œ๊ฒŒ ๋˜๋Š” ์‚ฌ์‹ค์€
03:56
half of them
89
236260
2000
๊ทธ๋“ค ์ค‘ ์ ˆ๋ฐ˜์€
03:58
do not even have access
90
238260
2000
'401(k) ๊ณ„ํš ([์—ญ] ๊ตญ์„ธ์ฒญ(IRS) ์ฝ”๋“œ 401(K) (๊ธ‰์—ฌ ์†Œ๋“์ž์˜ ํ‡ด์ง ์ ๋ฆฝ๊ธˆ์— ๋Œ€ํ•œ ํŠน๋ณ„ ๋ฉด์ œ ์กฐ์น˜ ์กฐํ•ญ); ๋ฏธ๊ตญ์˜ ํ‡ด์ง ์—ฐ๊ธˆ์ œ)'์˜
04:00
to a 401(k) plan.
91
240260
2000
๋Œ€์ƒ์กฐ์ฐจ ๋˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
04:02
They cannot make savings easy.
92
242260
3000
๊ทธ๋“ค์€ ์‰ฝ๊ฒŒ ์ €์ถ•ํ•  ์ˆ˜ ์—†๋Š” ๊ฒƒ์ด์ฃ .
04:05
They cannot have money go away from their paycheck
93
245260
3000
๊ทธ๋“ค์€ ๊ธ‰์—ฌ๋ฅผ ์ง์ ‘ ๋ณด๊ฑฐ๋‚˜ ๋งŒ์งˆ ์ˆ˜ ์žˆ๊ธฐ ์ „์—,
04:08
into a 401(k) plan
94
248260
2000
๊ทธ๋“ค์˜ ๊ธ‰์—ฌ๋กœ๋ถ€ํ„ฐ
04:10
before they see it,
95
250260
2000
401(k) ๊ณ„ํš์— ์ €์ถ•๋˜๋Š”
04:12
before they can touch it.
96
252260
2000
๋ˆ์ด ์—†์Šต๋‹ˆ๋‹ค.
04:14
What about the remaining half of the people?
97
254260
3000
๊ทธ๋ ‡๋‹ค๋ฉด ๊ทธ ๋‚˜๋จธ์ง€ ๋ฐ˜์€ ์–ด๋–ป๊ฒŒ ํ•˜๋‚˜์š”?
04:17
Some of them elect not to save.
98
257260
3000
๊ทธ๋“ค ์ค‘ ๋ช‡๋ช‡์€ ๊ทธ๋ƒฅ ์ €์ถ•ํ•˜์ง€ ์•Š๊ธฐ๋กœ ํ•ฉ๋‹ˆ๋‹ค.
04:20
They're just too lazy.
99
260260
2000
๊ทธ๋ƒฅ ๋„ˆ๋ฌด ๊ฒŒ์„๋Ÿฌ์„œ์ผ ์ˆ˜๋„ ์žˆ์ฃ .
04:22
They never get around to logging into a complicated website
100
262260
3000
๋ณต์žกํ•œ ์›น์‚ฌ์ดํŠธ์— ๋กœ๊ทธ์ธํ•ด์„œ
04:25
and doing 17 clicks to join the 401(k) plan.
101
265260
3000
401(k) ๊ณ„ํš์— ์ฐธ์—ฌํ•˜๊ธฐ ์œ„ํ•ด 17๋ฒˆ ์”ฉ์ด๋‚˜ ํด๋ฆญํ•˜๊ธฐ๊ฐ€ ๊ท€์ฐฎ์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:28
And then they have to decide how they're going to invest
102
268260
2000
๊ทธ๋Ÿฌ๋ฉด ๊ทธ๋“ค์€ ์–ด๋–ป๊ฒŒ ๊ทธ๋“ค์ด ๊ฐ€์ง„ 52๊ฐ€์ง€์˜ ๋ฐฉ๋ฒ•๋“ค ์ค‘์—
04:30
in their 52 choices,
103
270260
2000
์–ด๋–ค ๋ฐฉ๋ฒ•์œผ๋กœ ์ €์ถ•ํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•ด์•ผ ํ•˜๋Š”๋ฐ
04:32
and they never heard about what is a money market fund.
104
272260
4000
๊ทธ๋“ค์€ ๋‹จ๊ธฐ๊ธˆ์œต์ž์‚ฐํˆฌ์ž ์‹ ํƒ(MMF) ๋Œ€ํ•ด ๋“ค์–ด๋ณธ ์ ๋„ ์—†๊ณ ,
04:36
And they get overwhelmed and the just don't join.
105
276260
2000
๊ทธ๋ž˜์„œ ํฌ๊ธฐํ•˜๊ณ ๋Š” ๊ทธ์ € ์ €์ถ•์„ ํ•˜์ง€ ์•Š๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
04:38
How many people end up saving to a 401(k) plan?
106
278260
5000
๊ทธ๋Ÿผ ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด 401(k) ๊ณ„ํš์„ ํ†ตํ•ด ์ €์ถ•ํ•˜๊ฒŒ ๋ ๊นŒ์š”?
04:43
One third of Americans.
107
283260
3000
๋ฏธ๊ตญ์ธ๋“ค์˜ 1/3์ž…๋‹ˆ๋‹ค.
04:46
Two thirds are not saving now.
108
286260
2000
2/3์€ ์ €์ถ•ํ•˜๊ณ  ์žˆ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
04:48
Are they saving enough?
109
288260
2000
๊ทธ๋Ÿฌ๋ฉด ๊ทธ๋“ค์€ ์ถฉ๋ถ„ํžˆ ์ €์ถ•ํ•˜๊ณ  ์žˆ์„๊นŒ์š”?
04:50
Take out those
110
290260
2000
๋„ˆ๋ฌด ์ ๊ฒŒ ์ €์ถ•ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์€
04:52
who say they save too little.
111
292260
2000
์—ฌ๊ธฐ์„œ ๋บ์‹œ๋‹ค.
04:54
One out of 10
112
294260
2000
๊ทธ๋Ÿฌ๋ฉด ์—ด ๋ช… ์ค‘ ํ•œ ๋ช…๋งŒ์ด
04:56
are saving enough.
113
296260
3000
์ถฉ๋ถ„ํ•œ ๋งŒํผ์˜ ์ €์ถ•์„ ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:59
Nine out of 10
114
299260
2000
์—ด ๋ช… ์ค‘ ์•„ํ™‰ ๋ช…์€
05:01
either cannot save through their 401(k) plan,
115
301260
3000
401(k) ๊ณ„ํš์„ ์ด์šฉํ•ด ์ €์ถ•ํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜
05:04
decide not to save -- or don't decide --
116
304260
3000
์ €์ถ•์„ ํ•˜์ง€ ์•Š๊ธฐ๋กœ ๊ฒฐ์ •ํ•˜๊ฑฐ๋‚˜--์•„์˜ˆ ๊ฒฐ์ •์„ ์•ˆ ํ•˜๊ฑฐ๋‚˜--
05:07
or save too little.
117
307260
3000
๋„ˆ๋ฌด ์กฐ๊ธˆ๋งŒ์„ ์ €์ถ•ํ•ฉ๋‹ˆ๋‹ค.
05:10
We think we have a problem
118
310260
2000
์šฐ๋ฆฌ๋Š” ์‚ฌ๋žŒ๋“ค์ด ๋„ˆ๋ฌด ๋งŽ์ด ์ €์ถ•ํ•˜๋Š” ๋ฐ์—๋„
05:12
of people saving too much.
119
312260
2000
๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
05:14
Let's look at that.
120
314260
2000
์ด๊ฑธ ์ข€ ๋ด…์‹œ๋‹ค.
05:16
We have one person --
121
316260
2000
์—ฌ๊ธฐ ํ•œ ์‚ฌ๋žŒ์ด ์žˆ๋Š”๋ฐ--
05:18
well, actually we're going to slice him in half
122
318260
3000
๊ธ€์Ž„, ์‚ฌ์‹ค 1%๋ณด๋‹ค๋„ ์ ๊ธฐ ๋•Œ๋ฌธ์— ์šฐ๋ฆฌ๋Š”
05:21
because it's less than one percent.
123
321260
3000
๊ทธ๋ฅผ ๋ฐ˜์œผ๋กœ ์ž˜๋ผ์•ผ ํ•  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
05:24
Roughly half a percent of Americans
124
324260
3000
๋Œ€๋žต์ ์œผ๋กœ ๋ฏธ๊ตญ์ธ์˜ 0.5% ์ •๋„๊ฐ€
05:27
feel that they save too much.
125
327260
5000
์ž์‹ ๋“ค์ด ๋„ˆ๋ฌด ๋งŽ์ด ์ €์ถ•ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
05:32
What are we going to do about it?
126
332260
2000
์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์ข‹์„๊นŒ์š”?
05:34
That's what I really want to focus on.
