Geoffrey West: The surprising math of cities and corporations

170,507 views ・ 2011-07-26

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Mislav Ante Omazić - EFZG Recezent: Tilen Pigac - EFZG
00:16
Cities are the crucible of civilization.
0
16260
3000
Gradovi su pravo iskušenje za civilizaciju.
00:19
They have been expanding,
1
19260
2000
Oni se šire,
00:21
urbanization has been expanding,
2
21260
2000
urbanizacija se širi,
00:23
at an exponential rate in the last 200 years
3
23260
2000
eksponencijalno u posljednjih 200 godina,
00:25
so that by the second part of this century,
4
25260
3000
tako će do drugog dijela ovog stoljeća
00:28
the planet will be completely dominated
5
28260
2000
planetom u potpunosti dominirati
00:30
by cities.
6
30260
3000
gradovi.
00:33
Cities are the origins of global warming,
7
33260
3000
Gradovi su izvorište globalnog zatopljenja,
00:36
impact on the environment,
8
36260
2000
utjecaja na okoliš,
00:38
health, pollution, disease,
9
38260
3000
zdravlje, zagađenje, bolesti,
00:41
finance,
10
41260
2000
financije,
00:43
economies, energy --
11
43260
3000
ekonomije, energiju --
00:46
they're all problems
12
46260
2000
to su sve problemi
00:48
that are confronted by having cities.
13
48260
2000
s kojima smo suočeni jer imamo gradove.
00:50
That's where all these problems come from.
14
50260
2000
Od tuda dolaze svi ti problemi.
00:52
And the tsunami of problems that we feel we're facing
15
52260
3000
A plimni val problema koje osjećamo da se s njima suočavamo
00:55
in terms of sustainability questions
16
55260
2000
u smislu pitanja održivosti,
00:57
are actually a reflection
17
57260
2000
su u stvari refleksije
00:59
of the exponential increase
18
59260
2000
eksponencijalnog rasta
01:01
in urbanization across the planet.
19
61260
3000
urbanizacije širom planeta.
01:04
Here's some numbers.
20
64260
2000
Ovdje su neki brojevi.
01:06
Two hundred years ago, the United States
21
66260
2000
Prije 200 godina, Sjedinjene Države
01:08
was less than a few percent urbanized.
22
68260
2000
su bile urbanizirane tek nekoliko posto.
01:10
It's now more than 82 percent.
23
70260
2000
Sada je to preko 82 posto.
01:12
The planet has crossed the halfway mark a few years ago.
24
72260
3000
Planet je prešao oznaku pola puta prije nekoliko godina.
01:15
China's building 300 new cities
25
75260
2000
Kina gradi 300 novih gradova
01:17
in the next 20 years.
26
77260
2000
u sljedećih 20 godina.
01:19
Now listen to this:
27
79260
2000
Sad slušajte ovo:
01:21
Every week for the foreseeable future,
28
81260
3000
svaki tjedan u doglednoj budućnosti
01:24
until 2050,
29
84260
2000
do 2050.,
01:26
every week more than a million people
30
86260
2000
svakog tjedna više od milijun ljudi
01:28
are being added to our cities.
31
88260
2000
se dodaje našim gradovima.
01:30
This is going to affect everything.
32
90260
2000
To će utjecati na sve.
01:32
Everybody in this room, if you stay alive,
33
92260
2000
Svi u ovoj sobi, ako ostanete živi,
01:34
is going to be affected
34
94260
2000
će biti pod utjecajem
01:36
by what's happening in cities
35
96260
2000
onoga što se događa u gradovima
01:38
in this extraordinary phenomenon.
36
98260
2000
u tom izvanrednom fenomenu.
01:40
However, cities,
37
100260
3000
Kako bilo, gradovi,
01:43
despite having this negative aspect to them,
38
103260
3000
unatoč tom njihovom negativnom aspektu,
01:46
are also the solution.
39
106260
2000
su također rješenje.
