Your words may predict your future mental health | Mariano Sigman

803,228 views ・ 2016-06-16

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jack Zhang 校对人员: 易帆 余
历史纪录可以让我们知道 古希腊人如何打扮、
00:13
We have historical records that allow us to know how the ancient Greeks dressed,
0
13006
5150
如何生活、
00:18
how they lived,
1
18180
1254
00:19
how they fought ...
2
19458
1522
如何打仗...
但他们如何思考呢?
00:21
but how did they think?
3
21004
1524
00:23
One natural idea is that the deepest aspects of human thought --
4
23432
4440
有一个很自然的方法就是, 去探索人类最深层的想法——
00:27
our ability to imagine,
5
27896
1872
我们的想像力、
00:29
to be conscious,
6
29792
1397
意识力、
00:31
to dream --
7
31213
1231
去梦想——
00:32
have always been the same.
8
32468
1619
是否是一样的。
00:34
Another possibility
9
34872
1499
另一种可能是,
00:36
is that the social transformations that have shaped our culture
10
36395
3723
去探索造就我们文化的社会变革,
这些变革也许就是 改变人类想法的主要因素。
00:40
may have also changed the structural columns of human thought.
11
40142
3785
00:44
We may all have different opinions about this.
12
44911
2524
对这一点,大家或许有不同的看法。
00:47
Actually, it's a long-standing philosophical debate.
13
47459
2717
实际上,这是一个存在已久的哲学辩论。
00:50
But is this question even amenable to science?
14
50644
2727
究竟这个问题是否可以 通过科学来处理?
00:54
Here I'd like to propose
15
54834
2506
我的建议是
00:57
that in the same way we can reconstruct how the ancient Greek cities looked
16
57364
4772
如同仅借由一些砖头, 我们得以重建希腊古都的外貌,
01:02
just based on a few bricks,
17
62160
2388
也可用同样的方式,
01:04
that the writings of a culture are the archaeological records,
18
64572
4126
借由一些文化作品, 比如考古纪录、
01:08
the fossils, of human thought.
19
68722
2143
化石,来了解人类的想法。
01:11
And in fact,
20
71905
1174
而实际上,
因为对人类的
01:13
doing some form of psychological analysis
21
73103
2206
01:15
of some of the most ancient books of human culture,
22
75333
3544
古老文化书籍做了一些心理分析,
01:18
Julian Jaynes came up in the '70s with a very wild and radical hypothesis:
23
78901
5955
朱利安 杰尼斯在70年代, 发表了一个相当大胆激进的假说:
01:24
that only 3,000 years ago,
24
84880
2413
他说,3000年前的人类,
01:27
humans were what today we would call schizophrenics.
25
87317
4888
是我们现在俗称的 “精神分裂症患者”。
01:33
And he made this claim
26
93753
1508
他会如此主张的原因是
01:35
based on the fact that the first humans described in these books
27
95285
3301
依据世界各地不同的传统及位置,
01:38
behaved consistently,
28
98610
1904
这些书籍里面
01:40
in different traditions and in different places of the world,
29
100538
3016
所描述的人类行为
01:43
as if they were hearing and obeying voices
30
103578
3532
似乎不约而同地都会服从
他们认为是从神袛
01:47
that they perceived as coming from the Gods,
31
107134
3040
那边传来的声音......
01:50
or from the muses ...
32
110198
1198
而如今,我们会称之为“幻听”。
01:52
what today we would call hallucinations.
33
112063
2769
01:55
And only then, as time went on,
34
115888
2626
随着时间的洗礼,
01:58
they began to recognize that they were the creators,
35
118538
3651
他们开始认知到 那些声音是他们自己创造的,
他们就是那些内在声音的主人。
02:02
the owners of these inner voices.
36
122213
2515
02:05
And with this, they gained introspection:
37
125316
2715
有了这样的认知, 他们学会了 “自省”:
一种反思自己想法的能力。
02:08
the ability to think about their own thoughts.
38
128055
2483
02:11
So Jaynes's theory is that consciousness,
39
131785
3397
所以杰尼斯对“意识”的理论就是,
至少现今我们觉察到的“意识”、
02:15
at least in the way we perceive it today,
40
135206
3166
02:18
where we feel that we are the pilots of our own existence --
41
138396
3540
感觉到我们能掌控 自我人生的感悟——
02:21
is a quite recent cultural development.