127
334260
2000
๊ทธ๊ฒƒ์ด ์šฐ๋ฆฌ๊ฐ€ ์ดˆ์ ์„ ๋‘์–ด์•ผ ํ•  ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
05:36
We have to understand
128
336260
2000
์šฐ๋ฆฌ๋Š” ์‚ฌ๋žŒ๋“ค์ด ์™œ ์ €์ถ•์„ ํ•˜์ง€ ์•Š๋Š”์ง€
05:38
why people are not saving,
129
338260
2000
๊ทธ๊ฒƒ์„ ์ดํ•ดํ•˜์—ฌ์•ผ ํ•˜๊ณ 
05:40
and then we can hopefully flip
130
340260
2000
๊ทธ๋ž˜์•ผ๋งŒ ํ–‰๋™์ ์ธ ์žฅ์• ๋ฌผ๋“ค์„
05:42
the behavioral challenges
131
342260
2000
ํ–‰๋™์ ์ธ ํ•ด๊ฒฐ์ฑ…๋“ค๋กœ
05:44
into behavioral solutions,
132
344260
2000
๋’ค์ง‘์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ฉฐ
05:46
and then see how powerful it might be.
133
346260
3000
๊ทธ๊ฒƒ์ด ์–ผ๋งˆ๋‚˜ ๊ฐ•๋ ฅํ•œ์ง€ ๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:49
So let me divert for a second
134
349260
2000
์ด๋ ‡๊ฒŒ ์‚ฌ๋žŒ๋“ค์ด ์ €์ถ•์„ ํ•˜๋Š” ๊ฒƒ์„ ๋ง‰๋Š”
05:51
as we're going to identify the problems,
135
351260
2000
๋ฌธ์ œ์ ๋“ค, ๋„์ „๋“ค, ๊ทธ๋ฆฌ๊ณ  ํ–‰๋™์  ์–ด๋ ค์›€๋“ค์„
05:53
the challenges, the behavioral challenges,
136
353260
3000
์•Œ๊ฒŒ ๋˜๋Š” ์™€์ค‘์—
05:56
that prevent people from saving.
137
356260
2000
์ž ๊น ํ™”์ œ๋ฅผ ๋Œ๋ ค๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
05:58
I'm going to divert and talk about bananas and chocolate.
138
358260
4000
๋ฐ”๋‚˜๋‚˜์™€ ์ดˆ์ฝœ๋ฆฟ์— ๋Œ€ํ•œ ์กฐ๊ธˆ ๋‹ค๋ฅธ ์ด์•ผ๊ธฐ๋ฅผ ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
06:02
Suppose we had another wonderful TED event next week.
139
362260
3000
์šฐ๋ฆฌ๊ฐ€ ๋‹ค์Œ ์ฃผ์— ๋˜ ๋‹ค๋ฅธ ์•„๋ฆ„๋‹ค์šด TED ํ–‰์‚ฌ๋ฅผ ๊ฐ€์งˆ ๊ฑฐ๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค.
06:05
And during the break
140
365260
2000
๊ทธ๋ฆฌ๊ณ  ๊ฐ•์—ฐ ์‚ฌ์ด์˜ ์‰ฌ๋Š” ์‹œ๊ฐ„์—
06:07
there would be a snack
141
367260
2000
๊ฐ„์‹์ด ๋งˆ๋ จ๋˜์–ด ์žˆ๋Š”๋ฐ
06:09
and you could choose bananas or chocolate.
142
369260
2000
๋ฐ”๋‚˜๋‚˜์™€ ์ดˆ์ฝœ๋ฆฟ ์ค‘์— ํ•˜๋‚˜๋ฅผ ๊ณ ๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:11
How many of you think you would like to have bananas
143
371260
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘์— ๋‹ค์Œ ์ฃผ์— ์žˆ์„ ์ด ๊ฐ€์ƒ์˜ TED ํ–‰์‚ฌ์—์„œ
06:14
during this hypothetical TED event next week?
144
374260
2000
๋ฐ”๋‚˜๋‚˜๋ฅผ ๋“œ์‹œ๊ณ  ์‹ถ์–ดํ•˜๋Š” ๋ถ„์ด ๋ช‡ ๋ถ„์ด๋‚˜ ๋˜๋‚˜์š”?
06:16
Who would go for bananas?
145
376260
2000
๋ˆ„๊ฐ€ ๋ฐ”๋‚˜๋‚˜๋ฅผ ๋“œ์‹ค ๊ฑด๊ฐ€์š”?
06:18
Wonderful.
146
378260
2000
์ข‹์Šต๋‹ˆ๋‹ค.
06:20
I predict scientifically
147
380260
2000
์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘
06:22
74 percent of you will go for bananas.
148
382260
3000
74%๊ฐ€ ๋ฐ”๋‚˜๋‚˜๋ฅผ ๋“œ์‹ค ๊ฑฐ๋ผ๊ณ  ๊ณผํ•™์ ์œผ๋กœ ์˜ˆ์ƒํ•ฉ๋‹ˆ๋‹ค.
06:25
Well that's at least what one wonderful study predicted.
149
385260
4000
๊ธ€์Ž„์š” ์ตœ์†Œํ•œ ํ•œ ๋Œ€๋‹จํ•œ ์—ฐ๊ตฌ์— ์˜ํ•˜๋ฉด ๊ทธ๋ ‡๋‹ค๊ณ  ํ•˜๋„ค์š”.
06:30
And then count down the days
150
390260
3000
๊ทธ๋ฆฌ๊ณ  ๊ฐ•์—ฐ๊นŒ์ง€ ๋‚จ์€ ๋‚ ๋“ค์ด ์ง€๋‚œ ๋’ค์—
06:33
and see what people ended up eating.
151
393260
4000
์‚ฌ๋žŒ๋“ค์ด ๊ฒฐ๊ตญ ๋จน๊ธฐ๋กœ ์„ ํƒํ•œ ๊ฒƒ์„ ๋ณด์„ธ์š”.
06:38
The same people that imagined themselves
152
398260
3000
์ž์‹ ๋“ค์ด ๋ฐ”๋‚˜๋‚˜๋ฅผ ๋จน๋Š” ๊ฒƒ์„ ์ƒ์ƒํ•œ ์‚ฌ๋žŒ๋“ค์€
06:41
eating the bananas
153
401260
2000
์ผ ์ฃผ์ผ ํ›„์—
06:43
ended up eating chocolates
154
403260
2000
์ดˆ์ฝœ๋ฆฟ์„ ๋จน๊ณ  ์žˆ๋Š” ์ž์‹ ๋“ค์˜
06:45
a week later.
155
405260
2000
๋ชจ์Šต์„ ๋ฐœ๊ฒฌํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
06:47
Self-control
156
407260
2000
์ž๊ธฐ ์กฐ์ ˆ์€
06:49
is not a problem in the future.
157
409260
3000
๋ฏธ๋ž˜์˜ ๋ฌธ์ œ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
06:52
It's only a problem now
158
412260
2000
๊ทธ๊ฒƒ์€ ์ดˆ์ฝœ๋ฆฟ์ด ์šฐ๋ฆฌ
06:54
when the chocolate is next to us.
159
414260
4000
์˜†์— ์žˆ์„ ๋•Œ, ์ง€๊ธˆ์˜ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
06:58
What does it have to do with time and savings,
160
418260
3000
์ด๋Ÿฌํ•œ ์ฆ‰๊ฐ์  ๋งŒ์กฑ์˜ ๋ฌธ์ œ๊ฐ€
07:01
this issue of immediate gratification?
161
421260
3000
์‹œ๊ฐ„๊ณผ ์ €์ถ•์˜ ๋ฌธ์ œ์™€ ๋ฌด์Šจ ์ƒ๊ด€์ด ์žˆ๋Š” ๊ฑธ๊นŒ์š”?
07:04
Or as some economists call it, present bias.
162
424260
4000
์–ด์ฉŒ๋ฉด ์ด๊ฑด ๋ช‡๋ช‡ ๊ฒฝ์ œํ•™์ž๋“ค์ด ๋ถ€๋ฅด๋“ฏ, ํ˜„์žฌ ํŽธํ–ฅ(present bias)์ž…๋‹ˆ๋‹ค.
07:08
We think about saving. We know we should be saving.
163
428260
2000
์šฐ๋ฆฌ๋Š” ์ €์ถ•์„ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ์ €์ถ•ํ•ด์•ผ ํ•˜๋Š” ๊ฑธ ์••๋‹ˆ๋‹ค.
07:10
We know we'll do it next year, but today let us go and spend.
164
430260
3000
์šฐ๋ฆฌ๋Š” ๊ทธ๊ฑธ ๋‚ด๋…„์— ํ•ด์•ผ ํ•  ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ•˜์ง€๋งŒ ์˜ค๋Š˜ ์ €ํฌ๋Š” ์จ๋ฒ„๋ฆฝ๋‹ˆ๋‹ค.
07:13
Christmas is coming,
165
433260
2000
ํฌ๋ฆฌ์Šค๋งˆ์Šค๊ฐ€ ๋‹ค๊ฐ€์˜ค๊ณ 
07:15
we might as well buy a lot of gifts for everyone we know.
166
435260
3000
์šฐ๋ฆฌ๊ฐ€ ์•„๋Š” ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์‚ฌ์•ผํ•  ์„ ๋ฌผ๋“ค๋„ ๋งŽ์ง€์š”.
