This scientist makes ears out of apples | Andrew Pelling

176,890 views ใƒป 2016-07-08

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Zeeva Livshitz
00:12
I've got a confession.
0
12860
1696
ื™ืฉ ืœื™ ื•ื™ื“ื•ื™.
00:14
I love looking through people's garbage.
1
14580
2558
ืื ื™ ืื•ื”ื‘ ืœื—ืคืฉ ื‘ื–ื‘ืœ ืฉืœ ืื ืฉื™ื.
00:17
Now, it's not some creepy thing.
2
17812
1905
ืขื›ืฉื™ื•, ื–ื” ืœื ื“ื‘ืจ ืงืจื™ืคื™.
00:19
I'm usually just looking for old electronics,
3
19741
2166
ืื ื™ ื‘ื“ืจืš ื›ืœืœ ืžื—ืคืฉ ืืœืงื˜ืจื•ื ื™ืงื” ื™ืฉื ื”,
00:21
stuff I can take to my workshop and hack.
4
21931
2426
ื“ื‘ืจื™ื ืฉืื ื™ ื™ื›ื•ืœ ืœืงื—ืช ืœืกื“ื ื” ืฉืœื™ ื›ื“ื™ ืœืคืฆื—.
00:24
I do have a fetish for CD-ROM drives.
5
24381
3639
ื™ืฉ ืœื™ ืคื˜ื™ืฉ ืœื›ื•ื ื ื™ ื“ื™ืกืงื™ื.
00:28
Each one's got three different motors,
6
28044
2609
ืœื›ืœ ืื—ื“ ื™ืฉ ืฉืœื•ืฉื” ืžื ื•ืขื™ื ืฉื•ื ื™ื,
00:30
so now you can build things that move.
7
30677
1937
ืื– ืขื›ืฉื™ื• ืืชื ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช ื“ื‘ืจื™ื ืฉื–ื–ื™ื.
00:32
There's switches so you can turn things on and off.
8
32638
2715
ื™ืฉ ืžืชื’ ื›ืš ืฉืืชื ื™ื›ื•ืœื™ื ืœื”ื“ืœื™ืง ื•ืœื›ื‘ื•ืช ื“ื‘ืจื™ื.
00:35
There's even a freaking laser,
9
35377
1858
ื™ืฉ ืืคื™ืœื• ืœื™ื™ื–ืจ,
00:37
so you can make a cool robot into an awesome robot.
10
37259
4776
ืื– ืืชื ื™ื›ื•ืœื™ื ืœื”ืคื•ืš ืจื•ื‘ื•ื˜ ืžื’ื ื™ื‘ ืœืจื•ื‘ื•ื˜ ืžื“ื”ื™ื.
00:42
Now, I've built a lot of stuff out of garbage,
11
42778
3166
ืขื›ืฉื™ื•, ื‘ื ื™ืชื™ ื”ืจื‘ื” ื“ื‘ืจื™ื ืžื–ื‘ืœ,
00:45
and some of these things have even been kind of useful.
12
45968
2781
ื•ื›ืžื” ืžื”ื“ื‘ืจื™ื ืืคื™ืœื• ื”ื™ื• ื“ื™ ืฉื™ืžื•ืฉื™ื™ื.
00:48
But here's the thing,
13
48773
1185
ืื‘ืœ ื”ื ื” ื”ืขื ื™ื™ืŸ,
00:49
for me, garbage is just a chance to play,
14
49982
2601
ื‘ืฉื‘ื™ืœื™, ื–ื‘ืœ ื”ื•ื ืจืง ื”ื–ื“ืžื ื•ืช ืœืฉื—ืง,
00:52
to be creative and build things to amuse myself.
15
52607
2923
ืœื”ื™ื•ืช ื™ืฆื™ืจืชื™ ื•ืœื‘ื ื•ืช ื“ื‘ืจื™ื ื›ื“ื™ ืœืฉืขืฉืข ืืช ืขืฆืžื™.
00:55
This is what I love doing, so I just made it part of my day job.