42
141960
2737
是相当近代的文化发展。
02:25
And this theory is quite spectacular,
43
145456
1786
这理论很有前瞻性,
02:27
but it has an obvious problem
44
147266
1433
但一个很明显的问题就是,
02:28
which is that it's built on just a few and very specific examples.
45
148723
3992
它是建立在极少又特殊的案例上。
所以问题是,
02:33
So the question is whether the theory
46
153085
1763
02:34
that introspection built up in human history only about 3,000 years ago
47
154872
4751
3000年来人类才建立起 自省能力的这个理论
02:39
can be examined in a quantitative and objective manner.
48
159647
2984
是否可以经得起量化且客观的考验。
02:43
And the problem of how to go about this is quite obvious.
49
163543
3563
至于要如何做的问题, 也是相当简单明了。
但我的意思并非,比如, 柏拉图有一天突然醒来写下
02:47
It's not like Plato woke up one day and then he wrote,
50
167130
3460
02:50
"Hello, I'm Plato,
51
170614
1659
“你好!我是柏拉图,
02:52
and as of today, I have a fully introspective consciousness."
52
172297
2889
我今天拥有完整的自省意识了。” 那样简单而已。
(笑声)
02:55
(Laughter)
53
175210
2293
02:57
And this tells us actually what is the essence of the problem.
54
177527
3333
而这鞥告诉我们,我们要找出 问题的本质是什么。
03:01
We need to find the emergence of a concept that's never said.
55
181467
4055
我们必须找到从来没有被 谈论过的概念。
03:06
The word introspection does not appear a single time
56
186434
4310
“自省”这个词,在我们研究的
03:10
in the books we want to analyze.
57
190768
1919
这些书本中从未出现过一次。
03:13
So our way to solve this is to build the space of words.
58
193728
4087
所以为了解决这个问题, 我们要建立一个字词的空间。
03:18
This is a huge space that contains all words
59
198571
3287
在这个大空间里, 包含了所有的词汇,
03:21
in such a way that the distance between any two of them
60
201882
2802
用这种方式可以衡量
03:24
is indicative of how closely related they are.
61
204708
2883
两个词语彼此之间的关联程度。
03:28
So for instance,
62
208460
1151
举个例子,
03:29
you want the words "dog" and "cat" to be very close together,
63
209635
2897
你会想,“狗”、“猫”是比较相关的词,
03:32
but the words "grapefruit" and "logarithm" to be very far away.
64
212556
3831
但“葡萄柚”和“对数” 就没什么关联了。
03:36
And this has to be true for any two words within the space.
65
216809
3896
而在这个空间里的任何 两个词都必须能以此衡量。
03:41
And there are different ways that we can construct the space of words.
66
221626
3341
而我们有很多方式 可以建立起这些字的空间架构,
03:44
One is just asking the experts,
67
224991
1643
方法一,只要请教专家就行了,
03:46
a bit like we do with dictionaries.
68
226658
1896
有点类似查字典。
03:48
Another possibility
69
228896
1428
另一个可行的方法是,
03:50
is following the simple assumption that when two words are related,
70
230348
3715
当两个字词出现关联性时, 去追踪它们的预设状况,
它们可能会出现在同一句、
03:54
they tend to appear in the same sentences,
71
234087
2349
03:56
in the same paragraphs,
72
236460
1453
同一段落、
03:57
in the same documents,
73
237937
1770
或同一文档中,
03:59
more often than would be expected just by pure chance.
74
239731
3182
比偶然出现频繁得多。
04:04
And this simple hypothesis,
75
244231
2050
在这个简单的前提下,
04:06
this simple method,
76
246305
1306
这个单纯且带有
04:07
with some computational tricks
77
247635
1607
运算技巧的方法
04:09
that have to do with the fact
78
249266
1389
在这个复杂且高维度的
空间中必须能充分发挥作用,
04:10
that this is a very complex and high-dimensional space,
79
250679
3064
04:13
turns out to be quite effective.