07:18
So this issue of present bias
167
438260
4000
๊ทธ๋Ÿฌ๋‹ˆ ์ด ํ˜„์žฌ ํŽธํ–ฅ์˜ ๋ฌธ์ œ๋Š”
07:22
causes us to think about saving,
168
442260
2000
์šฐ๋ฆฌ๊ฐ€ ์ €์ถ•์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๊ฒŒ๋Š” ๋งŒ๋“ค์ง€๋งŒ
07:24
but end up spending.
169
444260
2000
๊ฒฐ๊ตญ์€ ์จ๋ฒ„๋ฆฌ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
07:26
Let me now talk
170
446260
2000
์ด์ œ ์ €๋Š”
07:28
about another behavioral obstacle to saving
171
448260
2000
์ €์ถ•์„ ๋ง‰๋Š” ๋˜ ๋‹ค๋ฅธ ํ–‰๋™์  ์žฅ์• ๋ฅผ
07:30
having to do with inertia.
172
450260
2000
์†Œ๊ฐœ์‹œ์ผœ ๋“œ๋ฆด ํ…๋ฐ ๊ทธ๊ฒƒ์€ ๋ฌด๊ธฐ๋ ฅํ•จ๊ณผ ๊ด€๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
07:32
But again, a little diversion
173
452260
2000
ํ•˜์ง€๋งŒ ๋‹ค์‹œ ์•ฝ๊ฐ„ ํ™”์ œ ์ „ํ™˜์„ ํ•˜๊ฒ ๋Š”๋ฐ์š”,
07:34
to the topic of organ donation.
174
454260
3000
๊ทธ๊ฒƒ์€ ์žฅ๊ธฐ ๊ธฐ์ฆ์— ๊ด€ํ•œ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
07:37
Wonderful study comparing different countries.
175
457260
3000
๋‹ค์–‘ํ•œ ๋‚˜๋ผ๋“ค์„ ๋น„๊ตํ•œ ํ›Œ๋ฅญํ•œ ์—ฐ๊ตฌ์ธ๋ฐ์š”,
07:40
We're going to look at two similar countries,
176
460260
3000
์šฐ๋ฆฌ๋Š” ๋‘ ๋น„์Šทํ•œ ๋‚˜๋ผ์ธ
07:43
Germany and Austria.
177
463260
3000
๋…์ผ๊ณผ ์˜ค์ŠคํŠธ๋ฆฌ์•„์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
07:46
And in Germany,
178
466260
2000
๋…์ผ์—์„œ๋Š”,
07:48
if you would like to donate your organs --
179
468260
2000
๋‹น์‹ ์ด ์žฅ๊ธฐ๋ฅผ ๊ธฐ์ฆํ•˜๊ณ ์ž ํ•˜๋ฉด--
07:50
God forbid something really bad
180
470260
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๊ทธ ์ •๋„๋กœ ๋‚˜์œ ์ผ์€
07:52
happens to you --
181
472260
2000
์ ˆ๋Œ€ ์ผ์–ด๋‚˜์ง€ ์•Š๊ฒ ์ง€๋งŒ์š”--
07:54
when you get your driving license or an I.D.,
182
474260
3000
์šด์ „ ๋ฉดํ—ˆ์ฆ์ด๋‚˜ ์‹ ๋ถ„์ฆ์„ ๋ฐ›์„ ๋•Œ์—
07:57
you check the box saying,
183
477260
2000
"์ €๋Š” ์ œ ์žฅ๊ธฐ๋ฅผ ๊ธฐ๋ถ€ํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค."๋ผ๋Š”
07:59
"I would like to donate my organs."
184
479260
2000
๋ง์ด ์“ฐ์—ฌ์ง„ ๋ฐ•์Šค๋ฅผ ๋ฐ›๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
08:01
Not many people like checking boxes.
185
481260
2000
ํ•˜์ง€๋งŒ ๋ณ„๋กœ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ๋ฐ•์Šค์— ์ฒดํฌํ•˜์ง„ ์•Š์ฃ .
08:03
It takes effort. You need to think.
186
483260
2000
์™œ๋ƒํ•˜๋ฉด ๊ทธ๊ฒƒ์—” ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๊ณ  ์ƒ๊ฐ์„ ํ•ด์•ผํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
08:05
Twelve percent do.
187
485260
3000
ํ•˜์ง€๋งŒ ๋…์ผ์ธ ์ค‘ 12%๋Š” ๋ฐ•์Šค์— ์ฒดํฌํ•˜์ฃ .
08:08
Austria, a neighboring country,
188
488260
3000
์ด์›ƒ ๋‚˜๋ผ ์˜ค์ŠคํŠธ๋ฆฌ์•„๋Š”
08:11
slightly similar, slightly different.
189
491260
2000
์‚ด์ง ๋น„์Šทํ•˜๋ฉด์„œ๋„, ์‚ด์ง ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
08:13
What's the difference?
190
493260
2000
์ฐจ์ด์ ์ด ๋ฌด์—‡์ผ๊นŒ์š”?
08:15
Well, you still have choice.
191
495260
2000
์˜ค์ŠคํŠธ๋ฆฌ์•„์—์„œ๋Š” ์•„์ง ์„ ํƒ๊ถŒ์ด ๋‚จ์•„์žˆ์Šต๋‹ˆ๋‹ค.
08:17
You will decide
192
497260
2000
์žฅ๊ธฐ๋ฅผ ๊ธฐ๋ถ€ํ•˜๊ฒ ๋‹ค๊ฑฐ๋‚˜ ํ•˜์ง€ ์•Š๊ฒ ๋‹ค๊ณ 
08:19
whether you want to donate your organs or not.
193
499260
3000
๊ฒฐ์ •์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:22
But when you get your driving license,
194
502260
2000
ํ•˜์ง€๋งŒ ๋‹น์‹ ์ด ์šด์ „ ๋ฉดํ—ˆ์ฆ์„ ๋ฐ›์„ ๋•Œ์—,
08:24
you check the box
195
504260
2000
๋‹น์‹ ์ด ์žฅ๊ธฐ๋ฅผ ๊ธฐ์ฆํ•˜๊ณ  ์‹ถ์ง€ ์•Š๋‹ค๋ฉด
08:26
if you do not want to donate your organ.
196
506260
4000
'๊ธฐ์ฆํ•˜๊ณ  ์‹ถ์ง€ ์•Š๋‹ค' ๋ผ๋Š” ๋ฐ•์Šค์— ์ฒดํฌ๋ฅผ ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
08:30
Nobody checks boxes.
197
510260
2000
์‚ฌ์‹ค ์•„๋ฌด๋„ ๋ฐ•์Šค์— ์ฒดํฌํ•˜์ง€ ์•Š์ฃ .
08:32
That's kind of too much effort.
198
512260
2000
๋„ˆ๋ฌด ๊ท€์ฐฎ์ž–์•„์š”.
08:34
One percent check the box. The rest do nothing.
199
514260
3000
1ํผ์„ผํŠธ๊ฐ€ ๋ฐ•์Šค์— ์ฒดํฌํ•˜์ง€๋งŒ, ๋‚˜๋จธ์ง€๋Š” ์•„๋ฌด๊ฒƒ๋„ ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
08:37
Doing nothing is very common.
200
517260
2000
๋Œ€๋ถ€๋ถ„ ๋ฐ•์Šค์— ๋Œ€ํ•ด์„œ๋Š” ์‹ ๊ฒฝ์„ ์“ฐ์ง€ ์•Š๊ณ 
08:39
Not many people check boxes.
201
519260
3000
์‹ค์ œ๋กœ ๋ฐ•์Šค์— ์ฒดํฌํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์€ ๋งŽ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
08:42
What are the implications
202
522260
2000
์‚ฌ๋žŒ์˜ ๋ชฉ์ˆจ์„ ๊ตฌํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ,
08:44
to saving lives
203
524260
2000
๊ธฐ๋ถ€๋œ ์žฅ๊ธฐ๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด
08:46
and having organs available?
204
526260
3000
์–ด๋–ค ์˜๋ฏธ๋ฅผ ์ง€๋‹๊นŒ์š”?
08:49
In Germany, 12 percent check the box.
205
529260
2000
๋…์ผ์—์„œ๋Š” 12ํผ์„ผํŠธ๊ฐ€ ๋ฐ•์Šค์— ์ฒดํฌํ•ฉ๋‹ˆ๋‹ค.
08:51
Twelve percent are organ donors.
206
531260
3000
๋•Œ๋ฌธ์— 12ํผ์„ผํŠธ๊ฐ€ ์žฅ๊ธฐ ๊ธฐ์ฆ์ž์ž…๋‹ˆ๋‹ค.
08:54
Huge shortage of organs,
207
534260
2000
์žฅ๊ธฐ ๋ถ€์กฑ์€ ์–ธ์ œ๋‚˜ ์—„์ฒญ๋‚˜์ฃ 
08:56
God forbid, if you need one.
208
536260
2000
๊ทธ๋Ÿด ๋ฆฌ๋Š” ์—†๊ฒ ์ง€๋งŒ, ํ˜น์ด๋ผ๋„ ์—ฌ๋Ÿฌ๋ถ„์ด ํ•„์š”ํ•˜๋‹ค๋ฉด ๋”์šฑ ๋”์š”.
