Hans Rosling: Let my dataset change your mindset

154,970 views ใƒป 2009-08-31

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yifat Adler ืžื‘ืงืจ: Ido Dekkers
00:16
I'm going to talk about your mindset.
0
16160
4000
ืื ื™ ืขื•ืžื“ ืœื“ื‘ืจ ืขืœ ื“ืคื•ืกื™ ื”ื—ืฉื™ื‘ื” ืฉืœื›ื.
00:20
Does your mindset correspond to my dataset?
1
20160
4000
ื”ืื ื“ืคื•ืกื™ ื”ื—ืฉื™ื‘ื” ืฉืœื›ื ืชื•ืืžื™ื ืœื ืชื•ื ื™ื ืฉื‘ืจืฉื•ืชื™?
00:24
(Laughter)
2
24160
1000
[ืฆื—ื•ืง]
00:25
If not, one or the other needs upgrading, isn't it?
3
25160
3000
ืื ื”ื ืœื ืชื•ืืžื™ื, ืื– ืฆืจื™ืš ืœืฉื“ืจื’ ืื—ื“ ืžื”ื.
00:28
When I talk to my students about global issues,
4
28160
4000
ื›ืฉืื ื™ ืžืจืฆื” ืœืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™ ืขืœ ื ื•ืฉืื™ื ื’ืœื•ื‘ืœื™ื™ื,
00:32
and I listen to them in the coffee break,
5
32160
2000
ื•ืžืงืฉื™ื‘ ืœื”ื ื‘ื”ืคืกืงืช ื”ืงืคื”,
00:34
they always talk about "we" and "them."
6
34160
3000
ื”ื ืชืžื™ื“ ืžื“ื‘ืจื™ื ืขืœ "ืื ื—ื ื•" ื•ืขืœ "ื”ื".
00:37
And when they come back into the lecture room
7
37160
3000
ื•ื›ืืฉืจ ื”ื ื—ื•ื–ืจื™ื ืœื—ื“ืจ ื”ื”ืจืฆืื•ืช
00:40
I ask them, "What do you mean with "we" and "them"?
8
40160
2000
ืื ื™ ืฉื•ืืœ ืื•ืชื, "ืžื™ ื–ื” 'ืื ื—ื ื•' ื•'ืืชื'?"
00:42
"Oh, it's very easy. It's the western world and it's the developing world," they say.
9
42160
3000
"ืื•ื”, ื–ื” ืงืœ ืžืื•ื“. ื–ื” ื”ืขื•ืœื ื”ืžืขืจื‘ื™, ื•ื–ื” ื”ืขื•ืœื ื”ืžืชืคืชื—," ื”ื ืื•ืžืจื™ื.
00:45
"We learned it in college."
10
45160
2000
"ืœืžื“ื ื• ืืช ื–ื” ื‘ืงื•ืœื’'."
00:47
And what is the definition then? "The definition?
11
47160
2000
-"ืื– ืžื” ื”ื”ื’ื“ืจื”? " -"ื”ื”ื’ื“ืจื”?
00:49
Everyone knows," they say.
12
49160
2000
ื›ื•ืœื ื™ื•ื“ืขื™ื," ื”ื ืื•ืžืจื™ื.
00:51
But then you know, I press them like this.
13
51160
2000
ืื‘ืœ ืื ื™ ืงืฆืช ืœื•ื—ืฅ ืขืœื™ื”ื.
00:53
So one girl said, very cleverly, "It's very easy.
14
53160
2000
ื•ื‘ื—ื•ืจื” ืื—ืช ืืžืจื” ื‘ื—ื•ื›ืžื” ืจื‘ื”, "ื–ื” ืคืฉื•ื˜ ืžืื•ื“.
00:55
Western world is a long life in a small family.
15
55160
3000
ื”ืขื•ืœื ื”ืžืขืจื‘ื™ ื”ื•ื ื—ื™ื™ื ืืจื•ื›ื™ื ื‘ืžืฉืคื—ื” ืงื˜ื ื”.
00:58
Developing world is a short life in a large family."
16
58160
3000
ื”ืขื•ืœื ื”ืžืชืคืชื— ื”ื•ื ื—ื™ื™ื ืงืฆืจื™ื ื‘ืžืฉืคื—ื” ื’ื“ื•ืœื”."
01:01
And I like that definition, because it enabled me
17
61160
3000
ื•ืื ื™ ืื•ื”ื‘ ืืช ื”ื”ื’ื“ืจื” ื”ื–ืืช ื›ื™ ื”ื™ื ืื™ืคืฉืจื” ืœื™
01:04
to transfer their mindset
18
64160
2000
ืœื”ืคื•ืš ืืช ื“ืคื•ืกื™ ื”ื—ืฉื™ื‘ื” ืฉืœื”ื
01:06
into the dataset.
19
66160
2000
ืœืื•ืกืฃ ืฉืœ ื ืชื•ื ื™ื.
01:08
And here you have the dataset.
20
68160
2000
ื•ืืœื• ื”ื ืชื•ื ื™ื ืžื•ืฆื’ื™ื ื‘ืคื ื™ื›ื.
01:10
So, you can see that what we have on this axis here
21
70160
2000
ืขืœ ื”ืฆื™ืจ ื”ื–ื” ื›ืืŸ ืžื•ืคื™ืข
01:12
is size of family. One, two, three, four, five
22
72160
3000
ื’ื•ื“ืœ ื”ืžืฉืคื—ื”. 1, 2, 3, 4, 5
01:15
children per woman on this axis.
23
75160
2000
ื™ืœื“ื™ื ืœืืฉื” ืขืœ ื”ืฆื™ืจ ื”ื–ื”.
01:17
And here, length of life, life expectancy,
24
77160
2000
ื•ื›ืืŸ, ืื•ืจืš ื”ื—ื™ื™ื, ืชื•ื—ืœืช ื”ื—ื™ื™ื,
01:19
30, 40, 50.
25
79160
2000
30, 40, 50.
01:21
Exactly what the students said was their concept about the world.
26
81160
4000
ื‘ื“ื™ื•ืง ืžื” ืฉื”ืกื˜ื•ื“ื ื˜ื™ื ืืžืจื• ืœื’ื‘ื™ ื”ืชืคื™ืกื” ืฉืœื”ื ืฉืœ ื”ืขื•ืœื.
01:25
And really this is about the bedroom.
27
85160
2000
ื•ืื›ืŸ ืžื“ื•ื‘ืจ ืขืœ ื—ื“ืจ ื”ืžื™ื˜ื•ืช.
01:27
Whether the man and woman decide to have small family,
28
87160
4000
ื”ืื ื’ื‘ืจ ื•ืืฉื” ืžื—ืœื™ื˜ื™ื ืœื”ืงื™ื ืžืฉืคื—ื” ืงื˜ื ื”
01:31
and take care of their kids, and how long they will live.
29
91160
3000
ื•ืœื˜ืคืœ ื‘ื™ืœื“ื™ื ืฉืœื”ื, ื•ืžื” ื™ื”ื™ื” ืžืฉืš ื”ื—ื™ื™ื ืฉืœื”ื.
01:34
It's about the bathroom and the kitchen. If you have soap, water and food, you know,
30
94160
4000
ืžื“ื•ื‘ืจ ืขืœ ื—ื“ืจ ื”ืจื—ืฆื” ื•ืขืœ ื”ืžื˜ื‘ื—. ืื ื™ืฉ ืœื›ื ืกื‘ื•ืŸ, ืžื™ื ื•ืžื–ื•ืŸ
01:38
you can live long.
31
98160
2000
ื—ื™ื™ื›ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืืจื•ื›ื™ื ื™ื•ืชืจ.
01:40
And the students were right. It wasn't that the world consisted --
32
100160
2000
ื•ื”ืกื˜ื•ื“ื ื˜ื™ื ืฆื“ืงื•.
01:42
the world consisted here, of one set of countries over here,
33
102160
4000
ื”ืขื•ืœื ื”ื™ื” ืžื•ืจื›ื‘, ืžืงื‘ื•ืฆื” ืื—ืช ืฉืœ ืžื“ื™ื ื•ืช - ื›ืืŸ,
01:46
which had large families and short life. Developing world.
34
106160
4000
ื‘ื”ืŸ ื”ืžืฉืคื—ื•ืช ื’ื“ื•ืœื•ืช ื•ื”ื—ื™ื™ื ืงืฆืจื™ื - ื”ืขื•ืœื ื”ืžืชืคืชื—.
01:50
And we had one set of countries up there
35
110160
3000
ื•ื”ื™ืชื” ืœื ื• ืงื‘ื•ืฆื” ืื—ืช ืฉืœ ืžื“ื™ื ื•ืช ื›ืืŸ ืœืžืขืœื”
01:53
which was the western world.
36
113160
2000
ืฉื”ื™ื•ื•ืชื” ืืช ื”ืขื•ืœื ื”ืžืขืจื‘ื™.
01:55
They had small families and long life.
37
115160
3000
ื”ื™ื• ื‘ื”ืŸ ืžืฉืคื—ื•ืช ืงื˜ื ื•ืช ื•ื—ื™ื™ื ืืจื•ื›ื™ื.
01:58
And you are going to see here
38
118160
2000
ื•ืืชื ืขื•ืžื“ื™ื ืœืจืื•ืช ื›ืืŸ
02:00
the amazing thing that has happened in the world during my lifetime.
39
120160
4000
ืืช ื”ื“ื‘ืจ ื”ืžื“ื”ื™ื ืฉื”ืชืจื—ืฉ ื‘ืขื•ืœื ื‘ืžืฉืš ืชืงื•ืคืช ื”ื—ื™ื™ื ืฉืœื™.
02:04
Then the developing countries applied
40
124160
2000
ื”ืืจืฆื•ืช ื”ืžืชืคืชื—ื•ืช ื”ื—ืœื• ืœื”ืฉืชืžืฉ
02:06
soap and water, vaccination.
41
126160
2000
ื‘ืกื‘ื•ืŸ, ื‘ืžื™ื ื•ื‘ื—ื™ืกื•ื ื™ื.
02:08
And all the developing world started to apply family planning.
42
128160
3000
ื•ื›ืœ ื”ืขื•ืœื ื”ืžืชืคืชื— ื”ืชื—ื™ืœ ืœื™ื™ืฉื ืชื›ื ื•ืŸ ืฉืœ ื”ืžืฉืคื—ื”.
02:11
And partly to USA who help to provide
43
131160
2000
ื’ื ื”ื•ื“ื•ืช ืœืืจื”"ื‘ ืฉืžืกืคืงืช
02:13
technical advice and investment.
44
133160
3000
ืขืฆื•ืช ื˜ื›ื ื™ื•ืช ื•ื”ืฉืงืขื•ืช.
02:16
And you see all the world moves over to a two child family,
45
136160
4000
ื•ื ื™ืชืŸ ืœืจืื•ืช ืฉื›ืœ ื”ืขื•ืœื ื ืข ืœื›ื™ื•ื•ืŸ ืฉืœ ืžืฉืคื—ื•ืช ื‘ื ื•ืช 2 ื™ืœื“ื™ื,
02:20
and a life with 60 to 70 years.
46
140160
3000
ื•ืื•ืจืš ื—ื™ื™ื ืฉืœ 60 ืขื“ 70 ืฉื ื™ื.
02:23
But some countries remain back in this area here.
47
143160
3000
ืื‘ืœ ื—ืœืง ืžื”ืืจืฆื•ืช ื ืฉืืจื• ืžืื—ื•ืจ ื‘ืฉื˜ื— ื”ื–ื” ื›ืืŸ.
02:26
And you can see we still have Afghanistan down here.
48
146160
3000
ื•ื ื™ืชืŸ ืœืจืื•ืช ืฉืืคื’ื ื™ืกื˜ืŸ ืขื“ื™ื™ืŸ ื ืžืฆืืช ื›ืืŸ ืœืžื˜ื”.
02:29
We have Liberia. We have Congo.
