Erik Hersman: How texting helped Kenyans survive crisis

15,566 views ใƒป 2009-04-22

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Avi Grosman ืžื‘ืงืจ: Sigal Tifferet
00:12
So I'm here to tell you a story of success from Africa.
0
12160
4000
ืื ื™ ื›ืืŸ ื›ื“ื™ ืœื”ื‘ื™ื ืœื›ื ืกื™ืคื•ืจ ื”ืฆืœื—ื” ืžืืคืจื™ืงื”.
00:16
A year and a half ago,
1
16160
3000
ืœืคื ื™ ื›ืฉื ื” ื•ื—ืฆื™
00:19
four of the five people who are full time members
2
19160
2000
ืืจื‘ืขื” ืžืชื•ืš ื—ืžื™ืฉื” ื—ื‘ืจื™ื
00:21
at Ushahidi,
3
21160
2000
ื‘ "ืื•ืฉื”ื™ื“ื™,"
00:23
which means "testimony" in Swahili,
4
23160
3000
ืฉืคื™ืจื•ืฉ ืฉืžื• ื”ื•ื "ืฉื‘ื•ืขื”" ื‘ืฉืคืช ื”ืกื•ื•ืื”ื™ืœื™
00:26
were TED Fellows.
5
26160
2000
ื”ื™ื• ื’ื ื—ื‘ืจื™ื ื‘ TED.
00:28
A year ago in Kenya we had post-election violence.
6
28160
3000
ืœืคื ื™ ื›ืฉื ื” ื”ืชืจื—ืฉื• ื‘ืงื ื™ื” ืžื”ื•ืžื•ืช ืขืœ ืจืงืข ืžืขืจื›ืช ื”ื‘ื—ื™ืจื•ืช
00:31
And in that time we prototyped and built,
7
31160
3000
ื•ื‘ืื•ืชื” ืขืช ื‘ื ื™ื ื• ื•ื ื™ืกื™ื ื• ื‘ืฉื˜ื—
00:34
in about three days, a system that would allow
8
34160
2000
ื‘ืฉืœื•ืฉื” ื™ืžื™ื, ืžืขืจื›ืช ืืฉืจ ืชืืคืฉืจ
00:36
anybody with a mobile phone
9
36160
2000
ืœื›ืœ ืžื™ ืฉื™ืฉ ื‘ื™ื“ื• ื˜ืœืคื•ืŸ ืกืœื•ืœืจื™
00:38
to send in information and reports on what was happening around them.
10
38160
3000
ืœืฉืœื•ื— ืžื™ื“ืข ืœื’ื‘ื™ ื”ืžืชืจื—ืฉ ื‘ืกื‘ื™ื‘ื” ืฉืœื•.
00:41
We took what we knew about Africa,
11
41160
2000
ื”ืฉืชืžืฉื ื• ื‘ื™ื“ืข ืฉืœื ื• ืขืœ ืืคืจื™ืงื”
00:43
the default device,
12
43160
2000
ื•ื‘ื—ืจื ื• ื‘ืžื›ืฉื™ืจ ืฉื”ื•ื ื‘ืจื™ืจืช ื”ืžื—ื“ืœ
00:45
the mobile phone, as our common denominator,
13
45160
2000
ื”ื˜ืœืคื•ืŸ ื”ืกืœื•ืœืจื™, ื›ืžื›ื ื” ื”ืžืฉื•ืชืฃ,
00:47
and went from there.
14
47160
2000
ื•ืขืœื™ื• ื‘ื ื™ื ื• ืืช ื”ืืคืœื™ืงืฆื™ื”.
00:49
We got reports like this.
15
49160
3000
ื–ื” ืกื•ื’ ื”ื“ื™ื•ื•ื—ื™ื ืฉืงื™ื‘ืœื ื• ืžื”ืžืขืจื›ืช.
00:56
This is just a couple of them from January 17th, last year.