16
55554
3636
ื–ื” ืžื” ืฉืื ื™ ืื•ื”ื‘ ืœืขืฉื•ืช, ืื– ืคืฉื•ื˜ ืขืฉื™ืชื™ ืืช ื–ื” ื—ืœืง ืžื”ืขื‘ื•ื“ื” ืฉืœื™.
00:59
I lead a university-based biological research lab,
17
59214
2557
ืื ื™ ืžื•ื‘ื™ืœ ืžืขื‘ื“ืช ืžื—ืงืจ ื‘ื™ื•ืœื•ื’ื™ืช ืื•ื ื™ื‘ืจืกื™ื˜ืื™ืช,
01:01
where we value curiosity and exploration above all else.
18
61795
3937
ื‘ื” ืื ื—ื ื• ืžืขืจื™ื›ื™ื ืกืงืจื ื•ืช ื•ื—ืงืจ ืžืขืœ ื›ืš ื“ื‘ืจ ืื—ืจ.
01:05
We aren't focused on any particular problem,
19
65756
2596
ืื ื—ื ื• ืœื ืžืžื•ืงื“ื™ื ืขืœ ื‘ืขื™ื” ืžืกื•ื™ืžืช,
01:08
and we're not trying to solve any particular disease.
20
68376
2562
ื•ืื ื—ื ื• ืœื ืžื ืกื™ื ืœืคืชื•ืจ ืžื—ืœื” ืžืกื•ื™ืžืช.
01:10
This is just a place where people can come
21
70962
2684
ื–ื” ืคืฉื•ื˜ ืžืงื•ื ืฉืื ืฉื™ื ื™ื›ื•ืœื™ื ืœื‘ื•ื
01:13
and ask fascinating questions and find answers.
22
73670
3776
ื•ืœืฉืื•ืœ ืฉืืœื•ืช ืžืจืชืงื•ืช ื•ืœืžืฆื•ื ืชืฉื•ื‘ื•ืช.
01:17
And I realized a long time ago
23
77470
1865
ื•ื”ื‘ื ืชื™ ืœืคื ื™ ื”ืจื‘ื” ื–ืžืŸ
01:19
that if I challenge people to build the equipment they need
24
79359
3242
ืฉืื ืื ื™ ืžืืชื’ืจ ืื ืฉื™ื ืœื‘ื ื•ืช ืืช ื”ืฆื™ื•ื“ ืฉื”ื ืฆืจื™ื›ื™ื
01:22
out of the garbage I find,
25
82625
2113
ืžื”ื–ื‘ืœ ืฉืื ื™ ืžื•ืฆื,
01:24
it's a great way to foster creativity.
26
84762
2763
ื–ื• ื“ืจืš ืžืขื•ืœื” ืœืขื•ื“ื“ ื™ืฆื™ืจืชื™ื•ืช.
01:27
And what happened
27
87549
1151
ื•ืžื” ืฉืงืจื”
01:28
was that artists and scientists from around the world
28
88724
2881
ื”ื™ื” ืฉืืžื ื™ื ื•ืžื“ืขื ื™ื ืžืกื‘ื™ื‘ ืœืขื•ืœื
01:31
started coming to my lab.
29
91629
2016
ื”ืชื—ื™ืœื• ืœื”ื’ื™ืข ืœืžืขื‘ื“ื” ืฉืœื™.
01:33
And it's not just because we value unconventional ideas,
30
93669
3209
ื•ื–ื” ืœื ืจืง ื‘ื’ืœืœ ืฉืื ื—ื ื• ืžืขืจื™ื›ื™ื ืจืขื™ื•ื ื•ืช ืœื ืงื•ื ื‘ื ืฆื™ื•ื ืœื™ื™ื,
01:36
it's because we test and validate them
31
96902
2318
ื–ื” ื‘ื’ืœืœ ืฉืื ื—ื ื• ื‘ื•ื—ื ื™ื ื•ืžืืฉืจื™ื ืื•ืชื
01:39
with scientific rigor.
32
99244
1427
ืขื ื”ืงืคื“ื” ืžื“ืขื™ืช.