49
149160
3000
ื•ืœื™ื‘ืจื™ื” ื•ืงื•ื ื’ื•.
02:32
So we have countries living there.
50
152160
2000
ื›ืœื•ืžืจ, ื™ืฉ ืœื ื• ืžื“ื™ื ื•ืช ื‘ืื™ื–ื•ืจ ื”ื–ื”.
02:34
So the problem I had
51
154160
2000
ื”ื‘ืขื™ื” ืฉืœื™ ื”ื™ื
02:36
is that the worldview that my students had
52
156160
4000
ืฉื ืงื•ื“ืช ื”ืžื‘ื˜ ืขืœ ื”ืขื•ืœื ืฉืœ ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™
02:40
corresponds to reality in the world
53
160160
2000
ืžืชืื™ืžื” ืœืžืฆื™ืื•ืช ื‘ืขื•ืœื
02:42
the year their teachers were born.
54
162160
3000
ื‘ืฉื ื” ื‘ื” ื”ืžื•ืจื” ืฉืœื”ื ื ื•ืœื“.
02:45
(Laughter)
55
165160
3000
[ืฆื—ื•ืง]
02:48
(Applause)
56
168160
3000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
02:51
And we, in fact, when we have played this over the world.
57
171160
3000
ื›ืฉื”ืฆื’ื ื• ืืช ื–ื” ื‘ื›ืœ ื”ืขื•ืœื...
02:54
I was at the Global Health Conference here in Washington last week,
58
174160
3000
ื”ืฉืชืชืคืชื™ ื‘ื•ืขื™ื“ืช ื”ื‘ืจื™ืื•ืช ื”ื’ืœื•ื‘ืœื™ืช ื›ืืŸ ื‘ื•ื•ืฉื™ื ื’ื˜ื•ืŸ ื‘ืฉื‘ื•ืข ืฉืขื‘ืจ,
02:57
and I could see the wrong concept
59
177160
3000
ื•ื”ื‘ื—ื ืชื™ ื‘ื›ืš ืฉื”ืชืคื™ืกื” ื”ืžื•ื˜ืขื™ืช
03:00
even active people in United States had,
60
180160
3000
ืงื™ื™ืžืช ื’ื ืืฆืœ ืื ืฉื™ื ืคืขื™ืœื™ื ื›ืืŸ ื‘ืืจื”"ื‘.
03:03
that they didn't realize the improvement
61
183160
3000
ื”ื ืœื ืžื•ื“ืขื™ื ืœื”ืชืงื“ืžื•ืช
03:06
of Mexico there, and China, in relation to United States.
62
186160
5000
ืฉืœ ืžืงืกื™ืงื• ื•ืฉืœ ืกื™ืŸ ื‘ื™ื—ืก ืœืืจื”"ื‘.
03:11
Look here when I move them forward.
63
191160
2000
ืชืจืื• ืžื” ืงื•ืจื” ื›ืฉืื ื™ ืžืจื™ืฅ ืงื“ื™ืžื”.
03:13
Here we go.
64
193160
7000
ืฉื™ืžื• ืœื‘.
03:20
They catch up. There's Mexico.
65
200160
3000
ื”ืŸ ืžืฆืžืฆืžื•ืช ืจื•ื•ื—ื™ื. ื”ื ื” ืžืงืกื™ืงื•.
03:23
It's on par with United States in these two social dimensions.
66
203160
3000
ื”ื™ื ืžืฉืชื•ื•ื” ืœืืจื”"ื‘ ื‘ืฉื ื™ ื”ืžื™ืžื“ื™ื ื”ื—ื‘ืจืชื™ื™ื ื”ืืœื”.
03:26
There was less than five percent
67
206160
2000
ืคื—ื•ืช ืž-5 ืื—ื•ื–ื™ื
03:28
of the specialists in Global Health that was aware of this.
68
208160
3000
ืžืžื•ืžื—ื™ ื”ื‘ืจื™ืื•ืช ื”ื’ืœื•ื‘ืืœื™ืช ื”ื™ื• ืžื•ื“ืขื™ื ืœื›ืš.
03:31
This great nation, Mexico,
69
211160
2000
ืœืžื“ื™ื ื” ื”ื’ื“ื•ืœื” ื”ื–ืืช, ืžืงืกื™ืงื•,
03:33
has the problem that arms are coming from North,
70
213160
3000
ื™ืฉ ื‘ืขื™ื” ืฉืœ ื ืฉืง ืฉืžื’ื™ืข ืžื”ืฆืคื•ืŸ
03:36
across the borders, so they had to stop that,
71
216160
2000
ื“ืจืš ื”ื’ื‘ื•ืœื•ืช ืฉื”ื ืจื•ืฆื™ื ืœื—ืกืœ,
03:38
because they have this strange relationship to the United States, you know.
72
218160
4000
ืฉื ื•ื‘ืขืช ืžื”ืงืฉืจ ื”ืžื•ื–ืจ ืฉืœื”ื ืขื ืืจื”"ื‘.
03:42
But if I would change this axis here,
73
222160
4000
ืื‘ืœ ืื ืืฉื ื” ืืช ื”ืฆื™ืจ ื”ื–ื”,
03:46
I would instead put income per person.
74
226160
3000
ื•ืื—ืœื™ืฃ ืื•ืชื• ื‘ื”ื›ื ืกื” ืœืื“ื.
03:49
Income per person. I can put that here.
75
229160
3000
ืื ื™ ื™ื›ื•ืœ ืœืฉื™ื ืืช ื–ื” ื›ืืŸ.
03:52
And we will then see
76
232160
2000
ื ื•ื›ืœ ืœืจืื•ืช
03:54
a completely different picture.
77
234160
2000
ืชืžื•ื ื” ืฉื•ื ื” ืœื’ืžืจื™.
03:56
By the way, I'm teaching you
78
236160
2000
ื•ื“ืจืš ืื’ื‘, ืื ื™ ืžืœืžื“ ืืชื›ื
03:58
how to use our website, Gapminder World,
79
238160
2000
ืœื”ืฉืชืžืฉ ื‘ืืชืจ ื”ืื™ื ื˜ืจื ื˜ ืฉืœื ื•, Gapminder World.
04:00
while I'm correcting this,
80
240160
2000
ืœืžื” ืื ื™ ืžืชืงืŸ ืื•ืชื•?
04:02
because this is a free utility on the net.
81
242160
3000
ื›ื™ ื–ื•ื”ื™ ืชื•ื›ื ื•ืช ืฉื™ืจื•ืช ื—ื™ื ืžื™ืช ื‘ืจืฉืช.
04:05
And when I now finally got it right,
82
245160
3000
ื•ืขื›ืฉื™ื• ื›ืฉื”ื™ื ืกื•ืฃ ืกื•ืฃ ืขื•ื‘ื“ืช ื›ืžื• ืฉืฆืจื™ืš
04:08
I can go back 200 years in history.
83
248160
4000
ืื ื™ ื™ื›ื•ืœ ืœื—ื–ื•ืจ ืื—ื•ืจื” ื‘ื”ื™ืกื˜ื•ืจื™ื” 200 ืฉื ื™ื.
04:12
And I can find United States up there.
84
252160
4000
ืื ื™ ื™ื›ื•ืœ ืœืžืฆื•ื ืืช ืืจื”"ื‘ ื›ืืŸ ืœืžืขืœื”.
04:16
And I can let the other countries be shown.
85
256160
3000
ื•ืื ื™ ื™ื›ื•ืœ ืœื”ืฆื™ื’ ืืช ืฉืืจ ื”ืžื“ื™ื ื•ืช.
04:19
And now I have income per person on this axis.
86
259160
3000
ื•ืขื›ืฉื™ื• ื™ืฉ ืœื™ ื”ื›ื ืกื” ืœืื“ื ืขืœ ื”ืฆื™ืจ ื”ื–ื”.
04:22
And United States only had some, one, two thousand dollars at that time.
87
262160
3000
ื‘ืื•ืชื” ืชืงื•ืคื” - ื‘ืืจื”"ื‘ ื”ื”ื›ื ืกื” ื”ื™ืชื” 2,000 ื“ื•ืœืจ ืœืื“ื,
04:25
And the life expectancy was 35 to 40 years,
88
265160
4000
ื•ืชื•ื—ืœืช ื”ื—ื™ื™ื ื”ื™ืชื” ื‘ื™ืŸ 35 ืœ-40 ืฉื ื™ื,
04:29
on par with Afghanistan today.
89
269160
2000
ื‘ื“ื•ืžื” ืœืืคื’ื ื™ืกื˜ืŸ ืฉืœ ื”ื™ื•ื.
04:31
And what has happened in the world, I will show now.
90
271160
5000
ืืฆื™ื’ ื‘ืคื ื™ื›ื ืžื” ืงืจื” ื‘ืขื•ืœื.
04:36
This is instead of studying history
91
276160
2000
ื‘ืžืงื•ื ืœืœืžื•ื“ ื”ื™ืกื˜ื•ืจื™ื”
04:38
for one year at university.
92
278160
2000
ื‘ืื•ื ื™ื‘ืจืกื™ื˜ื” ื‘ืžืฉืš ืฉื ื” ืฉืœืžื”,
04:40
You can watch me for one minute now and you'll see the whole thing.
93
280160
3000
ืืชื ื™ื›ื•ืœื™ื ืœื”ืงืฉื™ื‘ ืœื™ ื‘ืžืฉืš ื“ืงื” ืื—ืช ื•ืชื‘ื™ื ื• ืืช ื›ืœ ื”ืขื ื™ื™ืŸ.
04:43
(Laughter)
94
283160
2000
[ืฆื—ื•ืง]
04:45
You can see how the brown bubbles, which is west Europe,
95
285160
5000
ื ื™ืชืŸ ืœืจืื•ืช ืฉื”ื‘ื•ืขื•ืช ื”ื—ื•ืžื•ืช, ืฉืžื™ื™ืฆื’ื•ืช ืืช ืžืขืจื‘ ืื™ืจื•ืคื”,
04:50
and the yellow one, which is the United States,
96
290160
3000
ื•ื”ื‘ื•ืขื” ื”ืฆื”ื•ื‘ื”, ืฉืžื™ื™ืฆื’ืช ืืช ืืจื”"ื‘,
04:53
they get richer and richer and also
97
293160
2000
ื ืขืฉื•ืช ื™ื•ืชืจ ื•ื™ื•ืชืจ ืขืฉื™ืจื•ืช
04:55
start to get healthier and healthier.
98
295160
2000
ื•ื’ื ื™ื•ืชืจ ื•ื™ื•ืชืจ ื‘ืจื™ืื•ืช.
04:57
And this is now 100 years ago,
99
297160
2000
ื›ืืŸ - ืœืคื ื™ 100 ืฉื ื™ื
04:59
where the rest of the world remains behind.
100
299160
3000
ืฉืืจ ื”ืขื•ืœื ื ืฉืืจ ืžืื—ื•ืจ.
05:02
Here we come. And that was the influenza.
101
302160
5000
ื ืžืฉื™ืš ื”ืœืื”. ื–ืืช ืžื’ื™ืคืช ื”ืฉืคืขืช.
05:07
That's why we are so scared about flu, isn't it?
102
307160
3000
ื–ืืช ื”ืกื™ื‘ื” ืœืคื—ื“ ื”ื’ื“ื•ืœ ืฉืœื ื• ืžืฉืคืขืช. ืœื?
05:10
It's still remembered. The fall of life expectancy.
103
310160
3000
ืขื“ื™ื™ืŸ ื–ื•ื›ืจื™ื ืื•ืชื”. ื”ื ืคื™ืœื” ื‘ืชื•ื—ืœืช ื”ื—ื™ื™ื.
05:13
And then we come up. Not until
104
313160
3000
ื•ืื– ืขื•ืœื™ื. ืจืง ืื—ืจื™
05:16
independence started.
105
316160
2000
ืงื‘ืœืช ื”ืขืฆืžืื•ืช.