80
253767
1665
而事后证明,它相当有效。
向各位介绍一下,它多有效,
04:16
And just to give you a flavor of how well this works,
81
256155
2802
04:18
this is the result we get when we analyze this for some familiar words.
82
258981
3912
我们分析了一些经常用到的词语。
04:23
And you can see first
83
263607
1185
首先你可以看到,
04:24
that words automatically organize into semantic neighborhoods.
84
264816
3278
这些词语会自动地划分为 语义相近的相邻群组,
所以你可看到水果,身体部位,
04:28
So you get the fruits, the body parts,
85
268118
2217
电脑零件与科学术语等等。
04:30
the computer parts, the scientific terms and so on.
86
270359
2425
演算法也可以把我们要 整理的概念分门别类出来。
04:33
The algorithm also identifies that we organize concepts in a hierarchy.
87
273119
4222
04:37
So for instance,
88
277852
1151
举个例子,
你可以看到,科学的术语 被拆解成两个子类,
04:39
you can see that the scientific terms break down into two subcategories
89
279027
3597
04:42
of the astronomic and the physics terms.
90
282648
2100
分别是太空与物理的术语。
04:45
And then there are very fine things.
91
285338
2246
然后你会发现一件有趣的事。
04:47
For instance, the word astronomy,
92
287608
1905
举个例子,“天文学”这个词,
04:49
which seems a bit bizarre where it is,
93
289537
1815
它现在的位置看似不太对,
却的确在正确的位置上,
04:51
is actually exactly where it should be,
94
291376
2048
04:53
between what it is,
95
293448
1595
它应该介于科学与
天文学术语之间,
04:55
an actual science,
96
295067
1270
04:56
and between what it describes,
97
296361
1536
因为天文学是一门科学
04:57
the astronomical terms.
98
297921
1492
同时又包含了很多天文学术语。
我们可以持续寻找其它类似的情况。
05:00
And we could go on and on with this.
99
300182
1891
如果你盯着这些词一阵子,
05:02
Actually, if you stare at this for a while,
100
302097
2060
然后随机搭配连接一下这些词语,
05:04
and you just build random trajectories,
101
304181
1858
你会觉得好像自己在做诗。
05:06
you will see that it actually feels a bit like doing poetry.
102
306063
3166
那是因为在某种程度上,
05:10
And this is because, in a way,
103
310018
1882
05:11
walking in this space is like walking in the mind.
104
311924
2940
在这个空间里漫遊, 就像是在脑海中做诗一样。
最后,
05:16
And the last thing
105
316027
1617
05:17
is that this algorithm also identifies what are our intuitions,
106
317668
4040
演算法也能辨识出人类的直觉,
05:21
of which words should lead in the neighborhood of introspection.
107
321732
3896
并归纳到自省的词语范畴中。
05:25
So for instance,
108
325652
1223
举个例子,
05:26
words such as "self," "guilt," "reason," "emotion,"
109
326899
3979
比如“自我”、“內疚”、“理由”、“情绪”
05:30
are very close to "introspection,"
110
330902
1889
与“自省”的含义非常接近,
05:32
but other words,
111
332815
1151
但其它的词汇,
05:33
such as "red," "football," "candle," "banana,"
112
333990
2167
比如“红色”、“足球”、“蜡烛”、“香蕉”
就差很远了。
05:36
are just very far away.
113
336181
1452
所以一旦我们建立起 这样的词汇空间,
05:38
And so once we've built the space,
114
338054
2762
05:40
the question of the history of introspection,
115
340840
2826
有关于自省的历史,
05:43
or of the history of any concept
116
343690
2333
有关与任何概念的历史,
以前被认为是抽象 或是有点模糊的词汇,
05:46
which before could seem abstract and somehow vague,
117
346047
4779
05:50
becomes concrete --
118
350850
1604
都可以变成实实在在的
05:52
becomes amenable to quantitative science.
119
352478
2738
可以被量化的科学。
05:56
All that we have to do is take the books,
120
356216
2762
而我们要做的就是, 拿起这些书,
把它们数字化,
05:59
we digitize them,
121
359002
1381
06:00
and we take this stream of words as a trajectory
122
360407
2809
然后把这些词汇映射到
06:03
and project them into the space,
123
363240
1969
词汇空间里面,
06:05
and then we ask whether this trajectory spends significant time
124
365233
3754
然后我们问电脑, 这些词汇所经过的轨迹
花了多少时间才接近自省的概念。
06:09
circling closely to the concept of introspection.