01:41
So one day I was hacking something, I was taking it apart,
33
101620
3901
ืื– ื™ื•ื ืื—ื“ ืขืฉื™ืชื™ ื”ืืงื™ื ื’ ืœืžืฉื”ื•, ืคืจืงืชื™ ืื•ืชื•,
01:45
and I had this sudden idea:
34
105545
1857
ื•ื”ื™ื” ืœื™ ืคืชืื•ื ืจืขื™ื•ืŸ:
01:47
Could I treat biology like hardware?
35
107426
3439
ื”ืื ืื ื™ ื™ื›ื•ืœ ืœื”ืชื™ื™ื—ืก ืœื‘ื™ื•ืœื•ื’ื™ื” ื›ืžื• ืœื—ื•ืžืจื”?
01:50
Could I dismantle a biological system,
36
110889
2251
ื”ืื ืื ื™ ื™ื›ื•ืœ ืœืคืจืง ืžืขืจื›ืช ื‘ื™ื•ืœื•ื’ื™ืช,
01:53
mix and match the parts
37
113164
1423
ืœืขืจื‘ื‘ ื—ืœืงื™ื
01:54
and then put it back together in some new and creative way?
38
114611
2954
ื•ืื– ืœื—ื‘ืจ ืื•ืชื ื‘ืฆื•ืจื” ื—ื“ืฉื” ื•ื™ืฆื™ืจืชื™ืช?
01:57
My lab started working on this,
39
117946
2084
ื”ืžืขื‘ื“ื” ืฉืœื™ ื”ืชื—ื™ืœื” ืœืขื‘ื•ื“ ืขืœ ื–ื”,
02:00
and I want to show you the result.
40
120054
1893
ื•ืจืฆื™ืชื™ ืœื”ืจืื•ืช ืœื›ื ืืช ื”ืชื•ืฆืื”.
02:03
Can any of you guys tell me what fruit this is?
41
123601
2690
ื”ืขื ืžื™ืฉื”ื• ืžื›ื ื™ื›ื•ืœ ืœื”ื’ื™ื“ ืœื™ ืื™ื–ื” ืคืจื™ ื–ื”?
02:07
Audience: Apple!
42
127278
1151
ืงื”ืœ: ืชืคื•ื—!
02:08
Andrew Pelling: That's right -- it's an apple.
43
128453
2157
ืื ื“ืจื• ืคืœื™ื ื’: ื ื›ื•ืŸ, ื–ื” ืชืคื•ื—.
02:10
Now, I actually want you to notice as well
44
130634
2009
ืขื›ืฉื™ื•, ืื ื™ ืœืžืขืฉื” ืจื•ืฆื” ืฉืชืฉื™ืžื• ืœื‘ ื’ื
02:12
that this is a lot redder than most apples.
45
132657
2804
ืฉื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืื“ื•ื ืžืชืคื•ื—ื™ื ืื—ืจื™ื.
02:16
And that's because we grew human cells into it.
46
136294
2726
ื•ื–ื” ื‘ื’ืœืœ ืฉื’ื™ื“ืœื ื• ืชืื™ ืื“ื ืœืชื•ื›ื•.
02:19
We took a totally innocent Macintosh apple,
47
139044
4178
ืœืงื—ื ื• ืชืคื•ื— ืžืงื™ื ื˜ื•ืฉ ืชืžื™ื,
02:23
removed all the apple cells and DNA
48
143246
3019
ื”ืกืจื ื• ืืช ื›ืœ ืชืื™ ื”ืชืคื•ื— ื•ื” DNA
02:26
and then implanted human cells.
49
146289
2019
ื•ืื– ื”ืฉืชืœื ื• ืชืื™ ืื“ื.
02:28
And what we're left with after removing all the apple cells
50
148332
3049
ื•ืžื” ืฉื ืฉืืจ ืœื ื• ืื—ืจื™ ื”ืกืจืช ื›ืœ ืชืื™ ื”ืชืคื•ื—
02:31
is this cellulose scaffold.
51
151405
1741
ื–ื” ืฉืœื“ ื”ืฆืœื•ืœื•ื–ื”.
02:33
This is the stuff that gives plants their shape and texture.