16
56160
3000
ืืœื” ืจืง ืžืกืคืจ ื“ื™ื•ื•ื—ื™ื ืžื”- 17 ื‘ื™ื ื•ืืจ, ื‘ืฉื ื” ืฉืขื‘ืจื”.
01:02
And our system was rudimentary. It was very basic.
17
62160
3000
ื”ืžืขืจื›ืช ืฉืœื ื• ื”ื™ืชื” ื‘ืกื™ืกื™ืช ื‘ื™ื•ืชืจ
01:05
It was a mash-up that used data that we collected from people,
18
65160
3000
ืืคืœื™ืงืฆื™ื” ืฉืงื™ื‘ืœื” ืžื™ื“ืข ืžืžืงื•ืจื•ืช ืฉื•ื ื™ื
01:08
and we put it on our map.
19
68160
2000
ื•ื”ืฆื™ื’ื” ืื•ืชื ืขืœ ืžืคื”.
01:10
But then we decided we needed to do something more.
20
70160
2000
ืื‘ืœ ืื– ื”ื—ืœื˜ื ื• ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœืคืชื— ืืช ื”ืžืขืจื›ืช
01:12
We needed to take what we had built
21
72160
2000
ื•ื”ื™ื™ื ื• ื—ื™ื™ื‘ื™ื ืœืคืชื— ืื•ืชื”
01:14
and create a platform out of it so that it could be used elsewhere in the world.
22
74160
3000
ืœื›ื™ื•ื•ืŸ ืฉืœ ืคืœื˜ืคื•ืจืžื” ืฉืชืคืขืœ ื‘ื›ืœ ืžืงื•ื ื‘ืขื•ืœื
01:17
And so there is a team of developers
23
77160
3000
ื•ืœื›ืŸ ื™ืฉ ืฆื•ื•ืช ืฉืœ ืžืคืชื—ื™ื
01:20
from all over Africa, who are part of this team now --
24
80160
3000
ืžืืคืจื™ืงื”, ืฉื”ื ื—ืœืง ืžื”ืฆื•ื•ืช ืฉืœื ื• ืขื›ืฉื™ื•
01:23
from Ghana, from Malawi, from Kenya.
25
83160
2000
ืžื’ืื ื”, ืžืืœืื•ื•ื™, ืงื ื™ื”
01:25
There is even some from the U.S.
26
85160
4000
ื™ืฉ ืืคื™ืœื• ื›ืžื” ืžืคืชื—ื™ื ืžืืจื”"ื‘.
01:29
We're building for smartphones, so that it can be used in the developed world,
27
89160
3000
ืื ื—ื ื• ื‘ื•ื ื™ื ืื•ืชื” ื’ื ืขื‘ื•ืจ ืžื›ืฉื™ืจื™ื ืžืฉื•ื›ืœืœื™ื, ืœืฉื™ืžื•ืฉ ื‘ืขื•ืœื ื”ืžืขืจื‘ื™
01:32
as well as the developing world.
28
92160
2000
ื•ืœื ืจืง ื‘ืืจืฆื•ืช ื”ืžืชืคืชื—ื•ืช.
01:34
We are realizing that this is true.
29
94160
2000
ืื ื• ืจื•ืื™ื ืฉื–ื” ืขื•ื‘ื“
01:36
If it works in Africa then it will work anywhere.
30
96160
2000
ืื ื”ืžืขืจื›ืช ืขื•ื‘ื“ืช ื‘ืืคืจื™ืงื”, ื”ื™ื ืชืขื‘ื•ื“ ื’ื ื‘ืฉืืจ ื”ืขื•ืœื.
01:38
And so we build for it in Africa first
31
98160
3000
ื‘ื ื™ื ื• ืื•ืชื” ืงื•ื“ื ื›ืœ ื‘ืืคืจื™ืงื”
01:41
and then we move to the edges.
32
101160
2000
ื•ืื– ื”ืชื—ืœื ื• ืœื”ืชืคืฉื˜ ืœืžืงื•ืžื•ืช ืื—ืจื™ื.