08:58
In Austria, again, nobody checks the box.
209
538260
3000
์˜ค์ŠคํŠธ๋ฆฌ์•„์—์„œ๋Š”, ๋‹ค์‹œ๋งํ•˜์ง€๋งŒ, ๊ทธ ๋ˆ„๊ตฌ๋„ ๊ทธ ๋ฐ•์Šค์— ์ฒดํฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
09:01
Therefore, 99 percent of people
210
541260
3000
๊ทธ๋ž˜์„œ 99ํผ์„ผํŠธ์˜ ์‚ฌ๋žŒ๋“ค์ด
09:04
are organ donors.
211
544260
2000
์žฅ๊ธฐ ๊ธฐ์ฆ์ž๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
09:06
Inertia, lack of action.
212
546260
2000
๋ฌด๊ธฐ๋ ฅํ•จ, ๋œ ๊ฐœ์ž…ํ•˜๋Š” ๊ฒƒ
09:08
What is the default setting
213
548260
2000
๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด ์•„๋ฌด๊ฒƒ๋„ ํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด,
09:10
if people do nothing,
214
550260
2000
๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด ๊ณ„์† ๋ฏธ๋ฃจ๊ณ , ๋ฐ•์Šค์— ์ฒดํฌํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด,
09:12
if they keep procrastinating, if they don't check the boxes?
215
552260
3000
๋ฌด์—‡์ด ์ดˆ๊ธฐ ๊ธฐ๋ณธ ์„ค์ •์ด ๋ ๊นŒ์š”?
09:15
Very powerful.
216
555260
2000
์ด๊ฑด ์•„์ฃผ ๊ฐ•๋ ฅํ•œ ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
09:17
We're going to talk
217
557260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์‚ฌ๋žŒ๋“ค์ด
09:19
about what happens if people are overwhelmed and scared
218
559260
4000
๊ทธ๋“ค์˜ 401 (k) ๊ณ„ํš์— ๊ด€ํ•œ ์„ ํƒ์„ ํ•ด์•ผํ•  ๋•Œ
09:23
to make their 401(k) choices.
219
563260
3000
์••๋„๋‹นํ•˜๊ณ  ๋‘๋ ค์›Œํ•˜๊ฒŒ ๋˜๋ฉด ์–ด๋–ค์ผ์ด ์ผ์–ด๋‚˜๋Š”์ง€์— ๊ด€ํ•ด ์ด์•ผ๊ธฐํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค.
09:26
Are we going to make them automatically join the plan,
220
566260
3000
์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค์ด ์ž๋™์ ์œผ๋กœ ์ œ๋„์— ํŽธ์ž…๋˜๋„๋ก ํ•ด์•ผํ• ๊นŒ์š”,
09:29
or are they going to be left out?
221
569260
2000
์•„๋‹ˆ๋ฉด ๊ทธ๋Œ€๋กœ ๋‚จ๊ฒจ์ง€๋„๋ก ํ•ด์•ผํ• ๊นŒ์š”?
09:31
In too many 401(k) plans,
222
571260
3000
๋„ˆ๋ฌด๋‚˜ ๋งŽ์€ 401 (k) ๊ณ„ํš์—์„œ๋Š”,
09:34
if people do nothing,
223
574260
2000
๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด ์•„๋ฌด๊ฒƒ๋„ ํ•˜์ง€ ์•Š์œผ๋ฉด,
09:36
it means they're not saving for retirement,
224
576260
3000
๊ทธ๊ฒƒ์€ ๊ทธ๋“ค์ด ํ‡ด์ง์„ ์œ„ํ•ด ๋ˆ์„ ๋ชจ์œผ๋Š”๊ฒƒ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
09:39
if they don't check the box.
225
579260
2000
๋งŒ์ผ ๊ทธ๋“ค์ด ๋ฐ•์Šค์— ์ฒดํฌ๋ฅผ ํ•˜์ง€ ์•Š์œผ๋ฉด์š”.
09:41
And checking the box takes effort.
226
581260
3000
๊ทธ๋ฆฌ๊ณ  ๋ฐ•์Šค์— ์ฒดํฌํ•˜๋Š” ๊ฒƒ์—๋Š” ๋…ธ๋ ฅ์ด ๋“ญ๋‹ˆ๋‹ค.
09:44
So we've chatted about a couple of behavioral challenges.
227
584260
3000
์ง€๊ธˆ๊นŒ์ง€ ์šฐ๋ฆฌ๋Š” ๋ช‡๋ช‡์˜ ํ–‰๋™์ ์ธ ๋„์ „๋“ค์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐํ–ˆ์Šต๋‹ˆ๋‹ค.
09:47
One more before we flip the challenges into solutions,
228
587260
3000
์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๋„์ „์„ ํ•ด๊ฒฐ๋กœ ๋ฐ”๊พธ๊ธฐ ์ „์— ํ•œ ๊ฐ€์ € ๋” ์ด์•ผ๊ธฐํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€,
09:50
having to do with monkeys and apples.
229
590260
2000
์›์ˆญ์ด์™€ ์‚ฌ๊ณผ์— ๊ด€๋ จ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:52
No, no, no, this is a real study
230
592260
2000
์•„๋‡จ, ์•„๋‡จ, ์ด๊ฒƒ์€ ๋†๋‹ด์ด์•„๋‹ˆ๋ผ ์‹ค์ œ ์—ฐ๊ตฌ์ด๊ณ 
09:54
and it's got a lot to do with behavioral economics.
231
594260
4000
ํ–‰๋™ ๊ฒฝ์ œํ•™๊ณผ ๋งŽ์€ ๊ด€๋ จ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
09:58
One group of monkeys gets an apple, they're pretty happy.
232
598260
3000
ํ•œ ๊ทธ๋ฃน์˜ ์›์ˆญ์ด๋“ค์—๊ฒŒ ์‚ฌ๊ณผ ํ•˜๋‚˜๋ฅผ ์คฌ์„ ๋•Œ, ๊ทธ๋“ค์€ ๊ฝค ํ–‰๋ณตํ•ด ํ–ˆ์Šต๋‹ˆ๋‹ค.
10:01
The other group gets two apples, one is taken away.
233
601260
2000
๋‹ค๋ฅธ ๊ทธ๋ฃน์—๊ฒ ์‚ฌ๊ณผ ๋‘๊ฐœ๋ฅผ ์ฃผ์—ˆ๋‹ค๊ฐ€, ํ•˜๋‚˜๋ฅผ ๋นผ์•˜์•˜์Šต๋‹ˆ๋‹ค.
10:03
They still have an apple left.
234
603260
2000
ํ•˜์ง€๋งŒ ์—ฌ์ „ํžˆ ์‚ฌ๊ณผ ํ•˜๋‚˜๋Š” ๊ฐ€์ง€๊ณ  ์žˆ์ฃ .
10:05
They're really mad.
235
605260
3000
๊ทธ๋Ÿฌ๋‚˜ ๊ทธ๋“ค์€ ์ •๋ง ํ™”๊ฐ€ ๋‚ฌ์Šต๋‹ˆ๋‹ค.
10:08
Why have you taken our apple?
236
608260
3000
'์™œ ์šฐ๋ฆฌ์˜ ์‚ฌ๊ณผ๋ฅผ ๊ฐ€์ ธ๊ฐ„๊ฑฐ์•ผ?'
10:11
This is the notion of loss aversion.
237
611260
3000
์ด๊ฒƒ์€ ์ƒ์‹ค ํ˜์˜ค(loss aversion)์˜ ๊ฐœ๋…์ž…๋‹ˆ๋‹ค.
10:14
We hate losing stuff,
238
614260
2000
์šฐ๋ฆฌ๋Š” ๋ฌด์–ธ๊ฐ€๋ฅผ ์žƒ๋Š” ๊ฒƒ์„ ์‹ซ์–ดํ•ฉ๋‹ˆ๋‹ค.
10:16
even if it doesn't mean a lot of risk.
239
616260
3000
์žƒ๋Š”๋‹ค๋Š” ๊ฒƒ์ด ๊ทธ๋ฆฌ ํฐ ์œ„ํ—˜์„ ์ง€๋‹ˆ๊ณ  ์žˆ์ง€ ์•Š๋”๋ผ๋„ ๋ง์ด์ฃ .
10:19
You would hate to go to the ATM,
240
619260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ATM์—์„œ,
10:22
take out 100 dollars
241
622260
2000
100๋‹ฌ๋Ÿฌ๋ฅผ ์ฐพ์•˜์„ ๋•Œ,
10:24
and notice that you lost one of those $20 bills.
242
624260
2000
๊ทธ ์ค‘ $20 ์ง€ํ ํ•œ ์žฅ์„ ์žƒ์—ˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ๊ฒŒ๋˜๋Š” ๊ฒƒ์„ ์‹ซ์–ดํ• ๊ฒ๋‹ˆ๋‹ค.
10:26
It's very painful,
243
626260
2000
๊ทธ๊ฑด ๊ต‰์žฅํžˆ ๊ณ ํ†ต์Šค๋Ÿฝ์ฃ .