05:18
Look here You have China over there,
106
318160
2000
ืกื™ืŸ ืฉื,
05:20
you have India over there,
107
320160
2000
ื”ื•ื“ื• ืฉื,
05:22
and this is what has happened.
108
322160
8000
ื•ื–ื” ืžื” ืฉื”ืชืจื—ืฉ.
05:30
Did you note there, that we have Mexico up there?
109
330160
3000
ืฉื™ืžื• ืœื‘ ืฉืžืงืกื™ืงื• ื›ืืŸ ืœืžืขืœื”.
05:33
Mexico is not at all on par with the United States,
110
333160
2000
ืžืงืกื™ืงื• ืœื ืžืฉืชื•ื•ื” ืœืืจื”"ื‘
05:35
but they are quite close.
111
335160
2000
ืื‘ืœ ื”ืŸ ืžืื•ื“ ืงืจื•ื‘ื•ืช.
05:37
And especially, it's interesting to see
112
337160
2000
ื•ื‘ืžื™ื•ื—ื“ ืžืขื ื™ื™ืŸ ืœืจืื•ืช
05:39
China and the United States
113
339160
2000
ืืช ืกื™ืŸ ื•ืืจื”"ื‘
05:41
during 200 years,
114
341160
3000
ื‘ืžืฉืš 200 ืฉื ื™ื.
05:44
because I have my oldest son now working for Google,
115
344160
2000
ื”ื‘ืŸ ื”ื‘ื›ื•ืจ ืฉืœื™ ืขื•ื‘ื“ ืขื›ืฉื™ื• ื‘ื’ื•ื’ืœ,
05:46
after Google acquired this software.
116
346160
3000
ืœืื—ืจ ืฉื’ื•ื’ืœ ืจื›ืฉื• ืืช ื”ืชื•ื›ื ื” ื”ื–ืืช.
05:49
Because in fact, this is child labor. My son and his wife sat in a closet
117
349160
3000
ื–ืืช ืœืžืขืฉื” ื”ืขืกืงืช ื™ืœื“ื™ื - ื”ื‘ืŸ ืฉืœื™ ื•ืืฉืชื• ื™ืฉื‘ื• ื‘ื—ื“ืจื•ืŸ
05:52
for many years and developed this.
118
352160
2000
ื‘ืžืฉืš ืฉื ื™ื ืจื‘ื•ืช ื•ืคื™ืชื—ื• ืืช ื”ืชื•ื›ื ื”.
05:54
And my youngest son, who studied Chinese in Beijing.
119
354160
4000
ื•ื”ื‘ืŸ ื”ืฆืขื™ืจ ืฉืœื™ ืœืžื“ ืกื™ื ื™ืช ื‘ื‘ื™ื™ื’'ื™ืŸ.
05:58
So they come in with the two perspectives I have, you know?
120
358160
4000
ื›ืš ืฉื™ืฉ ืœื”ื ืืช 2 ื”ืคืจืกืคืงื˜ื™ื‘ื•ืช ืฉืœื™.
06:02
And my son, youngest son who studied in Beijing,
121
362160
2000
ื•ื”ื‘ืŸ ื”ืฆืขื™ืจ ืฉืœื™, ืฉืœืžื“ ื‘ื‘ื™ื™ื’'ื™ืŸ
06:04
in China, he got a long-term perspective.
122
364160
4000
ื‘ืกื™ืŸ, ืงื™ื‘ืœ ืคืจืกืคืงื˜ื™ื‘ื” ืœื˜ื•ื•ื— ืืจื•ืš,
06:08
Whereas when my oldest son, who works for Google,
123
368160
2000
ื‘ืขื•ื“ ืฉื”ื‘ืŸ ื”ื‘ื›ื•ืจ ืฉืœื™ ืฉืขื•ื‘ื“ ื‘ื’ื•ื’ืœ,
06:10
he should develop by quarter, or by half-year.
124
370160
4000
ืฆืจื™ืš ืœืคืชื— ืœืคื™ ืจื‘ืขื•ืŸ ืื• ืœืคื™ ื—ืฆื™-ืฉื ื”.
06:14
Or Google is quite generous, so he can have one or two years to go.
125
374160
3000
ื’ื•ื’ืœ ื ื“ื™ื‘ื” ืžืื•ื“, ื•ื”ื•ื ืขื•ื‘ื“ ืขืœ ืฉื ื” ืื• ืฉื ืชื™ื™ื,
06:17
But in China they look generation after generation
126
377160
2000
ืื‘ืœ ื‘ืกื™ืŸ ื”ื ืžืชื‘ื•ื ื ื™ื ื‘ื“ื•ืจ ืื—ืจื™ ื“ื•ืจ
06:19
because they remember
127
379160
3000
ื›ื™ ื”ื ื–ื•ื›ืจื™ื
06:22
the very embarrassing period, for 100 years,
128
382160
2000
ืืช ื”ืชืงื•ืคื” ื”ืžืื•ื“ ืžื‘ื™ื›ื”, ืฉื ืžืฉื›ื” 100 ืฉื ื™ื,
06:24
when they went backwards.
129
384160
2000
ื‘ื” ื”ื ื ืกื•ื’ื• ืœืื—ื•ืจ.
06:26
And then they would remember the first part
130
386160
3000
ื•ื”ื ื–ื•ื›ืจื™ื ืืช ื”ื—ืœืง ื”ืจืืฉื•ืŸ
06:29
of last century, which was really bad,
131
389160
3000
ืฉืœ ื”ืžืื” ืฉืขื‘ืจื”, ืฉื”ื™ื” ื’ืจื•ืข ื‘ื™ื•ืชืจ.
06:32
and we could go by this so-called Great Leap Forward.
132
392160
3000
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืงืคื™ืฆื” ื”ืขื ืงื™ืช ืงื“ื™ืžื”
06:35
But this was 1963.
133
395160
2000
ื‘ืฉื ืช 1963.
06:37
Mao Tse-Tung eventually brought health to China,
134
397160
4000
ืžืื• ื“ื–ื”-ื“ื•ื ื’ ื”ื‘ื™ื ืœืกื™ืŸ ื‘ืจื™ืื•ืช,
06:41
and then he died, and then Deng Xiaoping started
135
401160
2000
ื•ืื– ื”ื•ื ืžืช. ื•ื“ื ื’ ืฉื™ืื•ืคื™ื ื’ ื”ืชื—ื™ืœ
06:43
this amazing move forward.
136
403160
2000
ืืช ื”ื”ืชืงื“ืžื•ืช ื”ืžื“ื”ื™ืžื”.
06:45
Isn't it strange to see that the United States
137
405160
2000
ืžื•ื–ืจ ืœืจืื•ืช ืฉื‘ืืจื”"ื‘
06:47
first grew the economy, and then gradually got rich?
138
407160
4000
ื”ื™ืชื” ืงื•ื“ื ื›ืœ ืฆืžื™ื—ื” ืฉืœ ื”ื›ืœื›ืœื”, ื•ืื—"ื› ื”ื™ื ื ืขืฉืชื” ื‘ื”ื“ืจื’ื” ืขืฉื™ืจื”.
06:51
Whereas China could get healthy much earlier,
139
411160
3000
ืœืขื•ืžืช ื–ืืช, ื”ื‘ืจื™ืื•ืช ื‘ืกื™ืŸ ื”ืฉืชืคืจื” ื”ืจื‘ื” ืงื•ื“ื,
06:54
because they applied the knowledge of education, nutrition,
140
414160
4000
ื›ื™ ื”ื ื™ื™ืฉืžื• ืืช ื”ื™ื“ืข ื‘ื ื•ืฉืื™ ื”ื—ื™ื ื•ืš ื•ื”ืชื–ื•ื ื”,
06:58
and then also benefits of penicillin
141
418160
3000
ื•ืื– ื’ื ืืช ื”ื™ืชืจื•ื ื•ืช ืฉืœ ื”ืคื ื™ืฆื™ืœื™ืŸ
07:01
and vaccines and family planning.
142
421160
2000
ื•ืฉืœ ื”ื—ื™ืกื•ื ื™ื ื•ืฉืœ ืชื›ื ื•ืŸ ื”ืžืฉืคื—ื”.
07:03
And Asia could have social development
143
423160
3000
ื‘ืืกื™ื” ื”ื™ืชื” ื”ืชืคืชื—ื•ืช ื—ื‘ืจืชื™ืช
07:06
before they got the economic development.
144
426160
3000
ืฉื”ืงื“ื™ืžื” ืืช ื”ื”ืชืคืชื—ื•ืช ื”ื›ืœื›ืœื™ืช.
07:09
So to me, as a public health professor,
145
429160
2000
ืขื‘ื•ืจื™, ื›ืคืจื•ืคืกื•ืจ ืœื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ,
07:11
it's not strange that all these countries grow so fast now.
146
431160
4000
ื–ื” ืœื ืžื•ื–ืจ ืฉื›ืœ ื”ืžื“ื™ื ื•ืช ื”ืืœื” ืฆื•ืžื—ื•ืช ื›ืœ ื›ืš ืžื”ืจ ืขื›ืฉื™ื•.
07:15
Because what you see here, what you see here
147
435160
2000
ื›ื™ ืžื” ืฉืจื•ืื™ื ื›ืืŸ
07:17
is the flat world of Thomas Friedman,
148
437160
3000
ื–ื” ื”ืขื•ืœื ื”ืฉื˜ื•ื— ืฉืœ ืชื•ืžืก ืคืจื™ื“ืžืŸ.
07:20
isn't it.
149
440160
2000
ื ื›ื•ืŸ?
07:22
It's not really, really flat.
150
442160
2000
ื”ื•ื ืœื ื‘ืืžืช ื‘ืืžืช ืฉื˜ื•ื—.
07:24
But the middle income countries --
151
444160
2000
ืื‘ืœ ื”ืžื“ื™ื ื•ืช ืฉื ืžืฆืื•ืช ื‘ืืžืฆืข ืžื‘ื—ื™ื ืช ื”ื›ื ืกื”,
07:26
and this is where I suggest to my students,
152
446160
2000
ื•ื–ื•ื”ื™ ื”ื ืงื•ื“ื” ื‘ื” ืื ื™ ืžืฆื™ืข ืœืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™
07:28
stop using the concept "developing world."
153
448160
3000
ืœื”ืคืกื™ืง ืœื”ืฉืชืžืฉ ื‘ืžื•ืฉื’ "ื”ืขื•ืœื ื”ืžืชืคืชื—".
07:31
Because after all, talking about the developing world
154
451160
3000
ื›ื™ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ืœื“ื‘ืจ ืขืœ ื”ืขื•ืœื ื”ืžืชืคืชื—
07:34
is like having two chapters in the history of the United States.
155
454160
4000
ื–ื” ื›ืžื• ืœื“ื‘ืจ ืขืœ 2 ืคืจืงื™ื ื‘ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืืจื”"ื‘.
07:38
The last chapter is about present, and president Obama,
156
458160
4000
ื”ืคืจืง ื”ืื—ืจื•ืŸ - ื›ื•ืœืœ ืืช ื”ื”ื•ื•ื” ื•ืืช ื”ื ืฉื™ื ืื•ื‘ืžื”,
07:42
and the other is about the past,
157
462160
2000
ื•ื”ืคืจืง ื”ืจืืฉื•ืŸ - ืืช ื”ืขื‘ืจ,
07:44
where you cover everything from Washington
158
464160
2000
ื”ื—ืœ ืžื•ื•ืฉื™ื ื’ื˜ื•ืŸ
07:46
to Eisenhower.
159
466160
2000
ื•ืขื“ ืœืื™ื™ื–ื ื”ืื•ืจ.
07:48
Because Washington to Eisenhower,
160
468160
2000
ืžื›ื™ื•ื•ืŸ ืฉืžื•ื•ืฉื™ื ื’ื˜ื•ืŸ ื•ืขื“ ืœืื™ื™ื–ื ื”ืื•ืจ -
07:50
that is what we find in the developing world.
161
470160
2000
ื–ื” ืžื” ืฉืื ื• ืžื•ืฆืื™ื ื‘ืขื•ืœื ื”ืžืชืคืชื—.