52
153170
3137
ื–ื” ืžื” ืฉื ื•ืชืŸ ืœืฆืžื—ื™ื ืืช ื”ืฆื•ืจื” ืฉืœื”ื ื•ื”ืžืจืงื.
02:36
And these little holes that you can see,
53
156331
1972
ื•ื”ื—ื•ืจื™ื ื”ืงื˜ื ื™ื ื”ืืœื• ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช,
02:38
this is where all the apple cells used to be.
54
158327
2401
ืฉื ื›ืœ ืชืื™ ื”ืชืคื•ื— ื”ื™ื•.
02:41
So then we come along,
55
161254
1184
ืื– ื”ืชืงื“ืžื ื•,
02:42
we implant some mammalian cells that you can see in blue.
56
162462
3062
ื”ืฉืชืœื ื• ื›ืžื” ืชืื™ ื™ื•ื ืงื™ื ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื‘ื›ื—ื•ืœ.
02:45
What happens is, these guys start multiplying
57
165548
2208
ืžื” ืฉืงืจื” ื–ื”, ืฉื”ื—ื‘ืจื” ื”ืืœื” ื”ืชื—ื™ืœื• ืœื”ืฉืชื›ืคืœ
02:47
and they fill up this entire scaffold.
58
167780
1994
ื•ื”ื ืžืœืื• ืืช ื›ืœ ื”ืคื™ื’ื•ื.
02:50
As weird as this is,
59
170414
1808
ื›ืžื” ืฉื–ื” ื ืฉืžืข ืžื•ื–ืจ,
02:52
it's actually really reminiscent of how our own tissues are organized.
60
172775
4156
ื–ื” ืœืžืขืฉื” ืื™ืš ืฉื”ืจืงืžื” ืฉืœื ื• ื‘ืขืฆื ืžืชืืจื’ื ืช.
02:56
And we found in our pre-clinical work
61
176955
2253
ื•ื’ื™ืœื™ื ื• ื‘ืขื‘ื•ื“ื” ื”ื˜ืจื•ื ืงืœื™ื ื™ืช ืฉืœื ื•
02:59
that you can implant these scaffolds into the body,
62
179232
2396
ืฉืืชื ื™ื›ื•ืœื™ื ืœื”ืฉืชื™ืœ ืืช ื”ืคื™ื’ื•ืžื™ื ื”ืืœื” ื‘ืชื•ืš ื”ื’ื•ืฃ
03:01
and the body will send in cells and a blood supply
63
181652
2683
ื•ื”ื’ื•ืฃ ื™ืฉืœื— ืชืื™ื ื•ืืกืคืงืช ื“ื
03:04
and actually keep these things alive.
64
184359
2215
ื•ืœืžืขืฉื” ื™ืฉืžื•ืจ ืขืœ ื”ื“ื‘ืจื™ื ื”ืืœื” ื—ื™ื™ื.
03:07
This is the point when people started asking me,
65
187348
3097
ื–ื• ื”ื ืงื•ื“ื” ื‘ื” ืื ืฉื™ื ื”ืชื—ื™ืœื• ืœืฉืื•ืœ ืื•ืชื™,
03:10
"Andrew, can you make body parts out of apples?"
66
190469
4547
"ืื ื“ืจื•, ืืชื” ื™ื›ื•ืœ ืœื™ืฆื•ืจ ื—ืœืงื™ ื’ื•ืฃ ืžืชืคื•ื—ื™ื?"
03:15
And I'm like, "You've come to the right place."
67
195794
2231
ื•ืื ื™ ื›ืื™ืœื•, "ื”ื’ืขืชื ืœืžืงื•ื ื”ื ื›ื•ืŸ."
03:18
(Laughter)
68
198049
1277
(ืฆื—ื•ืง)
03:19
I actually brought this up with my wife.
69
199715
2185
ืœืžืขืฉื” ื”ืขืœืชื™ ืืช ื–ื” ืขื ืืฉืชื™.
03:21
She's a musical instrument maker,
70
201924
1734
ื”ื™ื ื™ืฆืจื ื™ืช ื›ืœื™ ื ื’ื™ื ื”,
03:23
and she does a lot of wood carving for a living.