01:43
It's now been deployed in the Democratic Republic of the Congo.
33
103160
3000
ื”ืžืขืจื›ืช ืžื•ืคืขืœืช ืขื›ืฉื™ื• ื‘ืจืคื•ื‘ืœื™ืงื” ื”ื“ืžื•ืงืจื˜ื™ืช ืฉืœ ืงื•ื ื’ื•,
01:46
It's being used by NGOs all over East Africa,
34
106160
3000
ื”ื™ื ืžื•ืคืขืœืช ืขืœ ื™ื“ื™ ืืจื’ื•ื ื™ื ื—ื‘ืจืชื™ื™ื ื‘ื›ืœ ืžื–ืจื— ืืคืจื™ืงื”.
01:49
small NGOs doing their own little projects.
35
109160
3000
ืืจื’ื•ื ื™ื ืงื˜ื ื™ื ืžืคืชื—ื™ื ืคืจื•ื™ืงื˜ื™ื ืžืงื‘ื™ืœื™ื
01:52
Just this last month it was deployed by
36
112160
2000
ื•ื‘ื—ื•ื“ืฉ ื”ืื—ืจื•ืŸ
01:54
Al Jazeera in Gaza.
37
114160
3000
ื”ื™ื ื”ื•ืคืขืœื” ืข"ื™ ืจืฉืช "ืืœ-ื’'ื–ื™ืจื”" ื‘ืขื–ื”.
01:57
But that's actually not what I'm here to talk about.
38
117160
2000
ืื‘ืœ ืœืžืขืฉื”, ืœื ืขืœ ื–ื” ื‘ืืชื™ ืœืฉื•ื—ื— ืืชื›ื.
01:59
I'm here to talk about the next big thing,
39
119160
2000
ื”ื’ืขืชื™ ืœื›ืืŸ ื›ื“ื™ ืœื“ื‘ืจ ืขืœ ื”ื“ื‘ืจ ื”ื’ื“ื•ืœ ื”ื‘ื
02:01
because what we're finding out is that
40
121160
2000
ื›ื™ื•ื•ืŸ ืฉืžื” ืฉืื ื• ืžืชืžื•ื“ื“ื™ื ืขื™ืžื• ืขื›ืฉื™ื• ื”ื•ื
02:03
we have this capacity to report
41
123160
2000
ืขื ื–ื” ืฉื™ืฉ ืœื ื• ืืช ื”ื™ื›ื•ืœืช ืœื“ื•ื•ื—
02:05
eyewitness accounts of what's going on in real time.
42
125160
4000
ืขืœ ื”ืงื•ืจื” ื‘ืฉื˜ื— ื‘ื–ืžืŸ ืืžืช,
02:09
We're seeing this in events like Mumbai recently,
43
129160
3000
ื›ืžื• ืœื“ื•ื’ืžื ื‘ืื™ืจื•ืขื™ื ืฉืงืจื• ื‘ืžื•ืžื‘ื™ื™ ืœืื—ืจื•ื ื”.
02:12
where it's so much easier to report now
44
132160
2000
ื•ื›ืขืช ืคืฉื•ื˜ ื”ืจื‘ื” ื™ื•ืชืจ ืœืงืœื•ื˜ ื“ื™ื•ื•ื—ื™ื
02:14
than it is to consume it.
45
134160
2000
ืžืืฉืจ ืœืขื‘ื“ ืื•ืชื.
02:16
There is so much information; what do you do?
46
136160
2000
ื™ืฉ ื›ืœ ื›ืš ื”ืจื‘ื” ืžื™ื“ืข, ืžื” ืขื•ืฉื™ื ืื™ืชื•?
02:18
This is the Twitter reports for over three days
47
138160
3000
ืืœื” ื”ื“ื™ื•ื•ื—ื™ื ืžืืชืจ "ื˜ื•ื•ื™ื˜ืจ" ื‘ืžืฉืš ืฉืœื•ืฉื” ื™ืžื™ื
02:21
just covering Mumbai.