07:52
We could actually go to Mayflower
162
472160
2000
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ ืžื”ืžื™ื™ืคืœืื•ืืจ
07:54
to Eisenhower,
163
474160
2000
ืขื“ ืœืื™ื™ื–ื ื”ืื•ืจ,
07:56
and that would be put together into a developing world,
164
476160
3000
ื•ื–ื” ื”ื™ื” ื“ื•ืžื” ืœืขื•ืœื ื”ืžืชืคืชื—,
07:59
which is rightly growing its cities in a very amazing way,
165
479160
3000
ืฉื”ืขืจื™ื ื‘ื• ืฆื•ืžื—ื•ืช ื‘ืฆื•ืจื” ืžื“ื”ื™ืžื”,
08:02
which have great entrepreneurs,
166
482160
2000
ืฉื™ืฉ ื‘ื• ื™ื–ืžื™ ืขื ืง,
08:04
but also have the collapsing countries.
167
484160
3000
ืื‘ืœ ื™ืฉ ื‘ื• ื’ื ืžื“ื™ื ื•ืช ืžืชืžื•ื˜ื˜ื•ืช.
08:07
So, how could we make better sense about this?
168
487160
3000
ืื– ืื™ืš ืžื‘ื™ื ื™ื ืžื” ื”ื•ืœืš ื›ืืŸ?
08:10
Well, one way of trying is to see whether we could
169
490160
3000
ื“ืจืš ืื—ืช ื”ื™ื ืœื‘ื“ื•ืง
08:13
look at income distribution.
170
493160
2000
ืืช ื”ืชืคืœื’ื•ืช ื”ื”ื›ื ืกื”.
08:15
This is the income distribution of peoples in the world,
171
495160
3000
ื–ื•ื”ื™ ื”ืชืคืœื’ื•ืช ื”ื”ื›ื ืกื” ื”ืขื•ืœืžื™ืช ืฉืœ ืื“ื ืœื™ื•ื,
08:18
from $1. This is where you have food to eat.
172
498160
3000
ื”ื—ืœ ืžื“ื•ืœืจ ืื—ื“. ื›ืืŸ ื™ืฉ ืžืกืคื™ืง ืื•ื›ืœ.
08:21
These people go to bed hungry.
173
501160
2000
ื›ืืŸ ืื ืฉื™ื ื”ื•ืœื›ื™ื ืœื™ืฉื•ืŸ ืจืขื‘ื™ื.
08:23
And this is the number of people.
174
503160
2000
ื–ื”ื• ืžืกืคืจ ื”ืื ืฉื™ื.
08:25
This is $10, whether you have a public or a private
175
505160
2000
ื›ืืŸ - 10 ื“ื•ืœืจ, ืขื ืฉื™ืจื•ืชื™ ื‘ืจื™ืื•ืช
08:27
health service system. This is where you can
176
507160
2000
ืคืจื˜ื™ื™ื ืื• ืฆื™ื‘ื•ืจื™ื™ื.
08:29
provide health service for your family and school for your children,
177
509160
3000
ื›ืืŸ, ืืชื” ื™ื›ื•ืœ ืœืกืคืง ืœืžืฉืคื—ืชืš ืฉื™ืจื•ืชื™ ื‘ืจื™ืื•ืช ื•ื”ืฉื›ืœื” ืœื™ืœื“ื™ืš.
08:32
and this is OECD countries:
178
512160
2000
ืืœื• ื”ืŸ ื”ืžื“ื™ื ื•ืช ื”ืฉื™ื™ื›ื•ืช ืœ-OECD.
08:34
Green, Latin America, East Europe.
179
514160
2000
ื‘ื™ืจื•ืง - ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช, ืžื–ืจื— ืื™ืจื•ืคื”.
08:36
This is East Asia, and the light blue there is South Asia.
180
516160
4000
ื›ืืŸ - ืžื–ืจื— ืืกื™ื”. ื•ื”ื›ื—ื•ืœ ื”ื‘ื”ื™ืจ - ื“ืจื•ื ืืกื™ื”.
08:40
And this is how the world changed.
181
520160
3000
ื•ื–ื”ื• ื”ืฉื™ื ื•ื™ ืฉื—ืœ ื‘ืขื•ืœื.
08:43
It changed like this.
182
523160
2000
ื”ื•ื ื”ืฉืชื ื” ื‘ืฆื•ืจื” ื”ื–ืืช.
08:45
Can you see how it's growing? And how hundreds of millions
183
525160
3000
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ืฆืžื™ื—ื”? ื•ืื™ืš ืžืื•ืช ืžืœื™ื•ื ื™ื
08:48
and billions is coming out of poverty in Asia?
184
528160
3000
ื•ืžื™ืœื™ืืจื“ื™ื ื ื—ืœืฆื™ื ืžื”ืขื•ื ื™ ื‘ืืกื™ื”?
08:51
And it goes over here?
185
531160
2000
ื•ื–ื” ื—ื•ื–ืจ ืขืœ ืขืฆืžื• ื›ืืŸ.
08:53
And I come now, into projections,
186
533160
2000
ื•ืขื›ืฉื™ื• ืื ื™ ืžื’ื™ืข ืœืชื—ื–ื™ื•ืช.
08:55
but I have to stop at the door of Lehman Brothers there, you know, because --
187
535160
3000
ืื‘ืœ ืื ื™ ื—ื™ื™ื‘ ืœืขืฆื•ืจ ืœืคื ื™ ืฉื ื’ื™ืข ืœืœื”ืžืŸ ื‘ืจื“ืจืก. ื›ื™...
08:58
(Laughter)
188
538160
3000
[ืฆื—ื•ืง]
09:01
that's where the projections are not valid any longer.
189
541160
2000
ืžื›ื™ื•ื•ืŸ ืฉืฉื ื”ืชื—ื–ื™ื•ืช ื›ื‘ืจ ืื™ื ืŸ ืชืงืคื•ืช.
09:03
Probably the world will do this.
190
543160
2000
ืงืจื•ื‘ ืœื•ื“ืื™ ืฉื”ืขื•ืœื ื™ืขืฉื” ืืช ื–ื”,
09:05
and then it will continue forward like this.
191
545160
3000
ื•ืื—"ื› ื”ื•ื ื™ืžืฉื™ืš ืœื ื•ืข ืงื“ื™ืžื” ื›ืš.
09:08
But more or less, this is what will happen,
192
548160
2000
ืื‘ืœ ืคื—ื•ืช ืื• ื™ื•ืชืจ ื–ื” ืžื” ืฉื™ืงืจื”.
09:10
and we have a world which cannot be looked upon as divided.
193
550160
5000
ื•ืœื ื ื™ืชืŸ ืœื”ืชื™ื™ื—ืก ืืœ ื”ืขื•ืœื ื›ืขืœ ืžื—ื•ืœืง.
09:15
We have the high income countries here,
194
555160
2000
ื”ืžื“ื™ื ื•ืช ืขื ื”ื”ื›ื ืกื” ื”ื’ื‘ื•ื”ื” ื›ืืŸ,
09:17
with the United States as a leading power;
195
557160
3000
ื›ืืฉืจ ืืจื”"ื‘ ื”ื™ื ื”ื›ื•ื— ื”ืžื•ื‘ื™ืœ.
09:20
we have the emerging economies in the middle,
196
560160
3000
ื”ื›ืœื›ืœื•ืช ืฉืœ ื”ืฉื•ืง ื”ืžืชืขื•ืจืจ ื‘ืืžืฆืข,
09:23
which provide a lot of the funding for the bailout;
197
563160
2000
ื•ื”ืŸ ืžืกืคืงื•ืช ื”ืจื‘ื” ืžื”ืžื™ืžื•ืŸ ืฉืœ ื”ื”ื—ืœืฆื•ืช ืžื”ืžืฉื‘ืจ.
09:25
and we have the low income countries here.
198
565160
3000
ื”ืžื“ื™ื ื•ืช ืขื ื”ื”ื›ื ืกื” ื”ื ืžื•ื›ื” ื›ืืŸ.
09:28
Yeah, this is a fact that from where the money comes,
199
568160
3000
ื›ืŸ. ื–ืืช ืขื•ื‘ื“ื”. ื”ื›ืกืฃ ืžื’ื™ืข ืžืฉื.
09:31
they have been saving, you know, over the last decade.
200
571160
2000
ื”ืŸ ื—ืกื›ื• ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ.
09:33
And here we have the low income countries
201
573160
2000
ื›ืืŸ ื”ืžื“ื™ื ื•ืช ืขื ื”ื”ื›ื ืกื” ื”ื ืžื•ื›ื”
09:35
where entrepreneurs are.
202
575160
2000
ื‘ื”ืŸ ื ืžืฆืื™ื ื”ื™ื–ืžื™ื.
09:37
And here we have the countries in collapse and war,
203
577160
3000
ื•ื›ืืŸ ื”ืžื“ื™ื ื•ืช ืฉื ืžืฆืื•ืช ื‘ืžืฆื‘ ืฉืœ ืžืฉื‘ืจ ื•ืžืœื—ืžื•ืช,
09:40
like Afghanistan, Somalia, parts of Congo, Darfur.
204
580160
5000
ื›ืžื• ืืคื’ื ื™ืกื˜ืŸ, ืกื•ืžืœื™ื”, ื—ืœืงื™ื ืžืงื•ื ื’ื•, ื“ืจืคื•ืจ.
09:45
We have all this at the same time.
205
585160
2000
ื›ืœ ืืœื” ืงื™ื™ืžื™ื ื‘ืžืงื‘ื™ืœ.
09:47
That's why it's so problematic to describe what has happened
206
587160
2000
ื•ืœื›ืŸ ื–ื” ืžืื•ื“ ื‘ืขื™ื™ืชื™ ืœืชืืจ ืืช
09:49
in the developing world.
207
589160
2000
ืžื” ืฉืงืจื” ื‘ืขื•ืœื ื”ืžืชืคืชื—.
09:51
Because it's so different, what has happened there.
208
591160
2000
ื›ื™ ืžื” ืฉืงืจื” ืฉื ืžืื•ื“ ืžื’ื•ื•ืŸ.
09:53
And that's why I suggest
209
593160
2000
ื•ืœื›ืŸ ืื ื™ ืžืฆื™ืข
09:55
a slightly different approach of what you would call it.
210
595160
3000
ื’ื™ืฉื” ืงืฆืช ืฉื•ื ื” ืœืฉื ื‘ื• ื”ื•ื ื ืงืจื.
09:58
And you have huge differences within countries also.
211
598160
4000
ื™ืฉ ื’ื ื”ื‘ื“ืœื™ื ืขืฆื•ืžื™ื ื‘ืชื•ืš ื”ืžื“ื™ื ื•ืช ืขืฆืžืŸ.
10:02
I heard that your departments here were by regions.
212
602160
3000
ืฉืžืขืชื™ ืฉื”ืžืฉืจื“ื™ื ื”ืžืžืฉืœืชื™ื™ื ืฉืœื›ื ื›ืืŸ ื”ื ืœืคื™ ืื™ื–ื•ืจื™ื.
10:05
Here you have Sub-Saharan Africa, South Asia,
213
605160
3000
ื›ืืŸ ื ืžืฆืื•ืช ืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื”, ื“ืจื•ื ืืกื™ื”,
10:08
East Asia, Arab states,
214
608160
2000
ืžื–ืจื— ืืกื™ื”, ืžื“ื™ื ื•ืช ืขืจื‘,
10:10
East Europe, Latin America, and OECD.
215
610160
2000
ืื™ืจื•ืคื” ื”ืžื–ืจื—ื™ืช, ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช ื•ื”-OECD.
10:12
And on this axis, GDP.
216
612160
2000
ืขืœ ื”ืฆื™ืจ ื”ื–ื” - ื”ืชื•ืฆืจ ื”ื’ื•ืœืžื™ ื”ืœืื•ืžื™.
