Geoffrey West: The surprising math of cities and corporations

170,139 views ・ 2011-07-26

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Darko Ilic Lektor: Jelena Nedjic
00:16
Cities are the crucible of civilization.
0
16260
3000
Gradovi su veliki izazov za civilizaciju.
00:19
They have been expanding,
1
19260
2000
Oni se uvećavaju,
00:21
urbanization has been expanding,
2
21260
2000
stopa urbanizacije raste
00:23
at an exponential rate in the last 200 years
3
23260
2000
eksponencijalnom stopom u poslednjih 200 godina
00:25
so that by the second part of this century,
4
25260
3000
tako da će u drugoj polovini ovog veka
00:28
the planet will be completely dominated
5
28260
2000
gradovi u potpunosti dominirati
00:30
by cities.
6
30260
3000
planetom.
00:33
Cities are the origins of global warming,
7
33260
3000
Gradovi su izvor globalnog zagrevanja,
00:36
impact on the environment,
8
36260
2000
utiču na okruženje,
00:38
health, pollution, disease,
9
38260
3000
zdravlje, zagađenje, bolesti,
00:41
finance,
10
41260
2000
finansije,
00:43
economies, energy --
11
43260
3000
ekonomiju, energiju.
00:46
they're all problems
12
46260
2000
Svi ovi problemi
00:48
that are confronted by having cities.
13
48260
2000
su posledica postojanja gradova.
00:50
That's where all these problems come from.
14
50260
2000
To je izvor svih ovih problema.
00:52
And the tsunami of problems that we feel we're facing
15
52260
3000
A vrhunac problema sa kojima se suočavamo,
00:55
in terms of sustainability questions
16
55260
2000
po pitanju održivosti,
00:57
are actually a reflection
17
57260
2000
ogleda se u
00:59
of the exponential increase
18
59260
2000
eksponencijalnom povećanju
01:01
in urbanization across the planet.
19
61260
3000
stope urbanizacije širom planete.
01:04
Here's some numbers.
20
64260
2000
Pogledajmo neke brojeve:
01:06
Two hundred years ago, the United States
21
66260
2000
pre dve stotine godina, stopa urbanizacije
01:08
was less than a few percent urbanized.
22
68260
2000
u SAD je iznosila manje od nekoliko procenata.
01:10
It's now more than 82 percent.
23
70260
2000
Sada je stopa urbanizacije veća od 82%.
01:12
The planet has crossed the halfway mark a few years ago.
24
72260
3000
Globalno posmatrano, pre nekoliko godina ta stopa je prešla 50%.
01:15
China's building 300 new cities
25
75260
2000
U Kini će u narednih 20 godina
01:17
in the next 20 years.
26
77260
2000
biti izgrađeno 300 novih gradova.
01:19
Now listen to this:
27
79260
2000
Obratite pažnju sada na ovo:
01:21
Every week for the foreseeable future,
28
81260
3000
u bliskoj budućnosti
01:24
until 2050,
29
84260
2000
do 2050. godine,
01:26
every week more than a million people
30
86260
2000
populacija u našim gradovima će se svake nedelje
01:28
are being added to our cities.
31
88260
2000
povećavati za milion stanovnika.
01:30
This is going to affect everything.
32
90260
2000
To će uticati na sve.
01:32
Everybody in this room, if you stay alive,
33
92260
2000
Svako od vas, u ovoj sobi, ako bude živ,
01:34
is going to be affected
34
94260
2000
biće pogođen ovim
01:36
by what's happening in cities
35
96260
2000
neverovatnim fenomenom,
01:38
in this extraordinary phenomenon.
36
98260
2000
koji se odvija u gradovima.
01:40
However, cities,
37
100260
3000
Međutim i pored tih
01:43
despite having this negative aspect to them,
38
103260
3000
negativnih aspekata gradova,
01:46
are also the solution.
39
106260
2000
gradovi su takođe i rešenje.
01:48
Because cities are the vacuum cleaners and the magnets
40
108260
4000
Gradovi su magneti i usisivači
01:52
that have sucked up creative people,
41
112260
2000
koji privlače kreativne ljude,
01:54
creating ideas, innovation,
42
114260
2000
kreatore ideja, inovacija
01:56
wealth and so on.
43
116260
2000
bogatstva i tako dalje.
01:58
So we have this kind of dual nature.
44
118260
2000
Dakle imamo dve strane medalje.
02:00
And so there's an urgent need
45
120260
3000
Neophodno je ubrzo doći do
02:03
for a scientific theory of cities.
46
123260
4000
naučne teorije o gradovima.
02:07
Now these are my comrades in arms.
47
127260
3000
Ovo su moja braća po oružju.
02:10
This work has been done with an extraordinary group of people,
48
130260
2000
Izvanredna grupa ljudi je odradila ovaj posao,
02:12
and they've done all the work,
49
132260
2000
uradili su sav posao,
02:14
and I'm the great bullshitter
50
134260
2000
a ja sam veliki seronja
02:16
that tries to bring it all together.
51
136260
2000
koji pokušava da sve to objedini.
02:18
(Laughter)
52
138260
2000
(Smeh)
02:20
So here's the problem: This is what we all want.
53
140260
2000
Dakle, problem je u sledećem: Ovo je ono što svi želimo.