10:28
even though it doesn't mean anything.
244
628260
2000
์žƒ์–ด๋ฒ„๋ฆฐ ๊ฒƒ์ด ์•„๋ฌด ์˜๋ฏธ๊ฐ€ ์—†์„์ง€๋ผ๋„์š”.
10:30
Those 20 dollars might have been a quick lunch.
245
630260
4000
๊ทธ 20๋‹ฌ๋Ÿฌ๋Š” ๊ทธ์ € ํ•œ ๋ผ ์ ์‹ฌ์— ์ผ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
10:34
So this notion of loss aversion
246
634260
4000
๊ทธ๋ž˜์„œ ์ด ์ƒ์‹ค ํ˜์˜ค์˜ ๊ฐœ๋…์€
10:38
kicks in when it comes to savings too,
247
638260
3000
์ €์ถ•์— ๋Œ€ํ•ด์„œ๋„ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค.
10:41
because people, mentally
248
641260
2000
์™œ๋ƒํ–๋ฉด, ์‚ฌ๋žŒ๋“ค์€ ์ •์‹ ์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ 
10:43
and emotionally and intuitively
249
643260
3000
์ •์„œ์ ์œผ๋กœ ์ง๊ฐ์ ์œผ๋กœ
10:46
frame savings as a loss
250
646260
2000
์ €์ถ•์„ '์†์‹ค'๋กœ ์—ฌ๊ธฐ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:48
because I have to cut my spending.
251
648260
3000
๊ทธ๋ฆฌ๊ณ  ์†Œ๋น„๋Š” ์ค„์—ฌ์•ผ ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
10:51
So we talked about
252
651260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š”
10:53
all sorts of behavioral challenges
253
653260
2000
๊ฒฐ๊ตญ ์ €์ถ•๊ณผ ๊ด€๋ จ์žˆ๋Š”
10:55
having to do with savings eventually.
254
655260
4000
๋ชจ๋“  ์ข…๋ฅ˜์˜ ํ–‰๋™์  ๋„์ „๋“ค์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐํ•ด ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
10:59
Whether you think about immediate gratification,
255
659260
3000
๋ฌธ์ œ๋Š” ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์ฆ‰๊ฐ์ ์ธ ๋ณด์ƒ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๋“ ์ง€,
11:02
and the chocolates versus bananas,
256
662260
3000
๊ทธ๋ฆฌ๊ณ  ์ดˆ์ฝ”๋ › ๋Œ€ ๋ฐ”๋‚˜๋‚˜์ด๋“ ์ง€๊ฐ„์—,
11:05
it's just painful to save now.
257
665260
3000
๊ทธ์ € ๋‹จ์ง€ ์ง€๊ธˆ ์ €์ถ•ํ•˜๋Š” ๊ฒƒ์ด ๊ณ ํ†ต์Šค๋Ÿฝ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
11:08
It's a lot more fun
258
668260
2000
์ง€๊ธˆ ์†Œ๋น„ํ•˜๋Š” ๊ฒƒ์ด
11:10
to spend now.
259
670260
2000
ํ›จ์”ฌ ๋” ์žฌ๋ฏธ์žˆ์Šต๋‹ˆ๋‹ค.
11:12
We talked about inertia and organ donations
260
672260
3000
์šฐ๋ฆฌ๋Š” ๋ฌด๊ธฐ๋ ฅํ•จ๊ณผ ์žฅ๊ธฐ ๊ธฐ์ฆ,
11:15
and checking the box.
261
675260
2000
๊ทธ๋ฆฌ๊ณ  ๋ฐ•์Šค์— ์ฒดํฌํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ์–˜๊ธฐํ–ˆ์Šต๋‹ˆ๋‹ค.
11:17
If people have to check a lot of boxes
262
677260
2000
๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด 401(k) ๊ณ„ํš์— ๊ฐ€์ž…ํ•˜๊ธฐ ์œ„ํ•ด
11:19
to join a 401(k) plan,
263
679260
2000
๋งŽ์€ ๋ฐ•์Šค๋ฅผ ์ฒดํฌํ•ด์•ผ ํ•œ๋‹ค๋ฉด
11:21
they're going to keep procrastinating
264
681260
2000
๊ทธ๋“ค์€ ๊ณ„์† ๋ฏธ๋ฃจ๋‹ค๊ฐ€
11:23
and not join.
265
683260
2000
๊ฒฐ๊ตญ ๊ฐ€์ž…ํ•˜์ง€ ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:25
And last, we talked about loss aversion,
266
685260
2000
๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ, ์šฐ๋ฆฌ๋Š” ์ƒ์‹ค ํ˜์˜ค ๊ทธ๋ฆฌ๊ณ 
11:27
and the monkeys and the apples.
267
687260
2000
์›์ˆญ์ด์™€ ์‚ฌ๊ณผ์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐํ–ˆ์Šต๋‹ˆ๋‹ค.
11:29
If people frame mentally
268
689260
3000
๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด ์€ํ‡ด๋ฅผ ์œ„ํ•ด ์ €์ถ•ํ•˜๋Š” ๊ฒƒ์„
11:32
saving for retirement as a loss,
269
692260
3000
์ •์‹ ์ ์œผ๋กœ ์†์‹ค์ด๋ผ๊ณ  ์—ฌ๊ธฐ๊ฒŒ ๋œ๋‹ค๋ฉด,
11:35
they're not going to be saving for retirement.
270
695260
3000
๊ทธ๋“ค์€ ์ ˆ๋Œ€ ์€ํ‡ด๋ฅผ ์œ„ํ•ด ์ €์ถ•์„ ํ•˜์ง€ ์•Š์„๊ฒ๋‹ˆ๋‹ค.
11:38
So we've got these challenges,
271
698260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ์—๊ฒŒ๋Š” ์ด๋Ÿฌํ•œ ๋„์ „๋“ค์ด ์žˆ์—ˆ๊ณ ,
11:40
and what Richard Thaler and I
272
700260
2000
๊ทธ๋ž˜์„œ ๋ฆฌ์ฒ˜๋“œ ํ…Œ์ผ๋Ÿฌ์™€ ์ œ๊ฐ€
11:42
were always fascinated by --
273
702260
2000
์–ธ์ œ๋‚˜ ๊ด€์‹ฌ์„ ๊ฐ€์กŒ๋˜ ๊ฒƒ์€--
11:44
take behavioral finance,
274
704260
2000
๊ธฐ์กด์˜ ์ผ๋ฐ˜์ ์ธ ํ–‰๋™ ๊ธˆ์œตํ•™์ด ์•„๋‹ˆ๋ผ
11:46
make it behavioral finance on steroids
275
706260
2000
ํ–‰๋™ ๊ธˆ์œตํ•™์ด ์•„์ฃผ ๊ฐ•๋ ฅํ•˜๊ณ  ํ™•์žฅ๋œ ๋ฒ„์ „
11:48
or behavioral finance 2.0
276
708260
2000
๋˜๋Š” ํ–‰๋™ ๊ธˆ์œต 2.0 ๋ถˆ๋ฆฌ์šธ ์ˆ˜ ์žˆ์„๊นŒ์š”
11:50
or behavioral finance in action --
277
710260
2000
์•„๋ฌดํŠผ '์‹ค์ฒœํ•˜๋Š” ํ–‰๋™ ๊ธˆ์œต'์œผ๋กœ ๋งŒ๋“œ๋Š” ๊ฒƒ-- ์ด์—ˆ์ฃ .
11:52
flip the challenges into solutions.
278
712260
4000
๋„์ „์„ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ์ „ํ™˜ํ•˜์„ธ์š”.
11:56
And we came up with an embarrassingly simple solution
279
716260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” '๋” ์ €์ถ•ํ•˜์„ธ์š”, ์˜ค๋Š˜์ด ์•„๋‹ˆ๊ณ , ๋‚ด์ผ์—'๋ผ๊ณ  ํ•˜๋Š”
11:59
called Save More, not today, Tomorrow.
280
719260
4000
๋ฏผ๋งํ• ๋งŒํผ ๋‹จ์ˆœํ•œ ํ•ด๊ฒฐ์ฑ…์— ๋‹ค๋‹ค๋ฅด๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
12:03
How is it going to solve the challenges
281
723260
2000
์–ด๋–ป๊ฒŒ ์ด ๋ฐฉ๋ฒ•์ด ์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ๊นŒ์ง€ ์ด์•ผ๊ธฐํ–ˆ๋˜
12:05
we chatted about?
282
725260
2000
๊ทธ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ• ๊นŒ์š”?
12:07
If you think about the problem
283
727260
2000
๋งŒ์ผ ์—ฌ๋Ÿฌ๋ถ„์ด
12:09
of bananas versus chocolates,
284
729260
2000
๋ฐ”๋‚˜๋‚˜ ๋Œ€ ์ดˆ์ฝœ๋ ›์˜ ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋‹ค์‹œ ๋– ์˜ฌ๋ฆฐ๋‹ค๋ฉด,
12:11
we think we're going to eat bananas next week.