48
141160
2000
ืฉืœ ื”ืื™ืจื•ืขื™ื ื‘ืžื•ืžื‘ื™ื™.
02:23
How do you decide what is important?
49
143160
2000
ื›ื™ืฆื“ ื ื“ืข ืžื” ื—ืฉื•ื‘ ื‘ืืžืช?
02:25
What is the veracity level of what you're looking at?
50
145160
3000
ืžื”ื™ ืจืžืช ื”ืžื”ื™ืžื ื•ืช ืฉืœ ื”ื“ื™ื•ื•ื—ื™ื ื”ืœืœื•?
02:28
So what we find is that there is this
51
148160
2000
ื•ืžื” ืฉืื ื• ืžื’ืœื™ื ื”ื•ื
02:30
great deal of wasted crisis information
52
150160
2000
ืฉืžื™ื“ืข ืจื‘ ืขืœ ื”ืžืฉื‘ืจ ืžื‘ื•ื–ื‘ื–,
02:32
because there is just too much information for us to
53
152160
3000
ืžืฉื•ื ืฉืื ื• ืžืงื‘ืœื™ื ื™ื•ืชืจ ืžื“ื™ ืžื™ื“ืข
02:35
actually do anything with right now.
54
155160
3000
ืžื›ื“ื™ ืฉื ื•ื›ืœ ืœืขื‘ื“.
02:38
And what we're actually really concerned with
55
158160
2000
ืžื” ืฉืžื“ืื™ื’ ืื•ืชื ื• ื‘ืขื™ืงืจ ื”ื•ื
02:40
is this first three hours.
56
160160
2000
ืฉืœื•ืฉ ื”ืฉืขื•ืช ื”ืจืืฉื•ื ื•ืช ืœืžืฉื‘ืจ.
02:42
What we are looking at is the first three hours.
57
162160
2000
ื›ืืŸ ืื ื• ืจื•ืื™ื ืืช ืฉืœื•ืฉ ื”ืฉืขื•ืช ื”ืจืืฉื•ื ื•ืช.
02:44
How do we deal with that information that is coming in?
58
164160
3000
ื›ื™ืฆื“ ืื ื• ืžืชืžื•ื“ื“ื™ื ืขื ื›ืœ ื”ืžื™ื“ืข ืฉืžื’ื™ืข?
02:47
You can't understand what is actually happening.
59
167160
2000
ืื™ ืืคืฉืจ ืžืžืฉ ืœื”ื‘ื™ืŸ ืžื” ื‘ื“ื™ื•ืง ืงื•ืจื”
02:49
On the ground and around the world
60
169160
2000
ื‘ืžืงื•ื ื”ืื™ืจื•ืข ืขืฆืžื•, ื•ื‘ืฉืืจ ื”ืขื•ืœื
02:51
people are still curious,
61
171160
2000
ืื ืฉื™ื ืขื“ื™ื™ืŸ ืชื•ื”ื™ื
02:53
and trying to figure out what is going on. But they don't know.
62
173160
3000
ื•ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืžื” ื‘ื“ื™ื•ืง ืงื•ืจื”, ืื‘ืœ ื”ื ืœื ืžืฆืœื™ื—ื™ื.
02:56
So what we built of course, Ushahidi,
63
176160
3000
ื•ื”ืคืจื•ื™ืงื˜ ืฉืœื ื•, "ืื•ืฉื”ื™ื“ื™,"
02:59
is crowdsourcing this information.
64
179160
2000
ืคืฉื•ื˜ ืžืจื›ื– ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื–ื”.
03:01
You see this with Twitter, too. You get this information overload.
65
181160
3000
ื•ื›ืคื™ ืฉืงื•ืจื” ืขื "ื˜ื•ื•ื™ื˜ืจ", ืื ื• ืžืงื‘ืœื™ื ื”ืฆืคืช ืžื™ื“ืข.
03:04
So you've got a lot of information. That's great.