01:48
Because cities are the vacuum cleaners and the magnets
40
108260
4000
Jer gradovi su usisivači i magneti
01:52
that have sucked up creative people,
41
112260
2000
koji su usisali kreativne ljude,
01:54
creating ideas, innovation,
42
114260
2000
koji stvaraju ideje, inovacije,
01:56
wealth and so on.
43
116260
2000
bogatstvo i tako dalje.
01:58
So we have this kind of dual nature.
44
118260
2000
Dakle imamo tu vrstu dualne prirode.
02:00
And so there's an urgent need
45
120260
3000
I tako postoji hitna potreba
02:03
for a scientific theory of cities.
46
123260
4000
za znanstvenom teorijom gradova.
02:07
Now these are my comrades in arms.
47
127260
3000
Ovo su moja braća po oružju.
02:10
This work has been done with an extraordinary group of people,
48
130260
2000
Ovaj posao je obavljen od strane izvanredne grupe ljudi,
02:12
and they've done all the work,
49
132260
2000
i oni su obavili sav posao,
02:14
and I'm the great bullshitter
50
134260
2000
a ja sam veliki seronja
02:16
that tries to bring it all together.
51
136260
2000
koji pokušava sve to spojiti.
02:18
(Laughter)
52
138260
2000
(Smijeh)
02:20
So here's the problem: This is what we all want.
53
140260
2000
Tu je problem: To je ono što svi želimo.
02:22
The 10 billion people on the planet in 2050
54
142260
3000
10 milijardi ljudi na planetu 2050.
02:25
want to live in places like this,
55
145260
2000
želi živjeti na mjestima poput ovog,
02:27
having things like this,
56
147260
2000
imati stvari poput ovih,
02:29
doing things like this,
57
149260
2000
raditi stvari poput ovih,
02:31
with economies that are growing like this,
58
151260
3000
s ekonomijom koja raste toliko,
02:34
not realizing that entropy
59
154260
2000
ne prepoznajući entropiju
02:36
produces things like this,
60
156260
2000
proizvodeći stvari poput ovih,
02:38
this, this
61
158260
4000
ovih, ovih
02:42
and this.
62
162260
2000
i ovih.
02:44
And the question is:
63
164260
2000
A pitanje je:
02:46
Is that what Edinburgh and London and New York
64
166260
2000
kako će Edinburgh i London i New York
02:48
are going to look like in 2050,
65
168260
2000
izgledati 2050.,
02:50
or is it going to be this?
66
170260
2000
ili će biti ovo?
02:52
That's the question.
67
172260
2000
To je pitanje.
02:54
I must say, many of the indicators
68
174260
2000
Moram reći, mnogi indikatori
02:56
look like this is what it's going to look like,
69
176260
3000
izgledaju ovako i ovako će izgledati,
02:59
but let's talk about it.
70
179260
3000
ali popričajmo o tome.
03:02
So my provocative statement
71
182260
3000
Dakle moja provokativna izjava
03:05
is that we desperately need a serious scientific theory of cities.
72
185260
3000
jest da očajnički trebamo ozbiljnu znanstvenu teoriju o gradovima.
03:08
And scientific theory means quantifiable --
73
188260
3000
A znanstvena teorija zači kvantificirati --
03:11
relying on underlying generic principles
74
191260
3000
oslanjajući se na opće prihvaćene principe
03:14
that can be made into a predictive framework.
75
194260
2000
koji se mogu napraviti u previdljivom okviru.
03:16
That's the quest.
76
196260
2000
To je potraga.
03:18
Is that conceivable?
77
198260
2000
Može li se to zamisliti?
03:20
Are there universal laws?
78
200260
2000
Postoje li univerzalni zakoni?
03:22
So here's two questions
79
202260
2000
Dakle tu su moja dva pitanja
03:24
that I have in my head when I think about this problem.
80
204260
2000
koja imam u glavi kada razmišljam o ovom problemu.
03:26
The first is:
81
206260
2000
Prvo je:
03:28
Are cities part of biology?
82
208260
2000
jesu li gradovi dio biologije?
03:30
Is London a great big whale?
83
210260
2000
Je li London veliki kit?
03:32
Is Edinburgh a horse?
84
212260
2000
Je li Edinburgh konj?