02:22
The 10 billion people on the planet in 2050
54
142260
3000
Na planeti će 2050. biti 10 milijardi ljudi koji
02:25
want to live in places like this,
55
145260
2000
žele da žive u ovakvim mestima,
02:27
having things like this,
56
147260
2000
da imaju ove stvari,
02:29
doing things like this,
57
149260
2000
da rade ovakve stvari,
02:31
with economies that are growing like this,
58
151260
3000
sa ekonomijom koja ovako raste,
02:34
not realizing that entropy
59
154260
2000
ne shvatajući da ta entropija
02:36
produces things like this,
60
156260
2000
proizvodi i ovakve stvari,
02:38
this, this
61
158260
4000
ovo, ovo
02:42
and this.
62
162260
2000
i ovo.
02:44
And the question is:
63
164260
2000
Pitanje je:
02:46
Is that what Edinburgh and London and New York
64
166260
2000
Da li će Edinburg, London i Njujork
02:48
are going to look like in 2050,
65
168260
2000
izgledati ovako 2050. godine
02:50
or is it going to be this?
66
170260
2000
ili će biti ovakvi?
02:52
That's the question.
67
172260
2000
To je pitanje.
02:54
I must say, many of the indicators
68
174260
2000
Moram priznati da mnogi pokazatelji
02:56
look like this is what it's going to look like,
69
176260
3000
upućuju na to da će oni izgledati ovako,
02:59
but let's talk about it.
70
179260
3000
ali popričajmo o tome.
03:02
So my provocative statement
71
182260
3000
Dakle, moje provokativno shvatanje
03:05
is that we desperately need a serious scientific theory of cities.
72
185260
3000
ukazuje da nam je preko potrebna ozbiljna naučna teorija o gradovima.
03:08
And scientific theory means quantifiable --
73
188260
3000
Naučna teorija podrazumeva kvantitet -
03:11
relying on underlying generic principles
74
191260
3000
oslanjanje na opšteprihvaćene principe
03:14
that can be made into a predictive framework.
75
194260
2000
koji se mogu uspostaviti u predvidivom okviru.
03:16
That's the quest.
76
196260
2000
To je potraga.
03:18
Is that conceivable?
77
198260
2000
Da li je dostižno?
03:20
Are there universal laws?
78
200260
2000
Da li postoje univerzalni zakoni?
03:22
So here's two questions
79
202260
2000
Javljaju se dva pitanja
03:24
that I have in my head when I think about this problem.
80
204260
2000
kada razmišljam o ovom problemu.
03:26
The first is:
81
206260
2000
Prvo je:
03:28
Are cities part of biology?
82
208260
2000
da li su gradovi deo biologije?
03:30
Is London a great big whale?
83
210260
2000
Da li je London veliki kit?
03:32
Is Edinburgh a horse?
84
212260
2000
Da li je Edinburg konj?
03:34
Is Microsoft a great big anthill?
85
214260
2000
Da li je Majkrosoft veliki mravinjak?
03:36
What do we learn from that?
86
216260
2000
Šta možemo da naučimo iz toga?
03:38
We use them metaphorically --
87
218260
2000
Koristimo ih kao metaforu -
03:40
the DNA of a company, the metabolism of a city, and so on --
88
220260
2000
DNK neke kompanije, metabolizam grada, i tako dalje --
03:42
is that just bullshit, metaphorical bullshit,
89
222260
3000
da li je to samo sranje, metaforičko sranje,
03:45
or is there serious substance to it?
90
225260
3000
ili u tome ima istine?
03:48
And if that is the case,
91
228260
2000
Ako je to tačno,
03:50
how come that it's very hard to kill a city?
92
230260
2000
zašto je veoma teško uništiti grad?
03:52
You could drop an atom bomb on a city,
93
232260
2000
Možete baciti atomsku bombu na grad,
03:54
and 30 years later it's surviving.
94
234260
2000
a 30 godina kasnije on i dalje preživljava.
03:56
Very few cities fail.
95
236260
3000
Malo je gradova koji su propali.
03:59
All companies die, all companies.
96
239260
3000
Sve kompanije umiru, sve kompanije.
04:02
And if you have a serious theory, you should be able to predict
97
242260
2000
Ako imate ozbiljnu teoriju, onda bi mogli da predvidite.
04:04
when Google is going to go bust.
98
244260
3000
kada će Gugl propasti.
04:07
So is that just another version
99
247260
3000
Dakle, da li je to
04:10
of this?
100
250260
2000
samo još jedna verzija ovoga.
04:12
Well we understand this very well.
101
252260
2000
Mi ovo dobro razumemo.
04:14
That is, you ask any generic question about this --
102
254260
2000
Odnosno, možete postaviti bilo koje pitanje o ovome -
04:16
how many trees of a given size,
103
256260
2000
koliko stabala određene veličine,
04:18
how many branches of a given size does a tree have,
104
258260
2000
koliko grana određene veličine, ima jedno drvo,
04:20
how many leaves,
105
260260
2000
koliko listova,
04:22
what is the energy flowing through each branch,
106
262260
2000
koja energija protiče kroz svaku granu,
04:24
what is the size of the canopy,
107
264260
2000
kolika je veličina krošnje,
04:26
what is its growth, what is its mortality?
108
266260
2000
kolika je stopa rasta, kolika stopa smrtnosti?
04:28
We have a mathematical framework
109
268260
2000
Imamo matematički okvir
04:30
based on generic universal principles
110
270260
3000
baziran na osnovnim univerzalnim principima
04:33
that can answer those questions.
111
273260
2000
koji može da odgovori na ova pitanja.