125
369011
2992
06:12
And with this,
126
372760
1196
有了这些数据,
06:13
we could analyze the history of introspection
127
373980
2112
我们就可以分析古希腊传统中,
有关于自省的历史,
06:16
in the ancient Greek tradition,
128
376116
1921
因为我们拥有最完整的文字记录。
06:18
for which we have the best available written record.
129
378061
2602
06:21
So what we did is we took all the books --
130
381631
2255
所以我们先把这些书——
06:23
we just ordered them by time --
131
383910
2284
按照时间排列——
06:26
for each book we take the words
132
386218
1752
然后把每本书中的词汇都
06:27
and we project them to the space,
133
387994
1961
投射到词语空间里面,
06:29
and then we ask for each word how close it is to introspection,
134
389979
3032
然后我们问电脑,这些字词 与自省有多少的相关性,
再把它们平均起来。
06:33
and we just average that.
135
393035
1230
06:34
And then we ask whether, as time goes on and on,
136
394590
3198
然后,我们不断地问电脑问题,
06:37
these books get closer, and closer and closer
137
397812
3252
这些书就会越来越
接近自省的概念。
06:41
to the concept of introspection.
138
401088
1754
06:42
And this is exactly what happens in the ancient Greek tradition.
139
402866
3801
而这正是当时在古希腊所发生的事。
06:47
So you can see that for the oldest books in the Homeric tradition,
140
407698
3127
各位可以看到在 荷马时代最古老的书籍,
06:50
there is a small increase with books getting closer to introspection.
141
410849
3412
与自省的相关性只有一点点。
06:54
But about four centuries before Christ,
142
414285
2206
但在大约在公元前400年左右,
06:56
this starts ramping up very rapidly to an almost five-fold increase
143
416515
4708
这个数据却快速上涨至五倍,
07:01
of books getting closer, and closer and closer
144
421247
2500
这些书与自省的概念
07:03
to the concept of introspection.
145
423771
1682
越来越接近。
最棒的是,
07:06
And one of the nice things about this
146
426159
2424
07:08
is that now we can ask
147
428607
1198
我们可以问电脑,
07:09
whether this is also true in a different, independent tradition.
148
429829
4147
在不同的、独立的传统文化中, 是否也有一样的现象。
07:14
So we just ran this same analysis on the Judeo-Christian tradition,
149
434962
3176
所以,我们用同样的方法, 分析了传统犹太基督教的书籍,
也得到了类似的趋势。
07:18
and we got virtually the same pattern.
150
438162
2721
07:21
Again, you see a small increase for the oldest books in the Old Testament,
151
441548
4635
在最古老的旧约圣经中, 你可以看到它缓慢地增加,
之后在新约圣经中,
07:26
and then it increases much more rapidly
152
446207
1914
它在快速地增长。
07:28
in the new books of the New Testament.
153
448145
1839
大约公元400年,
07:30
And then we get the peak of introspection
154
450008
2032
圣人奥古斯丁的《忏悔录》中
07:32
in "The Confessions of Saint Augustine,"
155
452064
2127
07:34
about four centuries after Christ.
156
454215
1857
自省的词汇数量达到了最高峰。
07:36
And this was very important,
157
456897
1944
这个信息相当重要,
07:38
because Saint Augustine had been recognized by scholars,
158
458865
3373
因为圣人奥古斯丁已经被多位学者、
07:42
philologists, historians,
159
462262
2172
心理学家、历史学家公认为
07:44
as one of the founders of introspection.
160
464458
2078
是自省的创始人之一。
有些人认为他是现代心理学之父。
07:47
Actually, some believe him to be the father of modern psychology.