71
203682
2313
ื•ื”ื™ื ืขื•ืฉื” ื”ืจื‘ื” ื—ืจื™ื˜ื” ื‘ืขืฅ ืœืžื—ื™ื™ืชื”.
03:26
So I asked her,
72
206529
1731
ืื– ืฉืืœืชื™ ืื•ืชื”,
03:28
"Could you, like, literally carve some ears
73
208865
3237
"ืชื•ื›ืœื™, ื›ืื™ืœื•, ืœืคืกืœ ื›ืžื” ืื•ื–ื ื™ื™ื
03:32
out of an apple for us?"
74
212126
1532
ืžืชืคื•ื—ื™ื ื‘ืฉื‘ื™ืœื ื•?"
03:33
And she did.
75
213682
1451
ื•ื”ื™ื ืขืฉืชื” ืืช ื–ื”.
03:35
So I took her ears to the lab.
76
215157
2772
ืื– ืœืงื—ื ื• ืืช ื”ืื•ื–ื ื™ื™ื ืฉืœื” ืœืžืขื‘ื“ื”.
03:37
We then started preparing them.
77
217953
1753
ื•ืื– ื”ืชื—ืœื ื• ืœื”ื›ื™ืŸ ืื•ืชืŸ.
03:40
Yeah, I know.
78
220979
1337
ื›ืŸ, ืื ื™ ื™ื•ื“ืข.
03:42
(Laughter)
79
222340
3033
(ืฆื—ื•ืง)
03:45
It's a good lab, man.
80
225397
1718
ื–ื• ืžืขื‘ื“ื” ืžืขื•ืœื”, ืื ืฉื™ื.
03:47
(Laughter)
81
227139
1461
(ืฆื—ื•ืง)
03:48
And then we grew cells on them.
82
228624
1707
ื•ืื– ื’ื™ื“ืœื ื• ืชืื™ื ืขืœื™ื”ืŸ.
03:51
And this is the result.
83
231008
1385
ื•ื–ื• ื”ืชื•ืฆืื”.
03:53
Listen, my lab is not in the ear-manufacturing business.
84
233916
4433
ื”ืงืฉื™ื‘ื•, ื”ืžืขื‘ื“ื” ืฉืœื™ ื”ื™ื ืœื ื‘ืขืกืงื™ ื™ืฆื•ืจ ื”ืื•ื–ื ื™ื™ื.
03:59
People have actually been working on this for decades.
85
239778
3336
ืื ืฉื™ื ืœืžืขืฉื” ืขื‘ื“ื• ืขืœ ื–ื” ื‘ืžืฉืš ืขืฉื•ืจื™ื.
04:03
Here's the issue:
86
243138
1648
ื”ื ื” ื”ืขื ื™ื™ืŸ:
04:04
commercial scaffolds can be really expensive and problematic,
87
244810
4406
ืคื™ื’ื•ืžื™ื ืžืกื—ืจื™ื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžืžืฉ ื™ืงืจื™ื ื•ื‘ืขื™ื™ืชื™ื™ื,
04:09
because they're sourced from proprietary products,
88
249240
2601
ื‘ื’ืœืœ ืฉื”ื ืžื™ื•ืฆืจื™ื ืžื—ื•ืžืจื™ื ืงื ื™ื ื™ื™ื,
04:11
animals or cadavers.
89
251865
2103
ื—ื™ื•ืช ืื• ื’ื•ื•ื™ื•ืช.
04:19
We used an apple and it cost pennies.
90
259259
2876
ืื ื—ื ื• ื”ืฉืชืžืฉื ื• ื‘ืชืคื•ื—ื™ื ืฉืขื•ืœื™ื ื›ืžื” ืื’ื•ืจื•ืช.
04:22
What's also really cool here
91
262873
2037
ืžื” ืฉืขื•ื“ ืžื’ื ื™ื‘ ืคื”
04:24
is it's not that hard to make these things.