04:35
And the idea is can we do the same for this?
112
275260
4000
A ideja je, da li možemo da uradimo isto i za ovo?
04:40
So the route in is recognizing
113
280260
3000
Dakle, ide se ka prepoznavanju
04:43
one of the most extraordinary things about life,
114
283260
2000
jedne od najfenomenalnijih stvari o životu,
04:45
is that it is scalable,
115
285260
2000
a to je da je merljiv,
04:47
it works over an extraordinary range.
116
287260
2000
a skala se kreće u izuzetnom rasponu.
04:49
This is just a tiny range actually:
117
289260
2000
Ovo je jedan od malih raspona:
04:51
It's us mammals;
118
291260
2000
to smo mi, sisari,
04:53
we're one of these.
119
293260
2000
mi smo jedni od njih.
04:55
The same principles, the same dynamics,
120
295260
2000
Isti principi, ista dinamika,
04:57
the same organization is at work
121
297260
2000
ista organizacija je u svemu
04:59
in all of these, including us,
122
299260
2000
uključujući i nas,
05:01
and it can scale over a range of 100 million in size.
123
301260
3000
i može se primeniti na rasponu od 100 miliona veličina.
05:04
And that is one of the main reasons
124
304260
3000
Ovo je jedan od glavnih razloga
05:07
life is so resilient and robust --
125
307260
2000
zašto je život tako otporan i robustan -
05:09
scalability.
126
309260
2000
skaliranje.
05:11
We're going to discuss that in a moment more.
127
311260
3000
To ću ubrzo predstaviti.
05:14
But you know, at a local level,
128
314260
2000
Ali, znate, lokalno gledano,
05:16
you scale; everybody in this room is scaled.
129
316260
2000
vi skalirate, svi u ovoj sobi su skalirani.
05:18
That's called growth.
130
318260
2000
To se zove rast.
05:20
Here's how you grew.
131
320260
2000
Evo koliko ste porasli.
05:22
Rat, that's a rat -- could have been you.
132
322260
2000
Pacov, ovo je pacov - mogli ste biti vi.
05:24
We're all pretty much the same.
133
324260
3000
Mi smo svi prilično jednaki.
05:27
And you see, you're very familiar with this.
134
327260
2000
Vidite, svi ste upoznati sa ovim.
05:29
You grow very quickly and then you stop.
135
329260
2000
Rastete veoma brzo, a onda stanete.
05:31
And that line there
136
331260
2000
Ona linija tamo
05:33
is a prediction from the same theory,
137
333260
2000
jeste pretpostavka koja je izvedena na osnovu iste teorije,
05:35
based on the same principles,
138
335260
2000
na osnovu istih principa,
05:37
that describes that forest.
139
337260
2000
koji opisuju onu šumu.
05:39
And here it is for the growth of a rat,
140
339260
2000
Ovde je predstavljen rast pacova,
05:41
and those points on there are data points.
141
341260
2000
a one tačke su specifični podaci.
05:43
This is just the weight versus the age.
142
343260
2000
Ovo je odnos težine i starosti.
05:45
And you see, it stops growing.
143
345260
2000
Vidite, prestaje da raste.
05:47
Very, very good for biology --
144
347260
2000
Veoma dobro za biologiju,
05:49
also one of the reasons for its great resilience.
145
349260
2000
takođe jedan od razloga njihove velike otpornosti.
05:51
Very, very bad
146
351260
2000
Veoma, veoma loše
05:53
for economies and companies and cities
147
353260
2000
za ekonomiju, kompanije i gradove,
05:55
in our present paradigm.
148
355260
2000
u našoj sadašnjoj paradigmi.
05:57
This is what we believe.
149
357260
2000
To je ono u šta verujemo.
05:59
This is what our whole economy
150
359260
2000
Na ovome je zasnovana
06:01
is thrusting upon us,
151
361260
2000
naša čitava ekonomija,
06:03
particularly illustrated in that left-hand corner:
152
363260
3000
posebno prikazana u levom uglu:
06:06
hockey sticks.
153
366260
2000
štapovi za hokej.
06:08
This is a bunch of software companies --
154
368260
2000
Ovo je gomila softverskih kompanija,
06:10
and what it is is their revenue versus their age --
155
370260
2000
i pokazuje njihove prihode u odnosu na starost -
06:12
all zooming away,
156
372260
2000
sve se udaljava
06:14
and everybody making millions and billions of dollars.
157
374260
2000
i svako zarađuje milione i milijarde dolara.
06:16
Okay, so how do we understand this?
158
376260
3000
Dobro, kako mi ovo shvatamo?
06:19
So let's first talk about biology.
159
379260
3000
Sagledajmo prvo biologiju.
06:22
This is explicitly showing you
160
382260
2000
Ovo vam eksplicitno pokazuje
06:24
how things scale,
161
384260
2000
kako se stvari mere i upoređuju,
06:26
and this is a truly remarkable graph.
162
386260
2000
ovo je uistinu izuzetan grafikon.
06:28
What is plotted here is metabolic rate --
163
388260
3000
Ovde vidimo metaboličku stopu -
06:31
how much energy you need per day to stay alive --
164
391260
3000
koliko vam je energije potrebno za svakodnevni život -
06:34
versus your weight, your mass,
165
394260
2000
prema vašoj težini, vašoj masi,
06:36
for all of us bunch of organisms.
166
396260
3000
za sve nas, gomilu organizama.