285
731260
3000
์šฐ๋ฆฌ๋Š” ๋‹ค์Œ์ฃผ์— ๋ฐ”๋‚˜๋‚˜๋ฅผ ๋จน์„ ๊ฒƒ์ด๋ผ๊ณ  '์ƒ๊ฐ'ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:14
We think we're going to save more next year.
286
734260
3000
์šฐ๋ฆฌ๋Š” ๋‚ด๋…„์—” ๋”์šฑ ๋งŽ์ด ์ €์ถ•ํ•  ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
12:17
Save More Tomorrow
287
737260
3000
'๋‚ด์ผ ๋” ๋งŽ์ด ์ €์ถ•ํ•˜์ž'๋Š” ๊ฒƒ์€
12:20
invites employees
288
740260
2000
์•„๋งˆ๋„ ๋‚ด๋…„์— ๋” ๋งŽ์ด ์ €์ถ•์„ ํ•˜๊ณ  ์‹ถ์€
12:22
to save more maybe next year --
289
742260
2000
๋งŽ์€ ๊ทผ๋กœ์ž๋“ค์˜ ์ด๋ชฉ์„ ๋Œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:24
sometime in the future
290
744260
2000
๋•Œ๋กœ๋Š” ์–ด๋–ค ๋ง‰์—ฐํ•œ ๋ฏธ๋ž˜๊ฐ€ ๋  ์ˆ˜๋„ ์žˆ๊ฒ ์ฃ .
12:26
when we can imagine ourselves
291
746260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ฏธ๋ž˜์˜ ์šฐ๋ฆฌ ๋ชจ์Šต์„ ์ƒ์ƒํ•  ๋•Œ
12:28
eating bananas,
292
748260
2000
๋ฐ”๋‚˜๋‚˜๋ฅผ ๋จน๊ฑฐ๋‚˜,
12:30
volunteering more in the community,
293
750260
2000
๊ณต๋™์ฒด์—์„œ ๋” ๋งŽ์€ ์ž์›๋ด‰์‚ฌ๋ฅผ ํ•˜๊ฑฐ๋‚˜,
12:32
exercising more and doing all the right things on the planet.
294
752260
4000
์šด๋™์„ ๋” ๋งŽ์ด ํ•˜๋Š” ๋“ฑ ์ด ์ง€๊ตฌ์—์„œ ๋ชจ๋“  ์ข‹์€ ์ผ๋“ค์„ ํ•˜๊ฒŒ ๋œ๋‹ค๋ฉด์š”.
12:36
Now we also talked about checking the box
295
756260
3000
์ž, ์šฐ๋ฆฌ๋Š” ๋˜ํ•œ ๋ฐ•์Šค์— ์ฒดํฌํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐํ–ˆ๊ณ 
12:39
and the difficulty of taking action.
296
759260
3000
์‹ค์ฒœํ•˜๋Š” ๊ฒƒ์˜ ์–ด๋ ค์›€์— ๋Œ€ํ•ด ์ด์•ผ๊ธฐ ํ–ˆ์Šต๋‹ˆ๋‹ค.
12:42
Save More Tomorrow
297
762260
2000
'๋‚ด์ผ ๋” ๋งŽ์ด ์ €์ถ•ํ•˜์ž'๋Š”
12:44
makes it easy.
298
764260
2000
์ด๊ฒƒ์„ ์‰ฝ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
12:46
It's an autopilot.
299
766260
2000
๋งˆ์น˜ ์ž๋™์šดํ–‰์žฅ์น˜ ๊ฐ™๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:48
Once you tell me you would like to save more in the future,
300
768260
4000
์ผ๋‹จ ์—ฌ๋Ÿฌ๋ถ„์ด ์ œ๊ฒŒ ๋ฏธ๋ž˜์— ๋” ๋งŽ์ด ์ €์ถ•ํ•˜๊ณ  ์‹ถ๋‹ค๊ณ  ๋งํ•˜๋ฉด,
12:52
let's say every January
301
772260
2000
๋งค๋…„ 1์›”์ด๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค
12:54
you're going to be saving more automatically
302
774260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ์ž๋™์ ์œผ๋กœ ์ข€ ๋” ์ €์ถ•ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๊ณ 
12:57
and it's going to go away from your paycheck to the 401(k) plan
303
777260
3000
์ฆ‰๊ฐ์ ์ธ ๋ณด์ƒ์˜
13:00
before you see it, before you touch it,
304
780260
2000
๋ฌธ์ œ์— ์—ฌ๋Ÿฌ๋ถ„์ด ๋น ์ ธ๋“ค๊ธฐ ์ด์ „์—
13:02
before you get the issue
305
782260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ๋ณด๊ธฐ ์ด์ „์—, ์—ฌ๋Ÿฌ๋ถ„์ด ๋งŒ์ง€๊ธฐ ์ด์ „์—
13:04
of immediate gratification.
306
784260
3000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋ด‰๊ธ‰์—์„œ 401(k) ์ ๋ฆฝ์ œ๋กœ ์‚ฌ๋ผ์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:07
But what are we going to do about the monkeys
307
787260
3000
ํ•˜์ง€๋งŒ ์›์ˆญ์ด๋“ค์— ๋Œ€ํ•ด์„œ๋Š” ์–ด๋–ป๊ฒŒ ํ• ๊นŒ์š”?
13:10
and loss aversion?
308
790260
2000
์ƒ์‹ฌ ํ˜์˜ค์— ๋Œ€ํ•ด์„œ๋Š”์š”.
13:12
Next January comes
309
792260
2000
1์›”์ด ๋‹ค๊ฐ€์˜ค๊ณ 
13:14
and people might feel that if they save more,
310
794260
2000
๋” ๋งŽ์ด ์ €์ถ•ํ•ด์•ผ ํ•œ๋‹ค๋ฉด,
13:16
they have to spend less, and that's painful.
311
796260
3000
์‚ฌ๋žŒ๋“ค์€ ๋œ ์†Œ๋น„ํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ๊ฒƒ์„ ๊ณ ํ†ต์Šค๋Ÿฝ๊ฒŒ ์—ฌ๊ธธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:20
Well, maybe it shouldn't be just January.
312
800260
2000
๊ธ€์Ž„์š”, ๊ทธ๋Ÿผ ๊ผญ 1์›”๋งŒ์€ ์•„๋‹ˆ์–ด์•ผ๊ฒ ๋„ค์š”.
13:22
Maybe we should make people save more
313
802260
3000
์•„๋งˆ๋„ ์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค์ด ๋” ๋งŽ์€ ๋ˆ์„ ๋” ๋ฒŒ๊ฒŒ ๋˜๋ฉด
13:25
when they make more money.
314
805260
3000
๋” ๋งŽ์ด ์ €์ถ•ํ•˜๋„๋ก ํ•ด์•ผํ• ์ง€ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
13:28
That way, when they make more money, when they get a pay raise,
315
808260
3000
๊ทธ๋Ÿฐ์‹์œผ๋กœ, ๋ˆ์„ ๋” ๋ฒŒ๊ฒŒ ๋  ๋•Œ, ๋ด‰๊ธ‰์ด ์ธ์ƒ๋  ๋•Œ,
13:31
they don't have to cut their spending.
316
811260
4000
์‚ฌ๋žŒ๋“ค์€ ์†Œ๋น„๋ฅผ ์ค„์ด์ง€ ์•Š์•„๋„ ๋ฉ๋‹ˆ๋‹ค.
13:35
They take a little bit
317
815260
2000
๊ทธ๋“ค์€ ๋ด‰๊ธ‰ ์ธ์ƒ๋ถ„์˜
13:37
of the increase in the paycheck home
318
817260
2000
์•ฝ๊ฐ„์„ ๊ฐ€์ ธ๊ฐ€์„œ
13:39
and spend more --
319
819260
2000
์†Œ๋น„๋ฅผ ๋”ํ•˜๊ณ --
13:41
take a little bit of the increase
320
821260
2000
๋‹ค๋ฅธ ์ธ์ƒ๋ถ„์˜ ์•ฝ๊ฐ„์€
13:43
and put it in a 401(k) plan.
321
823260
2000
401(k) ๊ณ„ํš์— ์ง‘์–ด๋„ฃ๋Š” ๊ฒ๋‹ˆ๋‹ค.
13:45
So that is the program,
322
825260
2000
์ด๊ฒŒ ์ €ํฌ์˜ ํ”„๋กœ๊ทธ๋žจ์ž…๋‹ˆ๋‹ค.
13:47
embarrassingly simple,
323
827260
2000
๋ฏผ๋งํ•  ์ •๋„๋กœ ๋‹จ์ˆœํ•˜์ง€๋งŒ,
13:49
but as we're going to see,
324
829260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ฒ˜๋Ÿผ,
13:51
extremely powerful.
325
831260
2000
๊ทน๋„๋กœ ๊ฐ•๋ ฅํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
13:53
We first implemented it,
326
833260
2000
์šฐ๋ฆฌ๊ฐ€ ์ฒ˜์Œ ์ด ํ”„๋กœ๊ทธ๋žจ์„ ์‹œ์ž‘ํ–ˆ์„ ๋•Œ๋Š”
13:55
Richard Thaler and I,
327
835260
2000
1998๋…„์ด์—ˆ๋Š”๋ฐ์š”,
13:57
back in 1998.