10:14
And on this, heath, child survival,
217
614160
2000
ื•ืขืœ ื”ืฆื™ืจ ื”ื–ื” - ื‘ืจื™ืื•ืช - ื”ื™ืฉืจื“ื•ืช ื”ื™ืœื“ื™ื.
10:16
and it doesn't come as a surprise
218
616160
2000
ื•ื–ื” ืœื ืžืคืชื™ืข
10:18
that Africa south of Sahara is at the bottom.
219
618160
3000
ืฉืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื” ื ืžืฆืืช ื‘ืชื—ืชื™ืช.
10:21
But when I split it, when I split it
220
621160
2000
ืื‘ืœ ื›ืฉืื ื™ ืžืคืฆืœ ืื•ืชื”
10:23
into country bubbles,
221
623160
2000
ืœื‘ื•ืขื•ืช ืฉืœ ืžื“ื™ื ื•ืช -
10:25
the size of the bubbles here is the population.
222
625160
3000
ื’ื•ื“ืœ ื”ื‘ื•ืขื•ืช ืžืฆื‘ื™ืข ืขืœ ื’ื•ื“ืœ ื”ืื•ื›ืœื•ืกื™ื” -
10:28
Then you see Sierra Leone and Mauritius, completely different.
223
628160
3000
ื ื™ืชืŸ ืœืจืื•ืช ืฉืกื™ื™ืจื” ืœื™ืื•ืŸ ื•ืžืื•ืจื™ืฆื™ื•ืก ืฉื•ื ื•ืช ืœื—ืœื•ื˜ื™ืŸ.
10:31
There is such a difference within Sub-Saharan Africa.
224
631160
2000
ื™ืฉ ืฉื•ื ื•ืช ืจื‘ื” ื‘ืชื•ืš ืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื”.
10:33
And I can split the others. Here is the South Asian,
225
633160
3000
ื•ืื ื™ ื™ื›ื•ืœ ืœืคืฆืœ ื’ื ืืช ื”ืฉืืจ. ื›ืืŸ - ืืกื™ื” ื”ื“ืจื•ืžื™ืช,
10:36
Arab world.
226
636160
2000
ื”ืขื•ืœื ื”ืขืจื‘ื™.
10:38
Now all your different departments.
227
638160
2000
ื›ืืŸ - ื›ืœ ื”ืžื—ืœืงื•ืช ื”ืฉื•ื ื•ืช ืฉืœื›ื.
10:40
East Europe, Latin America, and OECD countries.
228
640160
3000
ืžื–ืจื— ืื™ืจื•ืคื”, ืืžืจื™ืงื” ื”ืœื˜ื™ื ื™ืช ื•ืžื“ื™ื ื•ืช ื”-OECD.
10:43
And here were are. We have a continuum in the world.
229
643160
3000
ืฉื™ืžื• ืœื‘ - ื™ืฉ ื‘ืขื•ืœื ืจืฆืฃ.
10:46
We cannot put it into two parts.
230
646160
2000
ืœื ื ื™ืชืŸ ืœื—ืœืง ืื•ืชื• ืœืฉื ื™ ื—ืœืงื™ื.
10:48
It is Mayflower down here. It is Washington here,
231
648160
3000
ืžื™ื™ืคืœืื•ืืจ - ื›ืืŸ ืœืžื˜ื”. ื•ื•ืฉื™ื ื’ื˜ื•ืŸ - ื›ืืŸ
10:51
building, building countries.
232
651160
2000
ื‘ื•ื ื” ืžื“ื™ื ื•ืช.
10:53
It's Lincoln here, advancing them.
233
653160
4000
ืœื™ื ืงื•ืœืŸ ื›ืืŸ - ืžืงื“ื ืื•ืชืŸ.
10:57
It's Eisenhower bringing modernity into the countries.
234
657160
3000
ืื™ื™ื–ื ื”ืื•ืจ ืžื‘ื™ื ืืช ื”ืžื•ื“ืจื ื™ื•ืช ืœืžื“ื™ื ื•ืช.
11:00
And then it's United States today, up here.
235
660160
2000
ื•ื–ื•ื”ื™ ืืจื”"ื‘ ื”ื™ื•ื - ื›ืืŸ ืœืžืขืœื”.
11:02
And we have countries all this way.
236
662160
2000
ื•ื™ืฉ ืืจืฆื•ืช ื‘ื›ืœ ื”ืชื—ื•ื ื”ื–ื”.
11:04
Now, this is the important thing
237
664160
3000
ื–ื”ื• ื“ื‘ืจ ื—ืฉื•ื‘ ืžืื•ื“ ืฉืฆืจื™ืš ืœื”ื‘ื™ืŸ
11:07
of understanding how the world has changed.
238
667160
4000
ืขืœ ื”ืฉื™ื ื•ื™ ืฉื—ืœ ื‘ืขื•ืœื.
11:11
At this point I decided to make a pause.
239
671160
4000
ื•ื‘ื ืงื•ื“ื” ื”ื–ืืช ื”ื—ืœื˜ืชื™ ืœืขืฉื•ืช ื”ืคืกืงื” ืงืฆืจื”.
11:15
(Laughter)
240
675160
2000
[ืฆื—ื•ืง]
11:17
And it is my task, on behalf of the rest of the world,
241
677160
3000
ื•ื–ื•ื”ื™ ื—ื•ื‘ืชื™, ื‘ืฉื ืฉืืจ ื”ืขื•ืœื,
11:20
to convey a thanks to the U.S. taxpayers,
242
680160
4000
ืœืžืกื•ืจ ืชื•ื“ื•ืช ืœืžืฉืœืžื™ ื”ืžื™ืกื™ื ื‘ืืจื”"ื‘,
11:24
for Demographic Health Survey.
243
684160
2000
ืขื‘ื•ืจ ืกืงืจ ื”ื‘ืจื™ืื•ืช ื”ื“ืžื•ื’ืจืคื™.
11:26
Many are not aware of -- no, this is not a joke.
244
686160
3000
ืจื‘ื™ื ืœื ืžื•ื“ืขื™ื -- ืœื, ื–ืืช ืœื ื‘ื“ื™ื—ื”.
11:29
This is very serious.
245
689160
2000
ื–ื” ืจืฆื™ื ื™ ืžืื•ื“.
11:31
It is due to USA's continuous sponsoring
246
691160
4000
ื‘ื–ื›ื•ืช ื”ืžื™ืžื•ืŸ ื”ืงื‘ื•ืข ืฉืœ ืืจื”"ื‘
11:35
during 25 years of the very good methodology
247
695160
3000
ื‘ืžืฉืš 25 ืฉื ื™ื ืฉืœ ืžืชื•ื“ื•ืœื•ื’ื™ื” ื˜ื•ื‘ื” ืžืื•ื“
11:38
for measuring child mortality
248
698160
2000
ืœืžื“ื™ื“ืช ืชืžื•ืชืช ื”ื™ืœื“ื™ื
11:40
that we have a grasp of what's happening in the world.
249
700160
3000
ื™ืฉ ืœื ื• ืžื•ืฉื’ ืžื” ืงื•ืจื” ื‘ืขื•ืœื.
11:43
(Applause)
250
703160
7000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
11:50
And it is U.S. government at its best,
251
710160
3000
ื•ื–ื•ื”ื™ ืžืžืฉืœืช ืืจื”"ื‘ ื‘ืžื™ื˜ื‘ื”,
11:53
without advocacy, providing facts,
252
713160
3000
ืœืœื ื›ืœ ืชืžื™ื›ื”, ืžืกืคืงืช ืขื•ื‘ื“ื•ืช
11:56
that it's useful for the society.
253
716160
2000
ืฉืžื•ืขื™ืœื•ืช ืœื—ื‘ืจื”,
11:58
And providing data free of charge
254
718160
3000
ื•ืžืกืคืงืช ื ืชื•ื ื™ื ื‘ื—ื™ื ื
12:01
on the internet, for the world to use. Thank you very much.
255
721160
3000
ื“ืจืš ื”ืื™ื ื˜ืจื ื˜ ืœืฉื™ืžื•ืฉ ื‘ื›ืœ ื”ืขื•ืœื. ืื ื—ื ื• ืžื•ื“ื™ื ืœื›ื ืžืื•ื“.
12:04
Quite the opposite of the World Bank,
256
724160
2000
ื‘ื“ื™ื•ืง ื”ื”ื™ืคืš ืžื”ื‘ื ืง ื”ืขื•ืœืžื™,
12:06
who compiled data with government money,
257
726160
3000
ืฉืื•ืกืฃ ื ืชื•ื ื™ื ื‘ื›ืกืคื™ ื”ืžืžืฉืœ,
12:09
tax money, and then they sell it to add a little profit,
258
729160
3000
ื›ืกืคื™ ืžื™ืกื™ื, ื•ืื– ืžื•ื›ืจ ืื•ืชื• ื›ื“ื™ ืœื”ืจื•ื•ื™ื— ืงืฆืช,
12:12
in a very inefficient, Gutenberg way.
259
732160
3000
ื‘ื“ืจืš ืžืื•ื“ ืœื ื™ืขื™ืœื”, ื‘ืกื’ื ื•ืŸ ืฉืœ ื’ื•ื˜ื ื‘ืจื’.
12:15
(Applause)
260
735160
6000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
12:21
But the people doing that at the World Bank
261
741160
2000
ืื‘ืœ ื”ืื ืฉื™ื ืฉืขื•ืฉื™ื ื–ืืช ื‘ื‘ื ืง ื”ืขื•ืœืžื™
12:23
are among the best in the world.
262
743160
2000
ื”ื ื‘ื™ืŸ ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื.
12:25
And they are highly skilled professionals.
263
745160
2000
ื•ื”ื ืžืงืฆื•ืขื ื™ื ืžื”ืจืžื” ื”ื’ื‘ื•ื”ื” ื‘ื™ื•ืชืจ.
12:27
It's just that we would like to upgrade our international agencies
264
747160
4000
ืื ื—ื ื• ืจืง ืจื•ืฆื™ื ืฉื”ืกื•ื›ื ื•ื™ื•ืช ื”ื‘ื™ื ืœืื•ืžื™ื•ืช ืฉืœื ื•
12:31
to deal with the world in the modern way, as we do.
265
751160
3000
ื™ืชืงื“ืžื• ืœืฉื™ื˜ื•ืช ืžื•ื“ืจื ื™ื•ืช, ื›ืคื™ ืฉืื ื• ืขืฉื™ื ื•.
12:34
And when it comes to free data and transparency,
266
754160
3000
ื•ื‘ื›ืœ ื”ื ื•ื’ืข ืœื ืชื•ื ื™ื ื—ื•ืคืฉื™ื™ื ื•ืœืฉืงื™ืคื•ืช,
12:37
United States of America is one of the best.
267
757160
3000
ืืจื”"ื‘ ื”ื™ื ืื—ืช ืžื”ืžื•ื‘ื™ืœื•ืช.
12:40
And that doesn't come easy from the mouth of a Swedish public health professor.
268
760160
3000
ื•ื”ื”ืฆื”ืจื” ื”ื–ืืช ืœื ืžื’ื™ืขื” ื‘ืงืœื•ืช ืžืคืจื•ืคืกื•ืจ ืฉื•ื•ื“ื™ ืœื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ.
12:43
(Laughter)
269
763160
3000
[ืฆื—ื•ืง]
12:46
And I'm not paid to come here, no.
270
766160
3000
ื•ื’ื ืœื ืฉื™ืœืžื• ืœื™ ืœื”ื’ื™ืข ืœื›ืืŸ.
12:49
I would like to show you what happens with the data,
271
769160
2000
ื‘ืจืฆื•ื ื™ ืœื”ืจืื•ืช ืœื›ื ืžื” ืงื•ืจื” ืขื ื”ื ืชื•ื ื™ื,
12:51
what we can show with this data.
272
771160
2000
ืžื” ืื ื• ื™ื›ื•ืœื™ื ืœื”ืจืื•ืช ื‘ืขื–ืจืชื.
12:53
Look here. This is the world.