06:39
And it's plotted in this funny way by going up by factors of 10,
167
399260
3000
Predstvaljen je na ovaj zabavan način, inkrementima koji rastu za 10 jedinica,
06:42
otherwise you couldn't get everything on the graph.
168
402260
2000
da je drugačije, ne biste stavili sve na grafikon.
06:44
And what you see if you plot it
169
404260
2000
Ono što vidite na grafikonu,
06:46
in this slightly curious way
170
406260
2000
na ovaj malo neobičan način,
06:48
is that everybody lies on the same line.
171
408260
3000
jeste da svi prate isti patern.
06:51
Despite the fact that this is the most complex and diverse system
172
411260
3000
Uprkos tome da se radi o najsloženijem i najrazličitijem
06:54
in the universe,
173
414260
3000
sistemu u univerzumu,
06:57
there's an extraordinary simplicity
174
417260
2000
postoji neverovatna jednostavnost
06:59
being expressed by this.
175
419260
2000
koja je ovime prikazana.
07:01
It's particularly astonishing
176
421260
3000
Posebno je zadivljujuće
07:04
because each one of these organisms,
177
424260
2000
jer je svaki od ovih organizama,
07:06
each subsystem, each cell type, each gene,
178
426260
2000
svaki podsistem, svaki tip ćelije, svaki gen,
07:08
has evolved in its own unique environmental niche
179
428260
4000
evoluirao u svojoj jedinstvenoj prirodnoj sredini,
07:12
with its own unique history.
180
432260
3000
sa svojom jedinstvenom istorijom.
07:15
And yet, despite all of that Darwinian evolution
181
435260
3000
Ipak, i pored Darvinove teorije evolucije
07:18
and natural selection,
182
438260
2000
i prirodne selekcije,
07:20
they've been constrained to lie on a line.
183
440260
2000
oni su prinuđeni da leže na istoj liniji.
07:22
Something else is going on.
184
442260
2000
Ovde se odigrava još nešto.
07:24
Before I talk about that,
185
444260
2000
Pre nego što počnem da pričam o tome,
07:26
I've written down at the bottom there
186
446260
2000
zapisao sam na dnu
07:28
the slope of this curve, this straight line.
187
448260
2000
ove krivulje, ovu ravnu liniju.
07:30
It's three-quarters, roughly,
188
450260
2000
To je otprilike tri četvrtine, grubo,
07:32
which is less than one -- and we call that sublinear.
189
452260
3000
što je manje nego jedan - i to zovemo sublinearnom.
07:35
And here's the point of that.
190
455260
2000
Evo i poenta toga.
07:37
It says that, if it were linear,
191
457260
3000
Govori da, ako bi bilo linearno,
07:40
the steepest slope,
192
460260
2000
najstrmiji nagib,
07:42
then doubling the size
193
462260
2000
da bi udvostručili veličinu,
07:44
you would require double the amount of energy.
194
464260
2000
trebalo bi vam dupla količina energije.
07:46
But it's sublinear, and what that translates into
195
466260
3000
Ali kako je sublinearna, to znači da
07:49
is that, if you double the size of the organism,
196
469260
2000
ako duplirate veličinu organizma,
07:51
you actually only need 75 percent more energy.
197
471260
3000
vama treba 75 procenata energije više.
07:54
So a wonderful thing about all of biology
198
474260
2000
Dakle, divna stvar u biologiji
07:56
is that it expresses an extraordinary economy of scale.
199
476260
3000
je postojanje ekonomičnosti veličine.
07:59
The bigger you are systematically,
200
479260
2000
Što ste sistemski veći,
08:01
according to very well-defined rules,
201
481260
2000
u skladu sa dobro definisanim pravilima,
08:03
less energy per capita.
202
483260
3000
treba vam manje energije po glavi.
08:06
Now any physiological variable you can think of,
203
486260
3000
Bilo koja fiziološka varijabla koje se možete setiti,
08:09
any life history event you can think of,
204
489260
2000
bilo koji istorijski događaj kog se možete setiti,
08:11
if you plot it this way, looks like this.
205
491260
3000
ako ga predstavite na ovaj način, izgledaće ovako.
08:14
There is an extraordinary regularity.
206
494260
2000
Postoji izvanredna pravilnost.
08:16
So you tell me the size of a mammal,
207
496260
2000
Dakle, kažete mi veličinu sisara,
08:18
I can tell you at the 90 percent level everything about it
208
498260
3000
a ja vam, sa tačnošću od 90%, mogu reći sve o njemu
08:21
in terms of its physiology, life history, etc.
209
501260
4000
o fiziologiji, životnoj istoriji i sl.
08:25
And the reason for this is because of networks.
210
505260
3000
Razlog tome je mreža.
08:28
All of life is controlled by networks --
211
508260
3000
Sav život je kontrolisan od strane mreža -
08:31
from the intracellular through the multicellular
212
511260
2000
od unutarćelijskih preko višećelijskih
08:33
through the ecosystem level.
213
513260
2000
preko nivoa ekosistema.
08:35
And you're very familiar with these networks.
214
515260
3000
Vi dobro poznajete ove mreže.
08:39
That's a little thing that lives inside an elephant.
215
519260
3000
To je mala stvar koja živi unutar jednog slona.
08:42
And here's the summary of what I'm saying.
216
522260
3000
A ovde je rezime svega što govorim.