328
837260
3000
๋ฆฌ์ฒ˜๋“œ ํ…Œ์ผ๋Ÿฌ์™€ ์ €๋Š”,
14:00
Mid-sized company in the Midwest,
329
840260
3000
์ค‘์„œ๋ถ€์— ์œ„์น˜ํ•œ ์ค‘๊ฐ„๊ทœ๋ชจ์˜ ํšŒ์‚ฌ์˜
14:03
blue collar employees
330
843260
2000
๋ธ”๋ฃจ์นผ๋ผ ๋…ธ๋™์ž๋“ค์„ ๋งŒ๋‚ฌ๊ณ 
14:05
struggling to pay their bills
331
845260
2000
๊ทธ๋“ค์€ ๊ณ ์ง€์„œ๋ฅผ ๊ฒจ์šฐ ๋‚ด๊ณ  ์žˆ๋‹ค๋ฉฐ
14:07
repeatedly told us
332
847260
2000
์šฐ๋ฆฌ์—๊ฒŒ ๋Š์ž„์—†๊ธฐ ์ด์•ผ๊ธฐํ•˜๋Š” ๊ฒƒ์€
14:09
they cannot save more right away.
333
849260
3000
๋‹น์žฅ ์ €์ถ•์„ ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:12
Saving more today is not an option.
334
852260
3000
์˜ค๋Š˜ ๋” ์ €์ถ•ํ•˜๋Š” ๊ฒƒ์€ ์„ ํƒ์‚ฌํ•ญ์ด ์•„๋‹™๋‹ˆ๋‹ค.
14:15
We invited them to save
335
855260
2000
์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค์ด
14:17
three percentage points more
336
857260
3000
๋ด‰๊ธ‰์ธ์ƒ์„ ๋ฐ›์„๋•Œ๋งˆ๋‹ค
14:20
every time they get a pay raise.
337
860260
3000
3ํผ์„ผํŠธ๋ฅผ ๋” ์ €์ถ•ํ•˜๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
14:23
And here are the results.
338
863260
3000
๊ทธ๋ฆฌ๊ณ  ์—ฌ๊ธฐ์— ๊ทธ ๊ฒฐ๊ณผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
14:26
We're seeing here a three and a half-year period,
339
866260
2000
์šฐ๋ฆฌ๋Š” ์—ฌ๊ธฐ์—์„œ 3๋…„ ๋ฐ˜์˜ ๊ธฐ๊ฐ„ ๋™์•ˆ
14:28
four pay raises,
340
868260
2000
๋ด‰๊ธ‰ ์ธ์ƒ์ด ๋„ค ๋ฒˆ ์žˆ์—ˆ๊ณ ,
14:30
people who were struggling to save,
341
870260
2000
์ €์ถ•ํ•˜๋Š” ๊ฒƒ์„ ํž˜๋“ค์–ดํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ด
14:32
were saving three percent of their paycheck,
342
872260
2000
๊ทธ๋“ค์˜ ๋ด‰๊ธ‰์—์„œ 3ํผ์„ผํŠธ๋ฅผ ์ €์ถ•ํ–ˆ์„ ๋•Œ
14:34
three and a half years later
343
874260
2000
3๋…„ ๋ฐ˜ ํ›„์—
14:36
saving almost four times as much,
344
876260
3000
๊ฑฐ์˜ 4๋ฐฐ์ธ 14ํผ์„ผํŠธ ๋งŒํผ
14:39
almost 14 percent.
345
879260
3000
์ €์ถ•ํ•œ ๊ฒƒ์„ ๋ณด๊ณ  ๊ณ„์‹ญ๋‹ˆ๋‹ค.
14:42
And there's shoes and bicycles
346
882260
2000
์‹ ๋ฐœ๊ณผ ์ž์ „๊ฑฐ์™€ ๊ฐ™์€
14:44
and things on this chart
347
884260
2000
๋ฌผ๊ฑด๋“ค์ด ์ด ์ฐจํŠธ์— ์žˆ๋Š”๋ฐ
14:46
because I don't want to just throw numbers
348
886260
2000
์ด๊ฒƒ์€ ์ œ๊ฐ€ ๊ทธ์ € ๊ณต์ค‘์—๋‹ค๊ฐ€
14:48
in a vacuum.
349
888260
2000
์ˆซ์ž๋งŒ ๋˜์ ธ๋†“๊ธฐ๋ฅผ ์›ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
14:50
I want, really, to think about the fact
350
890260
3000
์ €๋Š”, ์ง„์ •์œผ๋กœ,
14:53
that saving four times more
351
893260
2000
๋„ค ๋ฐฐ ๋” ๋งŽ์ด ์ €์ถ•ํ•˜๋Š” ๊ฒƒ์ด
14:55
is a huge difference
352
895260
2000
์‚ฌ๋žŒ๋“ค์ด ๊ฐ€์งˆ ์ˆ˜ ์žˆ์„
14:57
in terms of the lifestyle
353
897260
2000
๋ผ์ดํ”„์Šคํƒ€์ผ์— ์žˆ์–ด์„œ
14:59
that people will be able to afford.
354
899260
2000
์ปค๋‹ค๋ž€ ์ฐจ์ด์ ์„ ๊ฐ€์ ธ๋‹ค ์ค„ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
15:01
It's real.
355
901260
2000
์ด๊ฒƒ์€ ํ˜„์‹ค์ž…๋‹ˆ๋‹ค.
15:03
It's not just numbers on a piece of paper.
356
903260
3000
๊ทธ๊ฑด ๋‹จ์ง€ ์ข…์ด ์กฐ๊ฐ์— ์ ํžŒ ์ˆซ์ž๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
15:06
Whereas with saving three percent,
357
906260
2000
3ํผ์„ผํŠธ ์ €์ถ•ํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋Š”
15:08
people might have to add nice sneakers
358
908260
2000
์‚ฌ๋žŒ๋“ค์ด ๋ฉ‹์ง„ ์šด๋™ํ™”๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์„ํ…๋ฐ
15:10
so they can walk,
359
910260
2000
๊ทธ๊ฒƒ์„ ์‹ ๊ณ  ๊ฑธ์„ ์ˆ˜ ์žˆ๊ฒ ์ฃ .
15:12
because they won't be able to afford anything else,
360
912260
4000
์™œ๋ƒํ•˜๋ฉด ๊ทธ๊ฒƒ ์™ธ์—๋Š” ๋‹ค๋ฅธ ์–ด๋–ค ๊ฒƒ๋„ ์‚ด ์ˆ˜๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
15:16
when they save 14 percent
361
916260
2000
ํ•˜์ง€๋งŒ ์‚ฌ๋žŒ๋“ค์ด 14ํผ์„ผํŠธ๋ฅผ ์ €์ถ•ํ•˜๊ฒŒ ๋˜๋ฉด
15:18
they might be able to maybe have nice dress shoes
362
918260
3000
๊ทธ๋“ค์€ ์ฐจ๊นŒ์ง€ ๊ฑธ์–ด๊ฐˆ
15:21
to walk to the car to drive.
363
921260
3000
๋ฉ‹์ง„ ๊ตฌ๋‘๋ฅผ ์‚ด ์ˆ˜ ์žˆ๊ฒŒ ๋ ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
15:24
This is a real difference.
364
924260
2000
๊ทธ๊ฒƒ์€ ์ •๋ง ํ˜„์‹ค์ ์ธ ์ฐจ์ด์ž…๋‹ˆ๋‹ค.
15:26
By now, about 60 percent of the large companies
365
926260
5000
ํ˜„์žฌ, ์‹ค์ œ๋กœ ์ด๊ฐ™์€ ํ”„๋กœ๊ทธ๋žจ์„ ์ง„ํ–‰์ค‘์ธ
15:31
actually have programs like this in place.
366
931260
3000
๋Œ€๊ธฐ์—…๋“ค์€ ์•ฝ 60ํผ์„ผํŠธ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
15:34
It's been part of the Pension Protection Act.
367
934260
3000
๊ทธ๊ฒƒ์€ ์—ฐ๊ธˆ๋ณดํ˜ธ๋ฒ•๋ฅ ์˜ ์ผํ™˜์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
15:37
And needless to say that Thaler and I
368
937260
2000
๊ทธ๋ฆฌ๊ณ  ๋งํ•  ํ•„์š”๋„ ์—†์ด ํ…Œ์ผ๋Ÿฌ์™€ ์ €๋Š”
15:39
have been blessed to be part of this program
369
939260
3000
์ด ํ”„๋กœ๊ทธ๋žจ์— ์ฐธ์—ฌํ•˜๊ฒŒ ๋˜๋Š” ์˜๊ด‘์„ ๋ˆ„๋ ธ๊ณ ,
15:42
and make a difference.
370
942260
2000
์•„์‹œ๋‹ค์‹œํ”ผ ๊ทธ๋กœ ์ธํ•ด ํฐ ์ฐจ์ด๊ฐ€ ์žˆ์—ˆ์ฃ .
15:44
Let me wrap
371
944260
2000
๋‘๊ฐ€์ง€์˜ ํ•ต์‹ฌ ๋ฉ”์‹œ์ง€๋กœ
15:46
with two key messages.