273
773160
2000
ืชืจืื• ื›ืืŸ. ื–ื” ื”ืขื•ืœื.
12:55
With income down there and child mortality.
274
775160
2000
ื”ื”ื›ื ืกื” ื›ืืŸ ืœืžื˜ื”, ื•ืชืžื•ืชืช ื™ืœื“ื™ื.
12:57
And what has happened in the world?
275
777160
2000
ืžื” ืงืจื” ื‘ืขื•ืœื?
12:59
Since 1950, during the last 50 years
276
779160
3000
ืžืื– 1950, ื‘ืžืฉืš 50 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
13:02
we have had a fall in child mortality.
277
782160
3000
ื—ืœื” ื™ืจื™ื“ื” ื‘ืชืžื•ืชืช ื™ืœื“ื™ื.
13:05
And it is the DHS that makes it possible to know this.
278
785160
2000
ื•ื–ื”ื• ืกืงืจ ื”ื‘ืจื™ืื•ืช ื”ื“ืžื•ื’ืจืคื™ ืฉืžืืคืฉืจ ืœื ื• ืœืงื‘ืœ ืืช ื”ื ืชื•ืŸ ื”ื–ื”.
13:07
And we had an increase in income.
279
787160
2000
ื•ื”ื™ื” ื’ื™ื“ื•ืœ ื‘ื”ื›ื ืกื”.
13:09
And the blue former developing countries
280
789160
2000
ื•ื”ืžื“ื™ื ื•ืช ื”ื›ื—ื•ืœื•ืช ืฉื”ื™ื• ืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช
13:11
are mixing up with the former industrialized western world.
281
791160
5000
ืžืชืขืจื‘ื‘ื•ืช ืขื ืžื” ืฉื”ื™ื” ืงื•ื“ื ื”ืขื•ืœื ื”ืžืขืจื‘ื™ ื”ืžืชื•ืขืฉ.
13:16
We have a continuum. But we still have, of course,
282
796160
3000
ื•ื™ืฉ ืœื ื• ืจืฆืฃ. ืื‘ืœ ืขื“ื™ื™ืŸ ื™ืฉ...
13:19
Congo, up there. We still have as poor countries
283
799160
3000
ืงื•ื ื’ื• - ื›ืืŸ ืœืžืขืœื”. ืขื“ื™ื™ืŸ ืงื™ื™ืžื•ืช ืžื“ื™ื ื•ืช ืขื ื™ื•ืช
13:22
as we have had, always, in history.
284
802160
4000
ื›ืคื™ ืฉื”ื™ื• ืชืžื™ื“ ื‘ืžื”ืœืš ื”ื”ื™ืกื˜ื•ืจื™ื”.
13:26
And that's the bottom billion, where we've heard today
285
806160
3000
ื•ืืœื• ื”ื ื”ืžื™ืœื™ืืจื“ ื”ืชื—ืชื•ื ื™ื, ืฉื›ืคื™ ืฉืฉืžืขื ื• ื”ื™ื•ื
13:29
about a completely new approach to do it.
286
809160
3000
ื™ืฉ ื’ื™ืฉื” ื—ื“ืฉื” ืœื’ื‘ื™ื”ื.
13:32
And how fast has this happened?
287
812160
3000
ื‘ืื™ื–ื” ืžื”ื™ืจื•ืช ื–ื” ื”ืชืจื—ืฉ?
13:35
Well, MDG 4.
288
815160
2000
MDG 4 - ื™ืขื“ื™ ื”ืคื™ืชื•ื— ืฉืœ ื”ืžื™ืœื ื™ื•ื.
13:37
The United States has not been so eager
289
817160
2000
ืืจื”"ื‘ ืœื ื”ื™ืชื” ื›ืœ ื›ืš ื ืœื”ื‘ืช
13:39
to use MDG 4.
290
819160
3000
ืœื™ื™ืฉื ืืช MDG 4.
13:42
But you have been the main sponsor that has enabled us to measure it,
291
822160
3000
ืื‘ืœ ืจืื™ืชื ืฉื”ื™ื ื ื•ืชื ืช ื”ื—ืกื•ืช ื”ืžืจื›ื–ื™ืช ืฉืื™ืคืฉืจื” ืœื ื• ืœืžื“ื•ื“ ื–ืืช.
13:45
because it's the only child mortality that we can measure.
292
825160
3000
ืžื›ื™ื•ื•ืŸ ืฉืื ื• ื™ื›ื•ืœื™ื ืœืžื“ื•ื“ ืจืง ืืช ืชืžื•ืชืช ื”ื™ืœื“ื™ื.
13:48
And we used to say that it should fall four percent per year.
293
828160
3000
ื•ื ื”ื’ื ื• ืœื•ืžืจ ืฉื”ื™ื ืฆืจื™ื›ื” ืœืจื“ืช ื‘-4 ืื—ื•ื–ื™ื ืœืฉื ื”.
13:51
Let's see what Sweden has done.
294
831160
2000
ื ืจืื” ืžื” ืงืจื” ื‘ืฉื•ื•ื“ื™ื”.
13:53
We used to boast about fast social progress.
295
833160
3000
ื ื”ื’ื ื• ืœื”ืชื’ืื•ืช ื‘ื”ืชืงื“ืžื•ืช ื”ื—ื‘ืจืชื™ืช ื”ืžื”ื™ืจื” ืฉืœื ื•.
13:56
That's where we were, 1900.
296
836160
2000
ื›ืืŸ ื”ื™ื™ื ื• ื‘-1900.
13:58
1900, Sweden was there.
297
838160
2000
ื‘-1900 - ืฉื•ื•ื“ื™ื” ื”ื™ืชื” ืฉื.
14:00
Same child mortality as Bangladesh had, 1990,
298
840160
2000
ืื•ืชื” ืชืžื•ืชืช ื™ืœื“ื™ื ืฉืงื™ื™ืžืช ื‘ื‘ื ื’ืœื“ืฉ ื‘--1990.
14:02
though they had lower income.
299
842160
2000
ืœืžืจื•ืช ืฉื”ื™ืชื” ืœื”ื ื”ื›ื ืกื” ื ืžื•ื›ื” ื™ื•ืชืจ.
14:04
They started very well. They used the aid well.
300
844160
3000
ื”ื ื”ืชื—ื™ืœื• ื˜ื•ื‘. ื”ื ื”ืฉืชืžืฉื• ื”ื™ื˜ื‘ ื‘ืขื–ืจื”.
14:07
They vaccinated the kids. They get better water.
301
847160
2000
ื”ื ื—ื™ืกื ื• ืืช ื”ื™ืœื“ื™ื. ื”ื ืฉื™ืคืจื• ืืช ื”ืžื™ื,
14:09
And they reduced child mortality,
302
849160
2000
ื•ื”ืคื—ื™ืชื• ืืช ืชืžื•ืชืช ื”ื™ืœื“ื™ื
14:11
with an amazing 4.7 percent per year. They beat Sweden.
303
851160
3000
ื‘ืื—ื•ื– ืžื“ื”ื™ื ืฉืœ 4.7 ื‘ืฉื ื”. ื”ื ื”ื‘ื™ืกื• ืืช ืฉื•ื•ื“ื™ื”.
14:14
I run Sweden the same 16 year period.
304
854160
4000
ืื ื™ ืžืจื™ืฅ ืืช ืฉื•ื•ื“ื™ื” ืขืœ ืื•ืชื” ืชืงื•ืคื” ืฉืœ 16 ืฉื ื™ื.
14:18
Second round, it's Sweden, 1916,
305
858160
2000
ื‘ื”ืจืฆื” ื”ืฉื ื™ื” - ืฉื•ื•ื“ื™ื” ื‘-1960,
14:20
against Egypt, 1990.
306
860160
2000
ืžื•ืœ ืžืฆืจื™ื ืฉืœ 1990.
14:22
Here we go. Once again the USA is part of the reason here.
307
862160
3000
ื’ื ื›ืืŸ - ืืจื”"ื‘ ื”ื™ื ื—ืœืง ืžื”ืกื™ื‘ื” ืœืžืชืจื—ืฉ.
14:25
They get safe water, they get food for the poor,
308
865160
4000
ื”ื ืกื™ืคืงื• ืžื™ื ื‘ื˜ื•ื—ื™ื, ื”ื ืกื™ืคืงื• ืžื–ื•ืŸ ืœืขื ื™ื™ื,
14:29
and they get malaria eradicated.
309
869160
2000
ื•ื”ื ื‘ื™ืขืจื• ืืช ื”ืžืœืจื™ื”.
14:31
5.5 percent. They are faster than the millennium development goal.
310
871160
3000
5.5 ืื—ื•ื–ื™ื. ื”ื ื™ื•ืชืจ ืžื”ื™ืจื™ื ืžื™ืขื“ื™ ื”ืคื™ืชื•ื— ืฉืœ ื”ืžื™ืœื ื™ื•ื.
14:34
And third chance for Sweden, against Brazil here.
311
874160
3000
ื”ื–ื“ืžื ื•ืช ืฉืœื™ืฉื™ืช ืœืฉื•ื•ื“ื™ื” - ืžื•ืœ ื‘ืจื–ื™ืœ.
14:37
Brazil here has amazing social improvement
312
877160
4000
ื‘ื‘ืจื–ื™ืœ ื™ืฉ ืฉื™ืคื•ืจ ื—ื‘ืจืชื™ ืžื“ื”ื™ื
14:41
over the last 16 years,
313
881160
2000
ื‘-16 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
14:43
and they go faster than Sweden.
314
883160
2000
ื•ื”ื ื™ื•ืชืจ ืžื”ื™ืจื™ื ืžืฉื•ื•ื“ื™ื”.
14:45
This means that the world is converging.
315
885160
2000
ื›ืœื•ืžืจ, ื”ืขื•ืœื ืžืชื›ื ืก.
14:47
The middle income countries,
316
887160
2000
ื”ืžื“ื™ื ื•ืช ืขื ื”ื”ื›ื ืกื” ื”ื‘ื™ื ื•ื ื™ืช,
14:49
the emerging economy, they are catching up.
317
889160
2000
ื”ืฉื•ืง ื”ืžืชืขื•ืจืจ - ืžืฉืœื™ืžื™ื ืคืขืจื™ื.
14:51
They are moving to cities,
318
891160
2000
ื”ื ืขื•ื‘ืจื™ื ืœืขืจื™ื,
14:53
where they also get better assistance for that.
319
893160
2000
ื‘ื”ืŸ ื™ื•ื›ืœื• ืœืงื‘ืœ ืกื™ื•ืข ื˜ื•ื‘ ื™ื•ืชืจ.
14:55
Well the Swedish students protest at this point.
320
895160
3000
ื•ื”ืฉื•ื•ื“ื™ื ืžื‘ื™ืขื™ื ืžื—ืื”.
14:58
They say, "This is not fair,
321
898160
2000
ื”ื ืื•ืžืจื™ื, "ื–ื” ืœื ืคื™ื™ืจ.
15:00
because these countries had vaccines and antibiotics
322
900160
2000
ืœืžื“ื™ื ื•ืช ื”ืืœื” ื™ืฉ ื—ื™ืกื•ื ื™ื ื•ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”
15:02
that were not available for Sweden.
323
902160
2000
ืฉืœื ื”ื™ื• ื–ืžื™ื ื™ื ืœืฉื•ื•ื“ื™ื”.
15:04
We have to do real-time competition."
324
904160
2000
ืฆืจื™ืš ืœืขืฉื•ืช ืชื—ืจื•ืช ื‘ื–ืžืŸ ืืžืช."
15:06
Okay. I give you Singapore, the year I was born.
325
906160
3000
ืื•ืงื™. ื‘ื•ืื• ื ื‘ื“ื•ืง ืืช ืกื™ื ื’ืคื•ืจ ื‘ืฉื ื” ื‘ื” ื ื•ืœื“ืชื™.
15:09
Singapore had twice the child mortality of Sweden.