08:45
If you take those networks,
217
525260
2000
Ako uzmete ove mreže,
08:47
this idea of networks,
218
527260
2000
ovu ideju o mreži,
08:49
and you apply universal principles,
219
529260
2000
i primenite univerzalne principe,
08:51
mathematizable, universal principles,
220
531260
2000
matematičke, univerzalne principe
08:53
all of these scalings
221
533260
2000
sva ta skaliranja
08:55
and all of these constraints follow,
222
535260
3000
i sva ta ograničenja koja prate,
08:58
including the description of the forest,
223
538260
2000
uključujući opis šume,
09:00
the description of your circulatory system,
224
540260
2000
opis vašeg sistema cirkulacije,
09:02
the description within cells.
225
542260
2000
opis unutar ćelija.
09:04
One of the things I did not stress in that introduction
226
544260
3000
Jedna od stvari koje nisam dovoljno naglasio u uvodu,
09:07
was that, systematically, the pace of life
227
547260
3000
jeste da, sistematski, brzina života
09:10
decreases as you get bigger.
228
550260
2000
opada kako vi postajete veći.
09:12
Heart rates are slower; you live longer;
229
552260
3000
Otkucaji srca su sporiji, vi živite duže,
09:15
diffusion of oxygen and resources
230
555260
2000
razmena kiseonika i resurasa
09:17
across membranes is slower, etc.
231
557260
2000
preko membrana je sporija itd.
09:19
The question is: Is any of this true
232
559260
2000
Pitanje je: Da li se išta od ovoga može
09:21
for cities and companies?
233
561260
3000
primeniti na gradove i kompanije?
09:24
So is London a scaled up Birmingham,
234
564260
3000
Dakle, da li je London uveličani Birmingem,
09:27
which is a scaled up Brighton, etc., etc.?
235
567260
3000
koji je uveličani Brajton itd?
09:30
Is New York a scaled up San Francisco,
236
570260
2000
Da li je Njujork uveličani San Francisko,
09:32
which is a scaled up Santa Fe?
237
572260
2000
koji je uveličani Santa Fe?
09:34
Don't know. We will discuss that.
238
574260
2000
Ne znam. O tome ćemo raspravljati.
09:36
But they are networks,
239
576260
2000
Ali oni su mreže,
09:38
and the most important network of cities
240
578260
2000
a najvažnija mreža grada
09:40
is you.
241
580260
2000
jeste vi.
09:42
Cities are just a physical manifestation
242
582260
3000
Gradovi su samo fizička manifestacija
09:45
of your interactions,
243
585260
2000
vaših interakcija,
09:47
our interactions,
244
587260
2000
naših interakcija,
09:49
and the clustering and grouping of individuals.
245
589260
2000
i grupisanja i povezivanja pojedinaca.
09:51
Here's just a symbolic picture of that.
246
591260
3000
Ovo je samo simbolična slika toga.
09:54
And here's scaling of cities.
247
594260
2000
Ovo je skaliranje gradova.
09:56
This shows that in this very simple example,
248
596260
3000
Pokazuje da ovaj jednostavan primer,
09:59
which happens to be a mundane example
249
599260
2000
koji je ujedno i običan primer
10:01
of number of petrol stations
250
601260
2000
broja benzinskih pumpi
10:03
as a function of size --
251
603260
2000
predstvaljen kao funkcija veličine -
10:05
plotted in the same way as the biology --
252
605260
2000
predstavljen na isti način kao i u biologiji -
10:07
you see exactly the same kind of thing.
253
607260
2000
pokazuje istu stvar.
10:09
There is a scaling.
254
609260
2000
Merljivo je i uporedivo.
10:11
That is that the number of petrol stations in the city
255
611260
4000
Broj benzinskih pumpi u gradu
10:15
is now given to you
256
615260
2000
vam je sada predstavljen
10:17
when you tell me its size.
257
617260
2000
u funkciji veličine grada.
10:19
The slope of that is less than linear.
258
619260
3000
Nagib nije linearan.
10:22
There is an economy of scale.
259
622260
2000
Prisutna je ekonomija obima.
10:24
Less petrol stations per capita the bigger you are -- not surprising.
260
624260
3000
Što je manje benzinskih pumpi po glavi, vi ste veći - nije iznenađujuće.
10:27
But here's what's surprising.
261
627260
2000
Ali evo iznenađenja.
10:29
It scales in the same way everywhere.
262
629260
2000
Skaliranje je svuda identično.
10:31
This is just European countries,
263
631260
2000
Ovu su samo evropske zemlje,
10:33
but you do it in Japan or China or Colombia,
264
633260
3000
ali ako uradite to u Japanu, Kini ili Kolumbiji
10:36
always the same
265
636260
2000
dobijete isti rezultat,
10:38
with the same kind of economy of scale
266
638260
2000
sa istim pravilima ekonomičnosti veličine
10:40
to the same degree.
267
640260
2000
istog stepena.
10:42
And any infrastructure you look at --
268
642260
3000
Svaka infrastruktura koju pogledate -
10:45
whether it's the length of roads, length of electrical lines --
269
645260
3000
bilo da je dužina puta, dužina električnih vodova -
10:48
anything you look at
270
648260
2000
sve što pogledate
10:50
has the same economy of scale scaling in the same way.
271
650260
3000
pokazuje istu ekonomičnost, izraženu na isti način.
10:53
It's an integrated system
272
653260
2000
To je integrisani sistem
10:55
that has evolved despite all the planning and so on.
273
655260
3000
koji je evoluirao i pored svih planiranja i slično.