92
264934
2145
ื–ื” ืฉื–ื” ืœื ื›ื–ื” ืงืฉื” ืœืขืฉื•ืช ืืช ื”ื“ื‘ืจื™ื ื”ืืœื”.
04:27
The equipment you need can be built from garbage,
93
267103
2932
ื”ืฆื™ื•ื“ ืฉืืชื ืฆืจื™ื›ื™ื ื™ื›ื•ืœ ืœื”ื‘ื ื•ืช ืžื”ื–ื‘ืœ,
04:30
and the key processing step only requires soap and water.
94
270059
4183
ื•ืฆืขื“ ื”ืขื™ื‘ื•ื“ ื”ืžืจื›ื–ื™ ื“ื•ืจืฉ ืจืง ืกื‘ื•ืŸ ื•ืžื™ื.
04:34
So what we did was put all the instructions online as open source.
95
274866
3842
ืื– ืžื” ืฉืขืฉื™ื ื• ื”ื™ื” ืœืฉื™ื ืืช ื›ืœ ื”ื”ื•ืจืื•ืช ื‘ืจืฉืช ื›ืงื•ื“ ืคืชื•ื—.
04:39
And then we founded a mission-driven company,
96
279393
2136
ื•ืื– ื™ื™ืกื“ื ื• ื—ื‘ืจื” ืžื•ื ืขืช ืžื˜ืจื”,
04:41
and we're developing kits to make it easier
97
281553
2378
ื•ืื ื—ื ื• ืžืคืชื—ื™ื ืงื™ื˜ื™ื ื›ื“ื™ ืœืขืฉื•ืช ืืช ื–ื” ืงืœ ื™ื•ืชืจ
04:43
for anyone with a sink and a soldering iron
98
283955
2571
ืœื›ืœ ืžื™ ืฉื™ืฉ ืœื• ื›ื™ื•ืจ ื•ืžืœื—ื
04:46
to make these things at home.
99
286550
1558
ืœื™ืฆื•ืจ ืืช ื”ื“ื‘ืจื™ื ื”ืืœื” ื‘ื‘ื™ืช.
04:48
What I'm really curious about is if one day,
100
288132
4073
ืžื” ืฉืžืขื ื™ื™ืŸ ืื•ืชื™ ื–ื” ืื ื™ื•ื ืื—ื“,
04:52
it will be possible to repair, rebuild and augment our own bodies
101
292229
5251
ื–ื” ื™ื”ื™ื” ืืคืฉืจื™ ืœืชืงืŸ, ืœื‘ื ื•ืช ืžื—ื“ืฉ ื•ืœืฉืคืจ ืืช ื”ื’ื•ืฃ ืฉืœื ื•
04:57
with stuff we make in the kitchen.
102
297504
1996
ืขื ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืžื•ืฆืื™ื ื‘ืžื˜ื‘ื—.
05:01
Speaking of kitchens,
103
301321
2097
ื•ืื ืžื“ื‘ืจื™ื ืขืœ ืžื˜ื‘ื—,
05:03
here's some asparagus.
104
303442
1936
ื”ื ื” ืืกืคืจื’ื•ืก.
05:05
They're tasty, and they make your pee smell funny.
105
305402
2683
ื”ื ื˜ืขื™ืžื™ื, ื•ื”ื ื’ื•ืจืžื™ื ืœืฉืชืŸ ืฉืœื›ื ืœื”ืจื™ื— ืžื•ื–ืจ.
05:08
(Laughter)
106
308109
1253
(ืฆื—ื•ืง)
05:09
Now, I was in my kitchen, and I was noticing
107
309386
2623
ืขื›ืฉื™ื•, ื”ื™ื™ืชื™ ื‘ืžื˜ื‘ื— ืฉืœื™, ื•ื”ื‘ื—ื ืชื™
05:12
that when you look down the stalks of these asparagus,
108
312033
2586
ืฉื›ืฉืืชื ืžื‘ื™ื˜ื™ื ืœืื•ืจืš ื’ื‘ืขื•ืœื™ื ืฉืœ ืืกืคืจื’ื•ืก,
05:14
what you can see are all these tiny little vessels.