326
909160
2000
ื‘ืกื™ื ื’ืคื•ืจ ืชืžื•ืชืช ื”ื™ืœื“ื™ื ื”ื™ืชื” ื›ืคื•ืœื” ืžื–ื• ืฉืœ ืฉื•ื•ื“ื™ื”.
15:11
It's the most tropical country in the world,
327
911160
2000
ื–ื•ื”ื™ ื”ืžื“ื™ื ื” ื”ื›ื™ ื˜ืจื•ืคื™ืช ื‘ืขื•ืœื.
15:13
a marshland on the equator.
328
913160
2000
ืื“ืžืช ื‘ื™ืฆื•ืช ืขืœ ืงื• ื”ืžืฉื•ื•ื”.
15:15
And here we go. It took a little time for them to get independent.
329
915160
3000
ืœืงื— ืœื”ื ื–ืžืŸ ืœื”ืฉื™ื’ ืขืฆืžืื•ืช.
15:18
But then they started to grow their economy.
330
918160
2000
ืœืื—ืจ ืžื›ืŸ ื”ื›ืœื›ืœื” ืฉืœื”ื ื”ืชื—ื™ืœื” ืœืฆืžื•ื—.
15:20
And they made the social investment. They got away malaria.
331
920160
2000
ื”ื ื‘ื™ืฆืขื• ื”ืฉืงืขื” ื—ื‘ืจืชื™ืช. ื”ื ืžื™ื’ืจื• ืืช ื”ืžืœืจื™ื”.
15:22
They got a magnificent health system
332
922160
2000
ื”ื ื‘ื ื• ืžืขืจื›ืช ื‘ืจื™ืื•ืช ื ืคืœืื”
15:24
that beat both the U.S. and Sweden.
333
924160
2000
ืฉื”ื‘ื™ืกื” ื’ื ืืช ืืจื”"ื‘ ื•ื’ื ืืช ืฉื•ื•ื“ื™ื”.
15:26
We never thought it would happen that they would win over Sweden!
334
926160
3000
ืœื ืชืืจื ื• ืœืขืฆืžื ื• ืฉื”ื ื™ื‘ื™ืกื• ืืช ืฉื•ื•ื“ื™ื”.
15:29
(Applause)
335
929160
8000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
15:37
All these green countries are achieving millennium development goals.
336
937160
3000
ื”ืžื“ื™ื ื•ืช ื”ื™ืจื•ืงื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื” ืžืฉื™ื’ื•ืช ืืช ื™ืขื“ื™ ื”ืคื™ืชื•ื— ืฉืœ ื”ืžื™ืœื ื™ื•ื.
15:40
These yellow are just about to be doing this.
337
940160
2000
ื”ืฆื”ื•ื‘ื•ืช ื‘ื“ืจืš ืœื”ืฉื™ื’ ืื•ืชื.
15:42
These red are the countries that doesn't do it, and the policy has to be improved.
338
942160
3000
ื”ืื“ื•ืžื•ืช ืจื—ื•ืงื•ืช ืžื›ืš, ื•ืฆืจื™ืš ืœืฉื ื•ืช ื‘ื”ืŸ ืืช ื”ืžื“ื™ื ื™ื•ืช.
15:45
Not simplistic extrapolation.
339
945160
3000
ื–ื•ื”ื™ ืœื ืืงืกื˜ืจืคื•ืœืฆื™ื” ืคืฉื•ื˜ื”.
15:48
We have to really find a way
340
948160
2000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืžืฆื•ื ื“ืจืš
15:50
of supporting those countries in a better way.
341
950160
2000
ื˜ื•ื‘ื” ื™ื•ืชืจ ืœืชืžื•ืš ื‘ืžื“ื™ื ื•ืช ื”ืืœื”.
15:52
We have to respect the middle income countries
342
952160
3000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื›ื‘ื“ ืืช ื”ืžื“ื™ื ื•ืช ืขื ื”ื”ื›ื ืกื” ื”ื‘ื™ื ื•ื ื™ืช
15:55
on what they are doing.
343
955160
2000
ืขืœ ืžื” ืฉื”ืŸ ืขื•ืฉื•ืช.
15:57
And we have to fact-base the whole way we look at the world.
344
957160
3000
ื•ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื‘ืกืก ืืช ื”ืจืื™ื” ืฉืœื ื• ืฉืœ ื”ืขื•ืœื ืขืœ ืขื•ื‘ื“ื•ืช.
16:00
This is dollar per person. This is HIV in the countries.
345
960160
3000
ื–ื” ื“ื•ืœืจ ืœืื“ื. ื–ื” ืื™ื™ื“ืก ื‘ืžื“ื™ื ื•ืช.
16:03
The blue is Africa.
346
963160
2000
ืืคืจื™ืงื” ื‘ื›ื—ื•ืœ.
16:05
The size of the bubbles is how many are HIV affected.
347
965160
3000
ื’ื•ื“ืœ ื”ื‘ื•ืขื•ืช ืžืฆื‘ื™ืข ืขืœ ื›ืžื•ืช ื ืฉืื™ ื”ืื™ื™ื“ืก.
16:08
You see the tragedy in South Africa there.
348
968160
2000
ื ื™ืชืŸ ืœืจืื•ืช ืืช ื”ื˜ืจื’ื“ื™ื” ืฉืœ ื“ืจื•ื ืืคืจื™ืงื” ื›ืืŸ.
16:10
About 20 percent of the adult population are infected.
349
970160
3000
ื›-20 ืื—ื•ื–ื™ื ืžื”ืžื‘ื•ื’ืจื™ื ื ืฉืื™ื.
16:13
And in spite of them having quite a high income,
350
973160
3000
ื•ืœืžืจื•ืช ืฉื”ื”ื›ื ืกื” ืฉืœื”ื ื“ื™ ื’ื‘ื•ื”ื”
16:16
they have a huge number of HIV infected.
351
976160
3000
ื™ืฉ ืœื”ื ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ื ืฉืื™ ืื™ื™ื“ืก.
16:19
But you also see that there are African countries down here.
352
979160
3000
ืื‘ืœ ื™ืฉ ื’ื ืžื“ื™ื ื•ืช ืืคืจื™ืงืื™ื•ืช ื›ืืŸ ืœืžื˜ื”.
16:22
There is no such thing as an HIV epidemic in Africa.
353
982160
4000
ืื™ืŸ ื‘ืืคืจื™ืงื” ืžื’ื™ืคืช ืื™ื™ื“ืก.
16:26
There's a number, five to 10 countries in Africa
354
986160
3000
ื™ืฉ 5-10 ืžื“ื™ื ื•ืช ื‘ืืคืจื™ืงื”
16:29
that has the same level as Sweden and United States.
355
989160
3000
ืขื ืจืžื” ื–ื”ื” ืœืจืžื” ื‘ืฉื•ื•ื“ื™ื” ื•ื‘ืืจื”"ื‘.
16:32
And there are others who are extremely high.
356
992160
2000
ื•ื™ืฉ ืžื“ื™ื ื•ืช ืื—ืจื•ืช ืขื ืจืžื” ื’ื‘ื•ื”ื” ื‘ื™ื•ืชืจ.
16:34
And I will show you that what has happened
357
994160
3000
ืืฆื™ื’ ื‘ืคื ื™ื›ื ืžื” ืงืจื”
16:37
in one of the best countries, with the most vibrant economy
358
997160
4000
ื‘ืื—ืช ืžื”ืžื“ื™ื ื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ, ืขื ื”ื›ืœื›ืœื” ื”ื ืžืจืฆืช ื‘ื™ื•ืชืจ ื‘ืืคืจื™ืงื”
16:41
in Africa and a good governance, Botswana.
359
1001160
3000
ื•ืขื ืžืžืฉืœ ื˜ื•ื‘ - ื‘ื•ื˜ืกื•ืื ื”.
16:44
They have a very high level. It's coming down.
360
1004160
2000
ื™ืฉ ืœื”ื ืจืžื” ื’ื‘ื•ื”ื” ืžืื•ื“ ื•ื”ื™ื ื‘ื™ืจื™ื“ื”.
16:46
But now it's not falling,
361
1006160
2000
ืื‘ืœ ืขื›ืฉื™ื• ื”ื™ืจื™ื“ื” ื ืคืกืงื”.
16:48
because there, with help from PEPFAR,
362
1008160
2000
ืžื›ื™ื•ื•ืŸ ืฉื‘ืขื–ืจืช ื”ืขื–ืจื” ืฉืœ PEPFAR
16:50
it's working with treatment. And people are not dying.
363
1010160
3000
ื”ื ืฉืื™ื ืžื˜ื•ืคืœื™ื ื•ื”ืชืžื•ืชื” ืฉืœื”ื ื™ืจื“ื”.
16:53
And you can see it's not that easy,
364
1013160
3000
ื•ืืชื ืจื•ืื™ื ืฉื–ื” ืœื ืคืฉื•ื˜,
16:56
that it is war which caused this.
365
1016160
3000
ื•ืฉืžืœื—ืžื•ืช ื”ืŸ ื”ื’ื•ืจืžื™ื ืœื›ืš.
16:59
Because here, in Congo, there is war.
366
1019160
2000
ื›ืืŸ, ื‘ืงื•ื ื’ื• - ื™ืฉ ืžืœื—ืžื”.
17:01
And here, in Zambia, there is peace.
367
1021160
3000
ื›ืืŸ, ื‘ื–ืžื‘ื™ื” - ื™ืฉ ืฉืœื•ื.
17:04
And it's not the economy. Richer country has a little higher.
368
1024160
3000
ื–ื” ืœื ืงืฉื•ืจ ืœื›ืœื›ืœื”. ื‘ืืจืฆื•ืช ืขืฉื™ืจื•ืช ื™ื•ืชืจ - ื”ืจืžื” ืงืฆืช ื™ื•ืชืจ ื’ื‘ื•ื”ื”.
17:07
If I split Tanzania in its income,
369
1027160
2000
ื•ืื ืื—ืœืง ืืช ื˜ื ื–ื ื™ื” ืœืคื™ ื”ื›ื ืกื” -
17:09
the richer 20 percent in Tanzania
370
1029160
2000
ืœ-20 ืื—ื•ื– ื”ืขืฉื™ืจื™ื ื‘ื˜ื ื–ื ื™ื”
17:11
has more HIV than the poorest one.
371
1031160
2000
ื™ืฉ ื™ื•ืชืจ ืื™ื™ื“ืก ืžืืฉืจ ืœืขื ื™ื™ื ื‘ื™ื•ืชืจ.
17:13
And it's really different within each country.
372
1033160
3000
ื–ื” ืžืื•ื“ ืฉื•ื ื” ื‘ืชื•ืš ื”ืžื“ื™ื ื”.
17:16
Look at the provinces of Kenya. They are very different.
373
1036160
2000
ื ื‘ื“ื•ืง ืืช ื”ืžื—ื•ื–ื•ืช ื‘ืงื ื™ื”. ื”ื ืฉื•ื ื™ื ืžืื•ื“.
17:18
And this is the situation you see.
374
1038160
3000
ื•ื–ื”ื• ื”ืžืฆื‘ ืฉื ื™ืชืŸ ืœืจืื•ืช.
17:21
It's not deep poverty. It's the special situation,
375
1041160
3000
ื–ื”ื• ืื™ื ื• ืขื•ื ื™ ืขืžื•ืง. ื–ื”ื• ืžืฆื‘ ืžื™ื•ื—ื“.
17:24
probably of concurrent sexual partnership
376
1044160
3000
ื›ื ืจืื” ืฉืงื™ื•ื ืฉื•ืชืคื™ื ืžื™ื ื™ื™ื ื‘ื•-ื–ืžื ื™ื™ื
17:27
among part of the heterosexual population
377
1047160
3000
ืืฆืœ ื—ืœืง ืžื”ืื•ื›ืœื•ืกื™ื” ื”ื”ื˜ืจื•ืกืงืกื•ืืœื™ืช
17:30
in some countries, or some parts of countries,
378
1050160
2000
ื‘ื›ืžื” ืžื“ื™ื ื•ืช, ืื• ื‘ื›ืžื” ื—ืœืงื™ื ืฉืœ ืžื“ื™ื ื•ืช
17:32
in south and eastern Africa.