10:58
But even more surprising
274
658260
2000
Ali ono što još više iznenađuje
11:00
is if you look at socio-economic quantities,
275
660260
2000
jeste analiza socio-ekonomskih pokazatelja,
11:02
quantities that have no analog in biology,
276
662260
3000
veličine koje nemaju pandam u biologiji,
11:05
that have evolved when we started forming communities
277
665260
3000
koje su evoluirale kada smo formirali zajednice
11:08
eight to 10,000 years ago.
278
668260
2000
pre 8 do 10.000 godina.
11:10
The top one is wages as a function of size
279
670260
2000
Ono na vrhu su zarade predstavljene u funkciji veličine,
11:12
plotted in the same way.
280
672260
2000
dakle na isti način.
11:14
And the bottom one is you lot --
281
674260
2000
A na dnu ste vi -
11:16
super-creatives plotted in the same way.
282
676260
3000
super-kreativni predstavljeni na isti način.
11:19
And what you see
283
679260
2000
Ono što vidite
11:21
is a scaling phenomenon.
284
681260
2000
jeste fenomen skaliranja.
11:23
But most important in this,
285
683260
2000
Ali najvažniji je
11:25
the exponent, the analog to that three-quarters
286
685260
2000
eksponent, primenjiv na te tri četvrtine
11:27
for the metabolic rate,
287
687260
2000
za metaboličku stopu,
11:29
is bigger than one -- it's about 1.15 to 1.2.
288
689260
2000
je veći od jedan - on je oko 1,15 do 1,2.
11:31
Here it is,
289
691260
2000
Tu je,
11:33
which says that the bigger you are
290
693260
3000
pokazuje da što ste veći
11:36
the more you have per capita, unlike biology --
291
696260
3000
više imate po glavi stanovnika, za razliku od biologije -
11:39
higher wages, more super-creative people per capita as you get bigger,
292
699260
4000
veće plate, više kreativnih ljudi po glavi stanovnika- što ste veći,
11:43
more patents per capita, more crime per capita.
293
703260
3000
više patenata po glavi stanovnika, više kriminala po glavi stanovnika.
11:46
And we've looked at everything:
294
706260
2000
Mi smo analizirali sve:
11:48
more AIDS cases, flu, etc.
295
708260
3000
više slučajeva SIDA-e, gripa i sl.
11:51
And here, they're all plotted together.
296
711260
2000
A ovde su oni predstavljeni zajedno.
11:53
Just to show you what we plotted,
297
713260
2000
Samo da vam pokažem šta smo predstavili,
11:55
here is income, GDP --
298
715260
3000
ovde je prihod, BDP -
11:58
GDP of the city --
299
718260
2000
BDP grada -
12:00
crime and patents all on one graph.
300
720260
2000
kriminal i patenti na jednom grafikonu.
12:02
And you can see, they all follow the same line.
301
722260
2000
Možete videti, oni prate jednu istu liniju.
12:04
And here's the statement.
302
724260
2000
Evo i izjave.
12:06
If you double the size of a city from 100,000 to 200,000,
303
726260
3000
Ako udvostručite veličinu grada sa 100.000 na 200.000,
12:09
from a million to two million, 10 to 20 million,
304
729260
2000
sa milion na dva miliona, 10 na 20 miliona
12:11
it doesn't matter,
305
731260
2000
nije bitno,
12:13
then systematically
306
733260
2000
onda sistematski
12:15
you get a 15 percent increase
307
735260
2000
dobijate povećanje od 15 procenata
12:17
in wages, wealth, number of AIDS cases,
308
737260
2000
u platama, bogatstvu, obolelih od SIDA-e,
12:19
number of police,
309
739260
2000
broju policajaca,
12:21
anything you can think of.
310
741260
2000
svega što možete da zamislite.
12:23
It goes up by 15 percent,
311
743260
2000
Sve poraste za 15%,
12:25
and you have a 15 percent savings
312
745260
3000
i imate 15% uštedu
12:28
on the infrastructure.
313
748260
3000
na infrastrukturi.
12:31
This, no doubt, is the reason
314
751260
3000
To je, nema sumnje, razlog
12:34
why a million people a week are gathering in cities.
315
754260
3000
zašto milion ljudi svake nedelje dolazi u gradove.
12:37
Because they think that all those wonderful things --
316
757260
3000
Zato što misle da su sve te divne stvari -
12:40
like creative people, wealth, income --
317
760260
2000
kreativni ljudi, bogatstvo, prihod,
12:42
is what attracts them,
318
762260
2000
ono što ih privlači,
12:44
forgetting about the ugly and the bad.
319
764260
2000
a zaboravljaju na ružnu i lošu stranu.
12:46
What is the reason for this?
320
766260
2000
Šta je razlog tome?
12:48
Well I don't have time to tell you about all the mathematics,
321
768260
3000
Nemam vremena da vam pričam detaljno o matematici,
12:51
but underlying this is the social networks,
322
771260
3000
ali u osnovi svega je socijalna mreža,
12:54
because this is a universal phenomenon.
323
774260
3000
jer je ovo univerzalni fenomen.
12:57
This 15 percent rule
324
777260
3000
Ovo pravilo od 15 procenata
13:00
is true
325
780260
2000
je istinito
13:02
no matter where you are on the planet --
326
782260
2000
bez obzira gde ste na planeti -
13:04
Japan, Chile,
327
784260
2000
Japan, Čile,
13:06
Portugal, Scotland, doesn't matter.