109
314643
2991
ืžื” ืฉืืชื ืจื•ืื™ื ื”ื ืฆื™ื ื•ืจื™ื•ืช ื–ืขื™ืจื•ืช ืืœื•.
05:17
And when we image them in the lab,
110
317658
1649
ื•ื›ืฉืืชื ืžื“ืžื™ื ืื•ืชื ื‘ืžืขื‘ื“ื”,
05:19
you can see how the cellulose forms these structures.
111
319331
2989
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื™ืš ื”ืฆืœื•ืœื•ื–ื” ื™ื•ืฆืจืช ืืช ื”ืžื‘ื ื™ื ื”ืืœื”.
05:22
This image reminds me of two things:
112
322832
2273
ื”ืชืžื•ื ื” ื”ื–ื• ืžื–ื›ื™ืจื” ืœื™ ืฉื ื™ ื“ื‘ืจื™ื:
05:25
our blood vessels
113
325701
1882
ืืช ื›ืœื™ ื”ื“ื ืฉืœื ื•
05:27
and the structure and organization of our nerves and spinal cord.
114
327607
3748
ื•ื”ืžื‘ื ื” ื•ื”ืืจื’ื•ืŸ ืฉืœ ื”ืขืฆื‘ื™ื ื•ืขืžื•ื“ ื”ืฉื“ืจื” ืฉืœื ื•.
05:31
So here's the question:
115
331854
1297
ืื– ื”ื ื” ื”ืฉืืœื”:
05:33
Can we grow axons and neurons down these channels?
116
333860
4180
ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื’ื“ืœ ืืงืกื•ื ื™ื ื•ื ื™ื•ืจื•ื ื™ื ืœืื•ืจืš ื”ื ืชื™ื‘ื™ื ื”ืืœื”?
05:38
Because if we can,
117
338064
1626
ื‘ื’ืœืœ ืฉืื ืื ื—ื ื• ื™ื›ื•ืœื™ื,
05:39
then maybe we can use asparagus to form new connections
118
339714
4267
ืื– ืื•ืœื™ ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ืืกืคืจื’ื•ืก ื›ื“ื™ ืœื™ืฆื•ืจ ื—ื™ื‘ื•ืจื™ื ื—ื“ืฉื™ื
05:44
between the ends of damaged and severed nerves.
119
344005
2857
ื‘ื™ืŸ ื”ืงืฆื•ื•ืช ืฉืœ ืขืฆื‘ื™ื ืคื’ื•ืžื™ื ื•ืงืจื•ืขื™ื.
05:47
Or maybe even a spinal cord.
120
347627
1803
ืื• ืื•ืœื™ ืืคื™ืœื• ื—ื•ื˜ ื”ืฉื“ืจื”.
05:50
Don't get me wrong --
121
350126
1286
ืืœ ืชื‘ื™ื ื• ืื•ืชื™ ืœื ื ื›ื•ืŸ --
05:51
this is exceptionally challenging
122
351436
2004
ื–ื” ืžืื•ื“ ืžืืชื’ืจ
05:53
and really hard work to do,
123
353464
1595
ื•ื‘ืืžืช ืขื‘ื•ื“ื” ืงืฉื” ืœืขืฉื•ืช,
05:55
and we are not the only ones working on this.
124
355083
2618
ื•ืื ื—ื ื• ืœื ื”ื™ื—ื™ื“ื™ื ืฉืขื•ื‘ื“ื™ื ืขืœ ื–ื”.
05:58
But we are the only ones using asparagus.
125
358116
2940
ืื‘ืœ ืื ื—ื ื• ื”ื™ื—ื™ื“ื™ื ืฉืžืฉืชืžืฉื™ื ื‘ืืกืคืจื’ื•ืก.
06:01
(Laughter)
126
361080
2507
(ืฆื—ื•ืง)
06:04
Right now, we've got really promising pilot data.
127
364060
3118
ื•ืขื›ืฉื™ื•, ื™ืฉ ืœื ื• ืžื™ื“ืข ืคื™ื™ืœื•ื˜ ื‘ืืžืช ืžื‘ื˜ื™ื—.
