Tim Berners-Lee: The year open data went worldwide

61,289 views ・ 2010-03-08

TED


請雙擊下方英文字幕播放視頻。

譯者: Jenny Yang 審譯者: Zachary Lin Zhao
00:15
Last year here at TED
0
15260
2000
去年的TED我在這裡
00:17
I asked you to give me your data,
1
17260
2000
請求你們公開你們的數據和資料
00:19
to put your data on the web, on the basis
2
19260
2000
把數據資料放到網上,就跟老百姓
00:21
that if people put data onto the web --
3
21260
3000
把他們的數據資料放到網上一樣
00:24
government data, scientific data, community data,
4
24260
3000
政府數據,科學數據, 社區數據
00:27
whatever it is -- it will be used by other people
5
27260
2000
不管是什麼, 會被人們用來
00:29
to do wonderful things, in ways
6
29260
2000
做精彩的事情,他們使用這些數據的地方
00:31
that they never could have imagined.
7
31260
2000
是他們從來都根本無法想像的
00:33
So, today I'm back just to show you a few things,
8
33260
3000
所以, 今天我回來給你展示幾個事例
00:36
to show you, in fact, there is
9
36260
2000
向你展示, 事實上
00:38
an open data movement afoot,
10
38260
5000
公開數據資料的運動正在興起
00:43
now, around the world.
11
43260
2000
世界各地
00:45
The cry of "Raw data now!"
12
45260
2000
都渴望“即時的原始數據資料”
00:47
which I made people make in the auditorium,
13
47260
2000
我在禮堂裡的懇請大家做的事情
00:49
was heard around the world.
14
49260
2000
整個世界都聽到了
00:51
So, let's roll the video.
15
51260
3000
所以, 讓我們播放影像
00:54
A classic story, the first one which lots of people picked up,
16
54260
3000
經典的故事, 也是很多人首選的故事
00:57
was when in March -- on March 10th in fact, soon after TED --
17
57260
3000
是當3月10日, 事實上TED剛剛結束不久
01:00
Paul Clarke, in the U.K. government,
18
60260
3000
英國政府的Paul Clarke
01:03
blogged, "Oh, I've just got some raw data. Here it is,
19
63260
2000
在博客中說: “啊, 我才找到一些數據
01:05
it's about bicycle accidents."
20
65260
3000
是關於自行車事故的數據。 ”
01:08
Two days it took the Times Online
21
68260
3000
時代在線用了兩天時間
01:11
to make a map, a mashable map --
22
71260
2000
做了一個地圖, 一個合成的地圖
01:13
we call these things mash-ups --
23
73260
2000
我們稱之為:合成(把數據融合到地圖上)
01:15
a mashed-up user interface that allows you to go in there
24
75260
2000
經過這種合成,你可以通過用戶界面
01:17
and have a look and find out whether your bicycle
25
77260
2000
搜索和找到你的上班的自行車
01:19
route to work was affected.
26
79260
2000
路線是否受影響
01:21
Here's more data, traffic survey data,
27
81260
2000
除此, 網上還很多其他的數據, 交通調查數據等
01:23
again, put out by the U.K. government,
28
83260
2000
都是英國政府放上去的
01:25
and because they put it up using the Linked Data standards,
29
85260
3000
因為他們上傳的數據符合鏈接標準
01:28
then a user could just make a map,
30
88260
2000
所以用戶可以使用這些數據做地圖
01:30
just by clicking.
31
90260
2000
只要點擊一下就做成了
01:32
Does this data affect things? Well, let's get back to 2008.
32
92260
2000
那麼這些數據是否會產生影響?讓我們回到2008
01:34
Look at Zanesville, Ohio.
33
94260
3000
看看曾斯維爾,俄亥俄州
01:37
Here's a map a lawyer made. He put on it the water plant,
34
97260
3000
這是一張律師製作的地圖,掛在自來水廠
01:40
and which houses are there,
35
100260
2000
你可以在圖上看見哪戶人家
01:42
which houses have been connected to the water.
36
102260
2000
誰家連著用水
01:44
And he got, from other data sources,
37
104260
2000
然後他得到一組其他數據
01:46
information to show
38
106260
3000
資料顯示了
01:49
which houses are occupied by white people.
39
109260
2000
哪個房子是白人擁有的
01:51
Well, there was too much of a correlation, he felt,
40
111260
3000
他感到, 兩者之間的連續太緊密了
01:54
between which houses were occupied by white people
41
114260
3000
哪些是白人擁有的房子
01:57
and which houses had water, and the judge was not impressed either.