372
946260
3000
๋งˆ๊ฐ์„ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
15:49
One is behavioral finance
373
949260
3000
ํ•˜๋‚˜๋Š” ํ–‰๋™ ๊ธˆ์œต์ด
15:52
is extremely powerful.
374
952260
3000
์—„์ฒญ๋‚˜๊ฒŒ ๊ฐ•๋ ฅํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:55
This is just one example.
375
955260
3000
์ด๊ฒƒ์€ ๋‹จ์ง€ ํ•˜๋‚œ์˜ ์˜ˆ์ž…๋‹ˆ๋‹ค.
15:58
Message two
376
958260
2000
๋‘๋ฒˆ์งธ ๋ฉ”์‹œ์ง€๋Š”
16:00
is there's still a lot to do.
377
960260
2000
์—ฌ์ „ํžˆ ํ•  ์ผ์ด ๋งŽ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:02
This is really the tip of the iceberg.
378
962260
3000
์ด๊ฒƒ์€ ์ •๋ง ๋น™์‚ฐ์˜ ์ผ๊ฐ์ž…๋‹ˆ๋‹ค.
16:05
If you think about people and mortgages
379
965260
3000
์‚ฌ๋žŒ๋“ค์ด ๊ฐš์„ ์ˆ˜๋„ ์—†๋Š” ๋Œ€์ถœ๊ธˆ์„ ๋ฐ›์•„
16:08
and buying houses and then not being able to pay for it,
380
968260
3000
๊ณผ๋ถ„ํ•œ ์ง‘์„ ์‚ฌ๋Š” ๊ฒƒ์— ๋Œ€ํ•ด์„œ
16:11
we need to think about that.
381
971260
2000
์šฐ๋ฆฌ๋Š” ์ •๋ง ์ง„์ง€ํ•˜๊ฒŒ ์ƒ๊ฐํ•ด ๋ณผ ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
16:13
If you're thinking about people taking too much risk
382
973260
3000
๋งŒ์ผ ์‚ฌ๋žŒ๋“ค์ด ๋„ˆ๋ฌด ๋งŽ์€ ์œ„ํ—˜์„ ๊ฐ์ˆ˜ํ•˜๋ฉด์„œ๋„
16:16
and not understanding how much risk they're taking
383
976260
3000
์ž์‹ ๋“ค์ด ์–ผ๋งˆ๋‚˜ ํฐ ์œ„ํ—˜์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š”์ง€ ๋ชจ๋ฅด๋Š” ๊ฒƒ
16:19
or taking too little risk,
384
979260
2000
๋˜๋Š” ๋„ˆ๋ฌด ์ ์€ ์œ„๊ธฐ๋ฅผ ๊ฐ์ˆ˜ํ•˜๋Š” ๊ฒƒ
16:21
we need to think about that.
385
981260
2000
๊ทธ๊ฒƒ์— ๋Œ€ํ•ด์„œ๋„ ์ƒ๊ฐํ•ด ๋ณผ ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
16:23
If you think about people spending a thousand dollars a year
386
983260
3000
๋งŒ์ผ ์—ฌ๋Ÿฌ๋ถ„์ด ์‚ฌ๋žŒ๋“ค์ด ์ผ๋…„์— ๋ณต๊ถŒ์„ ์‚ฌ๋Š”๋ฐ
16:26
on lottery tickets,
387
986260
2000
1,000๋‹ฌ๋Ÿฌ์”ฉ์ด๋‚˜ ์†Œ๋น„ํ•˜๋Š” ๊ฒƒ์„ ์•ˆ๋‹ค๋ฉด,
16:28
we need to think about that.
388
988260
2000
์šฐ๋ฆฌ๋Š” ๊ทธ๊ฒƒ์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด ๋ณผ ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
16:30
The average actually,
389
990260
2000
์‹ค์ œ๋กœ ์ด ํ‰๊ท  ์ˆ˜์น˜๋Š”
16:32
the record is in Singapore.
390
992260
2000
์‹ฑ๊ฐ€ํฌ๋ฅด์˜ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:34
The average household
391
994260
2000
์‚ฌ์‹ค ๋ฏธ๊ตญ๋‚ด ํ‰๊ท  ๊ฐ€์ •์€
16:36
spends $4,000 a year on lottery tickets.
392
996260
3000
1๋…„์— ๋ณต๊ถŒ์„ ์‚ฌ๋Š” ๋ฐ 4,000๋ถˆ์„ ์†Œ๋น„ํ•ฉ๋‹ˆ๋‹ค.
16:39
We've got a lot to do,
393
999260
2000
์šฐ๋ฆฌ๋Š” ํ•  ์ผ์ด ์•„์ฃผ ๋งŽ๊ณ ,
16:41
a lot to solve,
394
1001260
2000
ํ’€์–ด์•ผ ํ•  ๋ฌธ์ œ๋“ค์ด ์‚ฐ์ ํ•ด ์žˆ์œผ๋ฉฐ,
16:43
also in the retirement area
395
1003260
3000
๋˜ํ•œ ์€ํ‡ด ๋ถ„์•ผ์—์„œ
16:46
when it comes to what people do with their money
396
1006260
2000
์€ํ‡ด ์ดํ›„์— ์‚ฌ๋žŒ๋“ค์ด ๊ทธ๋“ค์˜ ํ‡ด์ง๊ธˆ์œผ๋กœ
16:48
after retirement.
397
1008260
2000
๋ฌด์—‡์„ ํ•  ๊ฒƒ์ธ๊ฐ€์— ๋Œ€ํ•ด์„œ๋„ ์•Œ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
16:50
One last question:
398
1010260
2000
๋งˆ์ง€๋ง‰ ์งˆ๋ฌธ์ž…๋‹ˆ๋‹ค:
16:52
How many of you feel comfortable
399
1012260
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค์ค‘ ์–ผ๋งˆ๋‚˜ ๋งŽ์€๋ถ„์ด
16:55
that as you're planning for retirement
400
1015260
2000
์€ํ‡ด๋ฅผ ๊ณ„ํšํ•˜๋Š” ๋ฐ์— ์žˆ์–ด์„œ
16:57
you have a really solid plan
401
1017260
3000
์ •๋ง๋กœ ๋“ ๋“ ํ•œ ๊ณ„ํš์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ๋งˆ์Œ์ด ํŽธํ•˜์‹ญ๋‹ˆ๊นŒ?
17:00
when you're going to retire,
402
1020260
2000
์ •๋ง ์€ํ‡ดํ•˜๊ฒŒ ๋  ๋•Œ,
17:02
when you're going to claim Social Security benefits,
403
1022260
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์‚ฌํšŒ ๋ณด์žฅ ํ˜œํƒ์„ ์š”๊ตฌํ•˜๊ฒŒ ๋  ๋•Œ,
17:05
what lifestyle to expect,
404
1025260
2000
์–ด๋–ค ๋ผ์ดํ”„์Šคํƒ€์ผ์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๊ฐ€ ํ™•์‹คํ•œ๊ฐ€์š”?
17:07
how much to spend every month
405
1027260
2000
๋งค๋‹ฌ ์–ผ๋งˆ๋ฅผ ์จ์•ผ ํ• ๊นŒ์š”?
17:09
so you're not going to run out of money?
406
1029260
2000
๋ˆ์ด ๋–จ์–ด์ง€์ง€ ์•Š์œผ๋ ค๋ฉด์š”.
17:11
How many of you feel you have a solid plan for the future
407
1031260
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค ์ค‘ ๋ช‡ ๋ถ„์ด๋‚˜ ์€ํ‡ด ํ›„์— ํ•˜๊ฒŒ ๋  ๊ฒฐ์ •๋“ค์— ๋Œ€ํ•ด
17:14
when it comes to post-retirement decisions.
408
1034260
4000
๋“ ๋“ ํ•œ ๊ณ„ํš์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๊นŒ?
17:19
One, two, three, four.
409
1039260
3000
ํ•˜๋‚˜, ๋‘˜, ์…‹, ๋„ท.
17:22
Less than three percent
410
1042260
2000
์•„์ฃผ ์ˆ˜์ค€ ๋†’์€ ๊ด€์ค‘๋“ค์—๊ฒŒ์„œ๋„
17:24
of a very sophisticated audience.
411
1044260
2000
3ํผ์„ผํŠธ ์ดํ•˜์ž…๋‹ˆ๋‹ค.
17:26
Behavioral finance has a long way.
412
1046260
3000
ํ–‰๋™ ๊ธˆ์œต์€ ๊ฐˆ ๊ธธ์ด ๋ฉ‰๋‹ˆ๋‹ค.
17:29
There's a lot of opportunities
413
1049260
2000
๊ทธ๊ฒƒ์„ ๋‹ค์‹œ, ๋˜ ๋‹ค์‹œ ๊ฐ•๋ ฅํ•˜๊ฒŒ ๋งŒ๋“ค
17:31
to make it powerful again and again and again.
414
1051260
4000
๋งŽ์€ ๊ธฐํšŒ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
17:35
Thank you.
415
1055260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
17:37
(Applause)
416
1057260
2000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7