379
1052160
2000
ื‘ื“ืจื•ื ื•ื‘ืžื–ืจื— ืืคืจื™ืงื”.
17:34
Don't make it Africa. Don't make it a race issue.
380
1054160
3000
ืืœ ืชื“ื‘ืจื• ืขืœ "ืืคืจื™ืงื”". ืืœ ืชื”ืคื›ื• ืืช ื–ื” ืœืขื ื™ื™ืŸ ืฉืœ ื’ื–ืข.
17:37
Make it a local issue. And do prevention at each place,
381
1057160
4000
ืชื“ื‘ืจื• ืขืœ ื ื•ืฉื ืžืงื•ืžื™. ื•ืชื“ืื’ื• ืœืžื ื™ืขื” ื‘ื›ืœ ืžืงื•ื,
17:41
in the way it can be done there.
382
1061160
2000
ื‘ื“ืจืš ื”ืžืชืื™ืžื” ืœื•.
17:43
So to just end up,
383
1063160
3000
ื•ืœืกื™ื•ื,
17:46
there are things of suffering
384
1066160
3000
ื™ืฉื ื ืžืงื•ืจื•ืช ืœืกื‘ืœ
17:49
in the one billion poorest, which we don't know.
385
1069160
3000
ื‘ื™ืŸ ืžื™ืœื™ืืจื“ ื”ืขื ื™ื™ื ื‘ื™ื•ืชืจ, ืฉืื ื• ืœื ืžื•ื“ืขื™ื ืœื”ื.
17:52
Those who live beyond the cellphone,
386
1072160
2000
ืืœื• ืฉื”ื˜ืœืคื•ืŸ ื”ืกืœื•ืœืจื™ ืœื ื–ืžื™ืŸ ืœื”ื,
17:54
those who have yet to see a computer,
387
1074160
2000
ืืœื• ืฉืžืขื•ืœื ืœื ืจืื• ืžื—ืฉื‘,
17:56
those who have no electricity at home.
388
1076160
3000
ืืœื• ืฉืื™ืŸ ืœื”ื ื—ืฉืžืœ ื‘ื‘ื™ืช.
17:59
This is the disease, Konzo, I spent 20 years
389
1079160
2000
ื–ื•ื”ื™ ื”ืžื—ืœื” ืงื•ื ื–ื•, ืฉื—ืงืจืชื™ ื‘ืืคืจื™ืงื”
18:01
elucidating in Africa.
390
1081160
2000
ื‘ืžืฉืš 20 ืฉื ื™ื.
18:03
It's caused by fast processing of toxic cassava root in famine situation.
391
1083160
5000
ื”ื™ื ื ื’ืจืžืช ืžืขื™ื‘ื•ื“ ืœื ืžืกืคืง ืฉืœ ืฉื•ืจืฉื™ ืงืกืื•ื•ื” ืจืขื™ืœื™ื, ื‘ืžืฆื‘ ืฉืœ ืจืขื‘.
18:08
It's similar to the pellagra epidemic in Mississippi in the '30s.
392
1088160
4000
ื”ื™ื ื“ื•ืžื” ืœืคืœื’ืจื” ืฉื”ื™ืชื” ื‘ืžื™ืกื™ืกื™ืคื™ ื‘ืฉื ื•ืช ื”-30.
18:12
It's similar to other nutritional diseases.
393
1092160
3000
ื”ื™ื ื“ื•ืžื” ืœืžื—ืœื•ืช ืชื–ื•ื ืชื™ื•ืช ืื—ืจื•ืช.
18:15
It will never affect a rich person.
394
1095160
2000
ื”ื™ื ืœืขื•ืœื ืœื ืชืชืงื•ืฃ ืื ืฉื™ื ืขืฉื™ืจื™ื.
18:17
We have seen it here in Mozambique.
395
1097160
3000
ืจืื™ื ื• ื–ืืช ื›ืืŸ ื‘ืžื•ื–ืžื‘ื™ืง.
18:20
This is the epidemic in Mozambique. This is an epidemic in northern Tanzania.
396
1100160
3000
ื–ื•ื”ื™ ื”ืžื’ื™ืคื” ื‘ืžื•ื–ืžื‘ื™ืง. ื–ื•ื”ื™ ื”ืžื’ื™ืคื” ื‘ืฆืคื•ืŸ ื˜ื ื–ื ื™ื”.
18:23
You never heard about the disease.
397
1103160
2000
ืžืขื•ืœื ืœื ืฉืžืขืชื ืขืœ ื”ืžื—ืœื” ื”ื–ืืช.
18:25
But it's much more than Ebola
398
1105160
2000
ืื‘ืœ ื”ืจื‘ื” ื™ื•ืชืจ ืื ืฉื™ื ื ืคื’ืขื• ืžืžื ื”
18:27
that has been affected by this disease.
399
1107160
2000
ืžืืฉืจ ืžืื‘ื•ืœื”.
18:29
Cause crippling throughout the world.
400
1109160
2000
ื”ื™ื ืคื•ื’ืขืช ื‘ืื ืฉื™ื ื‘ื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื.
18:31
And over the last two years,
401
1111160
2000
ื‘ืžืฉืš ื”ืฉื ืชื™ื™ื ื”ืื—ืจื•ื ื•ืช
18:33
2,000 people has been crippled
402
1113160
2000
ืืœืคื™ื™ื ืื™ืฉ ื ืคื’ืขื• ืžืžื ื”
18:35
in the southern tip of Bandundu region.
403
1115160
2000
ื‘ืงืฆื” ื”ื“ืจื•ืžื™ ืฉืœ ืื™ื–ื•ืจ ื‘ื ื“ื•ื ื“ื”.
18:37
That used to be the illegal diamond trade,
404
1117160
2000
ื”ื™ื” ืฉื ืกื—ืจ ืœื ื—ื•ืงื™ ื‘ื™ื”ืœื•ืžื™ื.
18:39
from the UNITA-dominated area in Angola.
405
1119160
3000
UNITA ืฉืœื˜ื• ื‘ืฉื˜ื— ื–ื” ืฉืœ ืื ื’ื•ืœื”.
18:42
That has now disappeared,
406
1122160
2000
ืขื›ืฉื™ื• ื”ื ื ืขืœืžื•
18:44
and they are now in great economic problem.
407
1124160
2000
ื•ื™ืฉ ืœื”ื ื‘ืขื™ื” ื›ืœื›ืœื™ืช ื’ื“ื•ืœื”.
18:46
And one week ago, for the first time,
408
1126160
3000
ืœืคื ื™ ืฉื‘ื•ืข, ื‘ืคืขื ื”ืจืืฉื•ื ื”,
18:49
there were four lines on the Internet.
409
1129160
3000
ื”ื•ืงืžื• ืืจื‘ืขื” ืงื•ื•ื™ ืื™ื ื˜ืจื ื˜.
18:52
Don't get confused of the progress of the emerging economies
410
1132160
3000
ืืœ ืชื‘ืœื‘ืœื• ื‘ื™ืŸ ื”ื”ืชืงื“ืžื•ืช ืฉืœ ืฉื•ื•ืงื™ื ื”ืžืชืขื•ืจืจื™ื
18:55
and the great capacity
411
1135160
3000
ื•ื‘ื™ืŸ ื”ื™ื›ื•ืœืช ื”ื’ื‘ื•ื”ื”
18:58
of people in the middle income countries
412
1138160
2000
ืฉืœ ืื ืฉื™ื ื‘ืžื“ื™ื ื•ืช ืขื ื”ื”ื›ื ืกื” ื”ืžืžื•ืฆืขืช,
19:00
and in peaceful low income countries.
413
1140160
2000
ื•ื‘ื™ืŸ ืžื“ื™ื ื•ืช ืขื ื”ื›ื ืกื” ื ืžื•ื›ื” ืฉื™ืฉ ื‘ื”ืŸ ืฉืœื•ื.
19:02
There is still mystery in one billion.
414
1142160
2000
ืขื“ื™ื™ืŸ ื™ืฉ ืžื™ืกืชื•ืจื™ืŸ ื‘ื™ืŸ ื”ืžื™ืœื™ืืจื“.
19:04
And we have to have more concepts
415
1144160
2000
ื•ืื ื—ื ื• ื–ืงื•ืงื™ื ืœืžื•ืฉื’ื™ื ื ื•ืกืคื™ื
19:06
than just developing countries and developing world.
416
1146160
3000
ื•ืœื ืœื”ืกืชืคืง ื‘"ืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช" ื•ื‘"ืขื•ืœื ืžืชืคืชื—".
19:09
We need a new mindset. The world is converging,
417
1149160
3000
ืื ื• ื–ืงื•ืงื™ื ืœื“ืคื•ืกื™ ื—ืฉื™ื‘ื” ื—ื“ืฉื™ื. ื”ืขื•ืœื ืžืชื›ื ืก.
19:12
but -- but -- but not the bottom billion.
418
1152160
3000
ืื‘ืœ, ืื‘ืœ, ืื‘ืœ - ืœื ื”ืžื™ืœื™ืืจื“ ืฉื‘ืชื—ืชื™ืช.
19:15
They are still as poor as they've ever been.
419
1155160
3000
ื”ื ืขื“ื™ื™ืŸ ืขื ื™ื™ื ื›ืคื™ ืฉืชืžื™ื“ ื”ื™ื•.
19:18
It's not sustainable, and it will not happen around one superpower.
420
1158160
5000
ื–ื” ืœื ืžืชืงื‘ืœ ืขืœ ื”ื“ืขืช. ื•ืžืขืฆืžืช-ืขืœ ืื—ืช ืœื ืชื•ื›ืœ ืœืฉื ื•ืช ื–ืืช.
19:23
But you will remain
421
1163160
2000
ืื‘ืœ ืืชื ืชืžืฉื™ื›ื• ืœื”ื™ื•ืช
19:25
one of the most important superpowers,
422
1165160
3000
ืื—ืช ืžืžืขืฆืžื•ืช-ื”ืขืœ ื”ื—ืฉื•ื‘ื•ืช ื‘ื™ื•ืชืจ,
19:28
and the most hopeful superpower, for the time to be.
423
1168160
3000
ื•ืžืขืฆืžืช-ื”ืขืœ ืฉืžืขื ื™ืงื” ื”ื›ื™ ื”ืจื‘ื” ืชืงื•ื•ื”, ื›ืจื’ืข.
19:31
And this institution
424
1171160
2000
ื•ืœืžื•ืกื“ ื”ื–ื”
19:33
will have a very crucial role,
425
1173160
2000
ื™ื”ื™ื” ืชืคืงื™ื“ ืžื›ืจื™ืข ื‘ื™ื•ืชืจ,
19:35
not for United States, but for the world.
426
1175160
2000
ืœื ืขื‘ื•ืจ ืืจื”"ื‘, ืืœื ืขื‘ื•ืจ ื”ืขื•ืœื ื›ื•ืœื•.
19:37
So you have a very bad name,
427
1177160
3000
ื”ืฉื ืฉืœื›ื ืœื ืžืชืื™ื - ืžื—ืœืงืช ื”ืžื“ื™ื ื”,
19:40
State Department. This is not the State Department.
428
1180160
2000
ืืชื ืœื ืžื—ืœืงืช ื”ืžื“ื™ื ื”
19:42
It's the World Department.
429
1182160
2000
ืืชื ื”ืžื—ืœืงื” ื”ืขื•ืœืžื™ืช.
19:44
And we have a high hope in you. Thank you very much.
430
1184160
2000
ื•ืื ื• ืชื•ืœื™ื ื‘ื›ื ืชืงื•ื•ืช ื’ื‘ื•ื”ื•ืช ื‘ื™ื•ืชืจ. ืชื•ื“ื” ืจื‘ื” ืœื›ื.
19:46
(Applause)
431
1186160
5000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7