42
117260
3000
哪些房子有自來水,法官看到以後對此也很不滿
02:00
The judge was not impressed to the tune of 10.9 million dollars.
43
120260
3000
法官因此罰了他們1090萬美元
02:03
That's the power of taking one piece of data,
44
123260
2000
這就是拿了一組數據
02:05
another piece of data, putting it together,
45
125260
3000
和另一組數據放在一起的力量
02:08
and showing the result.
46
128260
2000
結果是顯而易見的
02:10
Let's look at some data from the U.K. now.
47
130260
2000
我們看一組從英國來的數據
02:12
This is U.K. government data, a completely independent site,
48
132260
2000
這是英國政府的數據, 完全獨立的網站
02:14
Where Does My Money Go.
49
134260
2000
我的錢花到哪裡去了
02:16
It allows anybody to go there and burrow down.
50
136260
2000
這個網站讓任何人在網站上挖掘數據
02:18
You can burrow down by a particular type of spending,
51
138260
2000
你可以根據特別的消費種類來查找
02:20
or you can go through all the different regions and compare them.
52
140260
4000
也可以找出不同的地區的數據來做比較
02:24
So, that's happening in the U.K. with U.K. government data.
53
144260
3000
英國人正在用英國政府提供的數據資料做這些事情
02:27
Yes, certainly you can do it over here.
54
147260
2000
是的, 你在這裡也可以做
02:29
Here's a site which allows you to look at recovery spending
55
149260
3000
這個網站讓你查找復甦經費的使用情況
02:32
in California.
56
152260
2000
在加州
02:34
Take an arbitrary example, Long Beach, California,
57
154260
2000
隨便舉例,加州長灘
02:36
you can go and have a look at what recovery money they've been spending
58
156260
3000
你可以看見人們是怎樣使用政府發放的復甦經費的
02:39
on different things such as energy.
59
159260
3000
他們使用在能源上
02:42
In fact, this is the graph of the number of data sets
60
162260
3000
事實上, 這是幾組數據的圖表
02:45
in the repositories of data.gov,
61
165260
2000
他們存放在data.gov上
02:47
and data.gov.uk.
62
167260
2000
和data.gov.uk網上
02:49
And I'm delighted to see a great competition
63
169260
2000
我真高興看見這種積極的競爭
02:51
between the U.K. in blue, and the U.S. in red.
64
171260
2000
英國顯示的是藍色, 美國是紅色
02:53
How can you use this stuff?
65
173260
2000
你怎麼用這些東西呢
02:55
Well, for example, if you have lots of data about places
66
175260
3000
舉個例子吧, 你有一個地區的大量數據
02:58
you can take, from a postcode --
67
178260
2000
你可以從一個郵政編碼
03:00
which is like a zip plus four --
68
180260
2000
就是區碼加4
03:02
for a specific group of houses, you can make paper,
69
182260
3000
對一組特別的人家, 你可以製作報紙
03:05
print off a paper which has got very, very
70
185260
2000
打印的報紙會有特別具體
03:07
specific things about the bus stops,
71
187260
2000
的信息, 比如公車站
03:09
the things specifically near you.
72
189260
2000
包括那些離你很近的事情
03:11
On a larger scale, this is a mash-up
73
191260
3000
從大面相看說, 這是一個
03:14
of the data which was released about the Afghan elections.
74
194260
3000
阿富汗選舉數據的與地圖的合成
03:17
It allows you to set your own criteria
75
197260
2000
它允許你設立你自己的標準
03:19
for what sort of things you want to look at.
76
199260
2000
你可以查找你想要找的資料
03:21
The red circles are polling stations,
77
201260
2000
這些紅圈是投票點
03:23
selected by your criteria.
78
203260
2000
是根據你的標準選擇的
03:25
And then you can select also other things on the map
79
205260
2000
你也可以選擇地圖上的其他內容
03:27
to see what other factors, like the threat level.
80
207260
2000
你可以看見其他數據,比如威脅的程度
03:29
So, that was government data.
81
209260
3000
那也是政府的數據
03:32
I also talked about community-generated data -- in fact I edited some.
82
212260
2000
我也談過社區製作的, 事實上我也參與編輯的
03:34
This is the wiki map, this is the Open Street Map.
83
214260
2000
這是wiki地圖, 這是公開的街道地圖
03:36
"Terrace Theater" I actually put
84
216260
2000
Terrace 劇院, 是我放到
03:38
on the map because it wasn't on the map before TED last year.
85
218260
3000
地圖上去的, 因為去年TED召開的時候地圖上沒有它
03:41
I was not the only person editing the open street map.