06:07
And we're working with tissue engineers
128
367202
1883
ื•ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขื ืžื”ื ื“ืกื™ ืจืงืžื•ืช
06:09
and neurosurgeons
129
369109
1166
ื•ืžื ืชื—ื™ ืขืฆื‘ื™ื
06:10
to find out what's actually possible.
130
370299
1896
ื›ื“ื™ ืœื’ืœื•ืช ืžื” ื‘ืืžืช ืืคืฉืจื™.
06:12
So listen, all of the work I've shown you,
131
372793
2554
ืื– ื”ืงืฉื™ื‘ื•, ื›ืœ ื”ืขื‘ื•ื“ื” ืฉื”ืจืืชื™ ืœื›ื,
06:15
the stuff that I've built that's all around me on this stage
132
375371
3193
ื”ื“ื‘ืจื™ื ืฉื‘ื ื™ืชื™ ืฉืกื‘ื™ื‘ื™ ืขืœ ื”ื‘ืžื”
06:18
and the other projects my lab is involved in
133
378588
2670
ื•ื”ืคืจื•ื™ื™ืงื˜ื™ื ื”ืื—ืจื™ื ืฉื”ืžืขื‘ื“ื” ืฉืœื™ ืžืขื•ืจื‘ืช ื‘ื”ื
06:21
are all a direct result of me playing with your garbage.
134
381282
4087
ื›ื•ืœื ืชื•ืฆืื” ื™ืฉื™ืจื” ืฉืœ ืžืฉื—ืง ืฉืœื™ ืขื ื”ื–ื‘ืœ ืฉืœื›ื.
06:25
Play -- play is a key part of my scientific practice.
135
385393
6037
ืžืฉื—ืง -- ืžืฉื—ืง ื”ื•ื ื—ืœืง ืขื™ืงืจื™ ืžื”ื ื•ื”ื’ ื”ืžื“ืขื™ ืฉืœื™.
06:31
It's how I train my mind to be unconventional and to be creative
136
391454
3984
ื›ืš ืื ื™ ืžืืžืŸ ืืช ื”ืžื•ื— ืฉืœื™ ืœื”ื™ื•ืช ืœื ืงื•ื ื‘ื ืฆื™ื•ื ืœื™ ื•ื™ืฆื™ืจืชื™
06:35
and to decide to make human apple ears.
137
395462
3005
ื•ืœื”ื—ืœื™ื˜ ืœื™ืฆื•ืจ ืื•ื–ื ื™ ืื“ื ืžืชืคื•ื—ื™ื.
06:38
So, the next time any of you are looking at some old,
138
398491
4651
ืื–, ื‘ืคืขื ื”ื‘ืื” ืฉืืชื ืžื‘ื™ื˜ื™ื ื‘ืคื™ืกืช ื˜ื›ื ื•ืœื•ื’ื™ื”
06:43
broken-down, malfunctioning, piece-of-crap technology,
139
403166
4579
ื™ืฉื ื”, ืžืงื•ืœืงืœืช, ืชืงื•ืœื” ื•ื’ืจื•ื˜ืื”,
06:47
I want you to think of me.
140
407769
1597
ืื ื™ ืจื•ืฆื” ืฉืชื—ืฉื‘ื• ืขืœื™.
06:50
Because I want it.
141
410199
1158
ื‘ื’ืœืœ ืฉืื ื™ ืจื•ืฆื” ืื•ืชื”.
06:51
(Laughter)
142
411381
1151
(ืฆื—ื•ืง)
06:52
Seriously, please find any way to get in touch with me,
143
412556
4007
ื‘ืจืฆื™ื ื•ืช, ื‘ื‘ืงืฉื” ืžืฆืื• ื›ืœ ื“ืจืš ืœื”ืชืงืฉืจ ืื™ืชื™,
06:56
and let's see what we can build.
144
416587
1941
ื•ื‘ื•ืื• ื ืจืื” ืžื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช.
06:58
Thank you.
145
418552
1151
ืชื•ื“ื” ืœื›ื.
06:59
(Applause)
146
419727
4543
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7