66
184160
2000
ืื– ื™ืฉ ืœื ื• ื”ืžื•ืŸ ืžื™ื“ืข
03:06
But now what?
67
186160
2000
ืื‘ืœ ืžื” ืขื›ืฉื™ื•?
03:08
So we think that there is something interesting we can do here.
68
188160
3000
ืื– ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉืืคืฉืจ ืœืขืฉื•ืช ืžืฉื”ื• ื‘ื ื™ื“ื•ืŸ,
03:11
And we have a small team who is working on this.
69
191160
2000
ื•ื™ืฉ ืœื ื• ืฆื•ื•ืช ืงื˜ืŸ ืฉืขื•ื‘ื“ ืขืœ ื›ืš.
03:13
We think that we can actually create
70
193160
2000
ืื ื• ื—ื•ืฉื‘ื™ื ืฉืื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ
03:15
a crowdsourced filter.
71
195160
2000
ืžืขืจื›ืช ืฉืชืกื ืŸ ืืช ื”ืžื™ื“ืข.
03:17
Take the crowd and apply them to the information.
72
197160
3000
ื”ืžืขืจื›ืช ืชืฉืœื— ืืช ื”ืžื™ื“ืข ื—ื–ืจื” ืœืžืฉืชืžืฉื™ื
03:20
And by rating it and by rating
73
200160
2000
ื•ื”ื ื™ื“ืจื’ื• ืืช ืจืžืช ื”ืืžื™ื ื•ืช ืฉืœื•
03:22
the different people who submit information,
74
202160
2000
ื•ืฉืœ ื”ืื ืฉื™ื ืฉืกื™ืคืงื• ืื•ืชื•.
03:24
we can get refined results
75
204160
2000
ื•ื›ืš ื ืงื‘ืœ ืชื•ืฆืื•ืช ืžื“ื•ื™ืงื•ืช ื™ื•ืชืจ,
03:26
and weighted results.
76
206160
2000
ืžืฉื•ืงืœืœื•ืช ื•ืžื•ืขืจื›ื•ืช.
03:28
So that we have a better understanding
77
208160
2000
ื•ื›ืš ืชื”ื™ื” ืœื ื• ื”ื‘ื ื” ื˜ื•ื‘ื” ื™ื•ืชืจ
03:30
of the probability of something being true or not.
78
210160
2000
ืขืœ ื›ืžื” ืžื”ืžื™ื“ืข ืืžื™ืŸ ื™ื•ืชืจ ืื• ืคื—ื•ืช.
03:32
This is the kind of innovation that is,
79
212160
3000
ื–ื”ื• ืคื™ืชื•ื— ืฉื‘ื›ื ื•ืช
03:35
quite frankly -- it's interesting that it's coming from Africa.
80
215160
2000
ืžืขื ื™ื™ืŸ ืฉืžื’ื™ืข ื“ื•ื•ืงื ืžืืคืจื™ืงื”,
03:37
It's coming from places that you wouldn't expect.
81
217160
3000
ืžืžืงื•ืžื•ืช ืฉืœื ื”ื™ื™ื ื• ืžืฆืคื™ื,
03:40
From young, smart developers.
82
220160
2000
ืžืžืคืชื—ื™ื ืฆืขื™ืจื™ื ื•ื—ื›ืžื™ื
03:42
And it's a community around it that has decided to build this.
83
222160
3000
ื•ืžืกื‘ื™ื‘ื ื™ืฉ ืงื”ื™ืœื” ืฉื”ื—ืœื™ื˜ื” ืœืชืžื•ืš ื‘ื”ื.
03:45
So, thank you very much.
84
225160
2000
ืื– ืชื•ื“ื” ืจื‘ื” ืœื›ื
03:47
And we are very happy to be part of the TED family.
85
227160
2000
ื•ืื ื• ืฉืžื—ื™ื ืžืื•ื“ ืœื”ื™ื•ืช ื—ืœืง ืžืžืฉืคื—ืช TED.
03:49
(Applause)
86
229160
1000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7