161
467060
3297
所以,我们演算法的优点
07:51
So our algorithm,
162
471012
1839
07:52
which has the virtue of being quantitative,
163
472875
2842
不仅可以量化,
07:55
of being objective,
164
475741
1263
而且客观,
当然速度也相当快——
07:57
and of course of being extremely fast --
165
477028
2016
几秒就可以跑完——
07:59
it just runs in a fraction of a second --
166
479068
2397
08:01
can capture some of the most important conclusions
167
481489
3503
并捕捉到使用传统方法 必须费长时间调查
才能抓到的一些重点。
08:05
of this long tradition of investigation.
168
485016
2222
08:08
And this is in a way one of the beauties of science,
169
488317
3651
这也是科学美好的地方之一,
08:11
which is that now this idea can be translated
170
491992
3476
它可以解读、归纳这想法,
08:15
and generalized to a whole lot of different domains.
171
495492
2571
然后广泛应用在许多不同的领域上。
08:18
So in the same way that we asked about the past of human consciousness,
172
498769
4767
或许最具挑战性的问题是,
08:23
maybe the most challenging question we can pose to ourselves
173
503560
3406
我们用电脑来分析过去的 自我意识发展的方法,
08:26
is whether this can tell us something about the future of our own consciousness.
174
506990
4137
是不是也可以告诉我们 自我意识的发展趋势呢?
08:31
To put it more precisely,
175
511550
1470
更确切地说,
我们现在说的话,
08:33
whether the words we say today
176
513044
2416
08:35
can tell us something of where our minds will be in a few days,
177
515484
5197
是否可以告诉我们接下来的几天、
08:40
in a few months
178
520705
1151
几个月或几年后,
08:41
or a few years from now.
179
521880
1182
我们的心智会达到什么情况。
08:43
And in the same way many of us are now wearing sensors
180
523597
3020
类似的,我们现在很多人 都使用穿戴式侦测器,
08:46
that detect our heart rate,
181
526641
1786
可以侦测我们的心跳、
08:48
our respiration,
182
528451
1269
呼吸、
08:49
our genes,
183
529744
1667
基因,
08:51
on the hopes that this may help us prevent diseases,
184
531435
3651
让我们可以预防疾病,
我们是否可以通过 监控和分析我们所说的话、
08:55
we can ask whether monitoring and analyzing the words we speak,
185
535110
3521
08:58
we tweet, we email, we write,
186
538655
2683
发的微博、邮件和书写的文字,
09:01
can tell us ahead of time whether something may go wrong with our minds.
187
541362
4808
来提前告诉我们,我们的心智 可能要发生问题了?
我跟我的兄弟,
09:07
And with Guillermo Cecchi,
188
547087
1534
09:08
who has been my brother in this adventure,
189
548645
3001
吉列尔莫 切基,
09:11
we took on this task.
190
551670
1555
扛起了这项任务。
09:14
And we did so by analyzing the recorded speech of 34 young people
191
554228
5532
我们纪录分析了 34 位年轻人的谈话。
09:19
who were at a high risk of developing schizophrenia.
192
559784
2801
他们曾是患精神分裂症的高风险人群。
09:23
And so what we did is, we measured speech at day one,
193
563434
2881
我们测量了他们第一天的谈话,
09:26
and then we asked whether the properties of the speech could predict,
194
566339
3242
然后问电脑,从他们的话中, 是否可以预测出,
09:29
within a window of almost three years,
195
569605
2496
未來三年內,
他们会不会患上精神错乱。
09:32
the future development of psychosis.
196
572125
2035
09:35
But despite our hopes,
197
575427
2366
但我们大失所望,
09:37
we got failure after failure.
198
577817
3117
一次又一次的失败。
09:41
There was just not enough information in semantics
199
581793
3882
没有足够的语义上的信息
09:45
to predict the future organization of the mind.
200
585699
2793
来预测未来的心智发展。
09:48
It was good enough
201
588516
1809
它有能力分辨
09:50
to distinguish between a group of schizophrenics and a control group,
202
590349
4175
精神病患者和健康人,
09:54
a bit like we had done for the ancient texts,
203
594548
2712
因为这有点像我们之前 做古文字的分析,
09:57
but not to predict the future onset of psychosis.
204
597284
2994
但没办法预测未来精神错乱的发病。
后来我们了解到,
10:01
But then we realized
205
601164
1706
10:02
that maybe the most important thing was not so much what they were saying,
206
602894
4088
也许最关键的不是他们说了什么,
而是他们怎么说。
10:07
but how they were saying it.