86
221260
3000
我不是唯一編輯公開地圖的人
03:44
Each flash on this visualization --
87
224260
2000
這裡每個可視的閃亮點
03:46
put together by ITO World --
88
226260
2000
是ITO World放在一起的
03:48
shows an edit in 2009
89
228260
2000
顯示了2009年人們每次對
03:50
made to the Open Street Map.
90
230260
2000
開發地圖做的編輯
03:52
Let's now spin the world during the same year.
91
232260
3000
讓我們繞著整個世界看一下這一年發生的情況
03:55
Every flash is an edit. Somebody somewhere
92
235260
2000
每個亮點都是一次編輯的記錄。有人在某些地方
03:57
looking at the Open Street Map, and realizing it could be better.
93
237260
3000
看著公開的街道地圖, 發現它可以改進得更好
04:00
You can see Europe is ablaze with updates.
94
240260
3000
你看見歐洲的更新非常頻繁
04:03
Some places, perhaps not as much as they should be.
95
243260
3000
有些地方, 也許還沒什麼其他地方多
04:06
Here focusing in on Haiti.
96
246260
2000
這裡聚焦的是海地
04:08
The map of Port au-Prince at the end
97
248260
2000
太子港在地圖在
04:10
of 2009 was not all it could be,
98
250260
2000
2009年年底還不是很完整
04:12
not as good as the map of California.
99
252260
2000
不如加州的地圖好
04:14
Fortunately, just after the earthquake,
100
254260
3000
幸運的是, 地震以後
04:17
GeoEye, a commercial company,
101
257260
2000
GeoEye, 一間商業公司
04:19
released satellite imagery
102
259260
2000
發布了衛星圖像
04:21
with a license, which allowed
103
261260
2000
它發放授權允許
04:23
the open-source community to use it.
104
263260
2000
公開資源的社區使用這些圖像
04:25
This is January, in time lapse,
105
265260
2000
這是一月的
04:27
of people editing ... that's the earthquake.
106
267260
2000
人們參與了編輯, 然後地震發生了
04:29
After the earthquake, immediately,
107
269260
2000
地震發生後不久
04:31
people all over the world, mappers
108
271260
2000
全世界的人們, 地圖製作者們
04:33
who wanted to help, and could,
109
273260
2000
都想要提供幫助,可以
04:35
looked at that imagery, built the map, quickly building it up.
110
275260
3000
看著這些圖像, 迅速地建立地圖
04:38
We're focusing now on Port-au-Prince.
111
278260
1000
我們現在看到的是太子港
04:39
The light blue is refugee camps these volunteers had spotted from the [satellite images].
112
279260
4000
藍色的是哪些自願者在空中發現的難民營
04:43
So, now we have, immediately, a real-time map
113
283260
2000
所以現在, 我們可以立刻製作一個實時地圖
04:45
showing where there are refugee camps --
114
285260
2000
顯示難民營在什麼地方
04:47
rapidly became the best map
115
287260
2000
如果你在太子港從事援助工作
04:49
to use if you're doing relief work in Port-au-Prince.
116
289260
3000
那這就是最好的地圖
04:52
Witness the fact that it's here on this Garmin device
117
292260
2000
目睹這一切在Garmin儀器上發生
04:54
being used by rescue team in Haiti.
118
294260
2000
被救援隊伍運用
04:56
There's the map showing,
119
296260
3000
海地, 這張地圖
04:59
on the left-hand side,
120
299260
2000
左邊的這張
05:01
that hospital -- actually that's a hospital ship.
121
301260
2000
那個醫院,事實上是一個建在船上的醫院
05:03
This is a real-time map that shows blocked roads,
122
303260
3000
這是實時地圖現實路障
05:06
damaged buildings, refugee camps --
123
306260
2000
背毀的建築, 難民營
05:08
it shows things that are needed [for rescue and relief work].
124
308260
2000
現實世界哪裡需要東西
05:10
So, if you've been involved in that at all,
125
310260
2000
所以, 如果你參與了
05:12
I just wanted to say: Whatever you've been doing,
126
312260
2000
我只想說不管你做了什麼
05:14
whether you've just been chanting, "Raw data now!"
127
314260
2000
無論是你在為原始資料製圖
05:16
or you've been putting government or scientific data online,
128
316260
3000
還是將政府或者科學研究的數據放到網上
05:19
I just wanted to take this opportunity to say: Thank you very much,
129
319260
2000
我只想藉此機會說聲感謝
05:21
and we have only just started!
130
321260
3000
我們才剛剛開始
05:24
(Applause)
131
324260
2000
謝謝
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7