328
786260
3000
Portugal, Škotska, nije bitno.
13:09
Always, all the data shows it's the same,
329
789260
3000
Uvek, svi podaci pokazuju isto,
13:12
despite the fact that these cities have evolved independently.
330
792260
3000
uprkos činjenici da su se ovi gradovi razvijali nezavisno.
13:15
Something universal is going on.
331
795260
2000
Nešto univerzalno se dešava.
13:17
The universality, to repeat, is us --
332
797260
3000
Ta univerzalnost, da ponovim, smo mi -
13:20
that we are the city.
333
800260
2000
mi smo grad.
13:22
And it is our interactions and the clustering of those interactions.
334
802260
3000
Naše interakcije i grupisanje ovih interakcija.
13:25
So there it is, I've said it again.
335
805260
2000
Dakle, ponavljam se.
13:27
So if it is those networks and their mathematical structure,
336
807260
3000
Ove mreže i njihova matematička osnova,
13:30
unlike biology, which had sublinear scaling,
337
810260
3000
nisu kao biologija, gde vlada sublinearno skaliranje,
13:33
economies of scale,
338
813260
2000
ili ekonomija obima,
13:35
you had the slowing of the pace of life
339
815260
2000
pa dolazi do usporavanja tempa života
13:37
as you get bigger.
340
817260
2000
sa rastom.
13:39
If it's social networks with super-linear scaling --
341
819260
2000
Ako je to društvena mreža, sa super linearnim skaliranjem -
13:41
more per capita --
342
821260
2000
više po glavi stanovnika -
13:43
then the theory says
343
823260
2000
onda teorija kaže
13:45
that you increase the pace of life.
344
825260
2000
da vi povećavate tempo života.
13:47
The bigger you are, life gets faster.
345
827260
2000
Što ste veći, život postaje brži.
13:49
On the left is the heart rate showing biology.
346
829260
2000
Sa leve strane je prikazan srčani ritam koji pokazuje biologiju.
13:51
On the right is the speed of walking
347
831260
2000
Sa desne strane je brzina hoda
13:53
in a bunch of European cities,
348
833260
2000
u velikom broju evropskih gradova,
13:55
showing that increase.
349
835260
2000
koja pokazuje taj rast.
13:57
Lastly, I want to talk about growth.
350
837260
3000
Na kraju, želim da govorim o rastu.
14:00
This is what we had in biology, just to repeat.
351
840260
3000
Ovo smo imali u biologiji, samo da ponovim.
14:03
Economies of scale
352
843260
3000
Ekonomija obima
14:06
gave rise to this sigmoidal behavior.
353
846260
3000
podstiče ovo sigmoidalno ponašanje.
14:09
You grow fast and then stop --
354
849260
3000
Rastete brzo i onda stanete -
14:12
part of our resilience.
355
852260
2000
to je deo naše otpornosti.
14:14
That would be bad for economies and cities.
356
854260
3000
To bi bilo loše za ekonomiju i gradove.
14:17
And indeed, one of the wonderful things about the theory
357
857260
2000
Zaista, jedna od fantastičnih stvari u vezi sa ovom teorijom
14:19
is that if you have super-linear scaling
358
859260
3000
je da ako imate super-linearno skaliranje
14:22
from wealth creation and innovation,
359
862260
2000
od stvaranja bogatstva i inovacija,
14:24
then indeed you get, from the same theory,
360
864260
3000
onda stvarno dobijate, od iste teorije,
14:27
a beautiful rising exponential curve -- lovely.
361
867260
2000
divnu rastuću eksponencijalnu krivu - prelepo.
14:29
And in fact, if you compare it to data,
362
869260
2000
U stvari, ako je uporedite sa podacima
14:31
it fits very well
363
871260
2000
slažu se veoma dobro
14:33
with the development of cities and economies.
364
873260
2000
sa razvojem gradova i ekomonije.
14:35
But it has a terrible catch,
365
875260
2000
Ali postoji užasna začkoljicu,
14:37
and the catch
366
877260
2000
a to je
14:39
is that this system is destined to collapse.
367
879260
3000
da je ovaj sistem osuđen na propast.
14:42
And it's destined to collapse for many reasons --
368
882260
2000
Osuđen je iz mnogih razloga -
14:44
kind of Malthusian reasons -- that you run out of resources.
369
884260
3000
sličnih Maltusovim razlozima - da ćete ostati bez resursa.
14:47
And how do you avoid that? Well we've done it before.
370
887260
3000
Kako da izbegnete to? Pa mi smo to već jednom uspeli.
14:50
What we do is,
371
890260
2000
Ono što se dešava
14:52
as we grow and we approach the collapse,
372
892260
3000
je da rastemo i približavamo se tački kolapsa,
14:55
a major innovation takes place
373
895260
3000
tada dođemo do velikog izuma,
14:58
and we start over again,
374
898260
2000
i mi počinjemo iznova ponovo,
15:00
and we start over again as we approach the next one, and so on.
375
900260
3000
i počinjemo ispočetka kada se približimo sledećoj i tako dalje.
15:03
So there's this continuous cycle of innovation
376
903260
2000
Dakle tu je neprekidan ciklus inoviranja
15:05
that is necessary
377
905260
2000
koji je neophodan
15:07
in order to sustain growth and avoid collapse.
378
907260
3000
u cilju održavanja rasta i izbegavanja kolapsa.