207
607006
1673
10:09
More specifically,
208
609679
1220
进一步说,
10:10
it was not in which semantic neighborhoods the words were,
209
610923
2827
不是他们说的话落在哪个 语义相近的群组里,
10:13
but how far and fast they jumped
210
613774
2600
而是他们说话的方式是否会在这几个
10:16
from one semantic neighborhood to the other one.
211
616398
2301
语义相近的群组里快速地跳来跳去。
10:19
And so we came up with this measure,
212
619247
1731
所以我们想出了一个
叫做“语义连贯性”的评估方法,
10:21
which we termed semantic coherence,
213
621002
2389
10:23
which essentially measures the persistence of speech within one semantic topic,
214
623415
4804
本质上就是评估谈话的持续性
10:28
within one semantic category.
215
628243
1529
是否会落在同一个 语义主题或类别上。
10:31
And it turned out to be that for this group of 34 people,
216
631294
4047
结果显示,刚刚的 34 位年轻人,
10:35
the algorithm based on semantic coherence could predict,
217
635365
3659
通过这个语义连贯性演算法,
预测谁会精神错乱的正确率
10:39
with 100 percent accuracy,
218
639048
2500
10:41
who developed psychosis and who will not.
219
641572
2507
达到了百分之百。
10:44
And this was something that could not be achieved --
220
644976
2937
目前临床上所有评估方式
10:47
not even close --
221
647937
1508
都无法达到、
10:49
with all the other existing clinical measures.
222
649469
3126
甚至无法接近这个数字。
10:54
And I remember vividly, while I was working on this,
223
654525
3579
在我做这项研究的时候, 清楚地记得一件事,
当时我坐在电脑前面,
10:58
I was sitting at my computer
224
658128
2317
11:00
and I saw a bunch of tweets by Polo --
225
660469
2635
看到保罗发的一些微博——
他是我之前在布宜诺斯艾利斯市 教书时的第一个学生,
11:03
Polo had been my first student back in Buenos Aires,
226
663128
3167
11:06
and at the time he was living in New York.
227
666319
2070
当时他住在纽约。
11:08
And there was something in this tweets --
228
668413
2088
我发现微博的内容不太对劲——
11:10
I could not tell exactly what because nothing was said explicitly --
229
670525
3501
我看不懂是什么, 因为他写得不太清楚——
但我有一种
11:14
but I got this strong hunch,
230
674050
2021
强烈的直觉,一定 有什么地方不对劲儿了。
11:16
this strong intuition, that something was going wrong.
231
676095
2955
11:20
So I picked up the phone, and I called Polo,
232
680347
2723
所以我立刻打电话给保罗,
没错,他当时感觉不太舒服。
11:23
and in fact he was not feeling well.
233
683094
1919
11:25
And this simple fact,
234
685362
1937
仅仅通过阅读
他微博的字里行间,
11:27
that reading in between the lines,
235
687323
2491
11:29
I could sense, through words, his feelings,
236
689838
4262
我就可以感受到他的精神健康状态,
阅读别人的用词 的确是个简单有效的帮助方式。
11:34
was a simple, but very effective way to help.
237
694124
2619
11:37
What I tell you today
238
697987
1638
今天我要告诉各位的是,
11:39
is that we're getting close to understanding
239
699649
2508
我们已经越来越能够理解
11:42
how we can convert this intuition that we all have,
240
702181
4286
如何把我们共有的,
11:46
that we all share,
241
706491
1365
共享的直觉
11:47
into an algorithm.
242
707880
1197
转换成演算法。
通过这样做,
11:50
And in doing so,
243
710102
1461
11:51
we may be seeing in the future a very different form of mental health,
244
711587
4650
未来我们也许可以看到一种 全然不同的精神健康模式,
11:56
based on objective, quantitative and automated analysis
245
716261
5621
是基于一种客观、 量化的方式来自动分析出
12:01
of the words we write,
246
721906
1709
我们所写的词汇,
12:03
of the words we say.
247
723639
1537
还有我们所说的话。
谢谢。
12:05
Gracias.
248
725200
1151
12:06
(Applause)
249
726375
6883
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7