15:10
The catch, however, to this
379
910260
2000
Začkoljica, je u tome
15:12
is that you have to innovate
380
912260
2000
što treba da inoviramo
15:14
faster and faster and faster.
381
914260
3000
brže i brže i brže.
15:17
So the image
382
917260
2000
Dakle slika je
15:19
is that we're not only on a treadmill that's going faster,
383
919260
3000
takva da nismo samo na pokretnoj traci koja se kreće brže
15:22
but we have to change the treadmill faster and faster.
384
922260
3000
već moramo da menjamo trake sve brže i brže.
15:25
We have to accelerate on a continuous basis.
385
925260
3000
Moramo neprekidno da ubrzavamo.
15:28
And the question is: Can we, as socio-economic beings,
386
928260
3000
A pitanje je: Možemo li, kao socijalno-ekonomska bića,
15:31
avoid a heart attack?
387
931260
3000
da izbegnemo srčani udar?
15:34
So lastly, I'm going to finish up in this last minute or two
388
934260
3000
Na kraju, završiću u poslednjoj minuti ili dve
15:37
asking about companies.
389
937260
2000
pitajući o kompanijama.
15:39
See companies, they scale.
390
939260
2000
Vidite kompanije, one se skaliraju.
15:41
The top one, in fact, is Walmart on the right.
391
941260
2000
Ona na vrhu je Volmart, sa desne strane.
15:43
It's the same plot.
392
943260
2000
To je isti gafikon.
15:45
This happens to be income and assets
393
945260
2000
Ovo su prihod i imovina
15:47
versus the size of the company as denoted by its number of employees.
394
947260
2000
prema veličini kompanije, predstavljeni brojem zaposlenih.
15:49
We could use sales, anything you like.
395
949260
3000
Možemo da koristimo prodaju, bilo šta što vam se dopada.
15:52
There it is: after some little fluctuations at the beginning,
396
952260
3000
Nakon nekih manjih fluktuacija na početku,
15:55
when companies are innovating,
397
955260
2000
kada kompanija inovira,
15:57
they scale beautifully.
398
957260
2000
ona veoma lepo skalira.
15:59
And we've looked at 23,000 companies
399
959260
3000
Imamo 23.000 kompanija
16:02
in the United States, may I say.
400
962260
2000
u Sjedinjenim Američkim Državama.
16:04
And I'm only showing you a little bit of this.
401
964260
3000
A pokazujem vam samo mali deo ovoga.
16:07
What is astonishing about companies
402
967260
2000
Ono što je zadivljujuće oko kompanija
16:09
is that they scale sublinearly
403
969260
3000
je da one skaliraju sublinearno
16:12
like biology,
404
972260
2000
kao biologija,
16:14
indicating that they're dominated,
405
974260
2000
pokazujući da njima dominiraju,
16:16
not by super-linear
406
976260
2000
ne super-linearne
16:18
innovation and ideas;
407
978260
3000
inovacije i ideje
16:21
they become dominated
408
981260
2000
već dominira
16:23
by economies of scale.
409
983260
2000
ekonomija obima.
16:25
In that interpretation,
410
985260
2000
Prema toj interpretaciji,
16:27
by bureaucracy and administration,
411
987260
2000
birokratije i administracije
16:29
and they do it beautifully, may I say.
412
989260
2000
to lepo čine, ako mi dozvolite.
16:31
So if you tell me the size of some company, some small company,
413
991260
3000
Dakle, ako mi kažete veličinu kompanije, neke male kompanije,
16:34
I could have predicted the size of Walmart.
414
994260
3000
mogao bih da predvidim veličinu Volmarta.
16:37
If it has this sublinear scaling,
415
997260
2000
Ako ima ovo sublinearno skaliranje
16:39
the theory says
416
999260
2000
teorija kaže
16:41
we should have sigmoidal growth.
417
1001260
3000
da ćemo imati sigmoidalni rast.
16:44
There's Walmart. Doesn't look very sigmoidal.
418
1004260
2000
Tu je Volmart. Ne izgleda preterano sigmoidalno.
16:46
That's what we like, hockey sticks.
419
1006260
3000
To je ono što volimo, štapovi za hokej.
16:49
But you notice, I've cheated,
420
1009260
2000
Ali primetili ste, ja sam varao
16:51
because I've only gone up to '94.
421
1011260
2000
jer sam išao samo do '94.
16:53
Let's go up to 2008.
422
1013260
2000
Hajdemo do 2008.
16:55
That red line is from the theory.
423
1015260
3000
Crvena linija je iz teorije.
16:58
So if I'd have done this in 1994,
424
1018260
2000
Dakle, da sam uradio ovo 1994.
17:00
I could have predicted what Walmart would be now.
425
1020260
3000
mogao bih da predvidim kakav bi Volmart mogao biti sada.
17:03
And then this is repeated
426
1023260
2000
Onda se ovo ponavlja
17:05
across the entire spectrum of companies.
427
1025260
2000
kroz čitav spektar kompanija.
17:07
There they are. That's 23,000 companies.
428
1027260
3000
One su ovde. To je 23.000 kompanija.
17:10
They all start looking like hockey sticks,
429
1030260
2000
Sve počinju da liče na štapove za hokej,
17:12
they all bend over,
430
1032260
2000
sve se savijaju,
17:14
and they all die like you and me.
431
1034260
2000
i sve umiru kao vi i ja.
17:16
Thank you.
432
1036260
2000
Hvala vam.
17:18
(Applause)
433
1038260
9000
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7