03:34
Is Microsoft a great big anthill?
85
214260
2000
Je li Microsoft veliki mravinjak?
03:36
What do we learn from that?
86
216260
2000
Što naučimo iz toga?
03:38
We use them metaphorically --
87
218260
2000
Upotrebljavamo ih metaforički --
03:40
the DNA of a company, the metabolism of a city, and so on --
88
220260
2000
DNK kompanije, metabolizam grada, i tako dalje --
03:42
is that just bullshit, metaphorical bullshit,
89
222260
3000
je li to samo sranje, metaforičko sranje,
03:45
or is there serious substance to it?
90
225260
3000
ili tu postoji ozbiljna supstanca?
03:48
And if that is the case,
91
228260
2000
I ako je tome slučaj,
03:50
how come that it's very hard to kill a city?
92
230260
2000
kako to da je jako teško ubiti grad?
03:52
You could drop an atom bomb on a city,
93
232260
2000
Možete baciti atomsku bombu na grad,
03:54
and 30 years later it's surviving.
94
234260
2000
i 30 godina kasnije on preživljava.
03:56
Very few cities fail.
95
236260
3000
Jako malo gradova propadne.
03:59
All companies die, all companies.
96
239260
3000
Sve kompanije umru, sve kompanije.
04:02
And if you have a serious theory, you should be able to predict
97
242260
2000
I ako imate ozbiljnu teoriju, trebali biste biti sposobni predvidjeti
04:04
when Google is going to go bust.
98
244260
3000
kada će Google propasti.
04:07
So is that just another version
99
247260
3000
Dakle, je li ovo samo još jedna verzija
04:10
of this?
100
250260
2000
ovoga?
04:12
Well we understand this very well.
101
252260
2000
Ovo razumijemo jako dobro.
04:14
That is, you ask any generic question about this --
102
254260
2000
Odnosno, pitate bilo koje generično pitanje o ovome --
04:16
how many trees of a given size,
103
256260
2000
koliko stabala određene veličine,
04:18
how many branches of a given size does a tree have,
104
258260
2000
koliko grana date veličine drvo ima,
04:20
how many leaves,
105
260260
2000
koliko listova,
04:22
what is the energy flowing through each branch,
106
262260
2000
koja energija teče kroz svaku granu,
04:24
what is the size of the canopy,
107
264260
2000
koja je veličina nadstrešnice,
04:26
what is its growth, what is its mortality?
108
266260
2000
koji je njen rast, koja je njena smrtnost?
04:28
We have a mathematical framework
109
268260
2000
Imamo matematički okvir
04:30
based on generic universal principles
110
270260
3000
baziran na generičkim univerzalnim principima
04:33
that can answer those questions.
111
273260
2000
koji može odgovoriti na ta pitanja.
04:35
And the idea is can we do the same for this?
112
275260
4000
I ideja je, možemo li napraviti isto za ovo?
04:40
So the route in is recognizing
113
280260
3000
Tako je smjer u prepoznavanju
04:43
one of the most extraordinary things about life,
114
283260
2000
jedne od najizvanrednijih stvari o životu,
04:45
is that it is scalable,
115
285260
2000
je da je skalabilan,
04:47
it works over an extraordinary range.
116
287260
2000
funkcionira preko izvanrednog raspona.
04:49
This is just a tiny range actually:
117
289260
2000
Ovo je u stvari samo sitan raspon;
04:51
It's us mammals;
118
291260
2000
to smo mi sisavci,
04:53
we're one of these.
119
293260
2000
mi smo jedno od ovih.
04:55
The same principles, the same dynamics,
120
295260
2000
Isti principi, ista dinamika,
04:57
the same organization is at work
121
297260
2000
ista je organizacija na poslu
04:59
in all of these, including us,
122
299260
2000
u svemu ovome, uključujući nas,
05:01
and it can scale over a range of 100 million in size.
123
301260
3000
i može imati raspon od preko 100 milijuna veličina.
05:04
And that is one of the main reasons
124
304260
3000
I to je jedan od glavnih razloga
05:07
life is so resilient and robust --
125
307260
2000
zašto je život tako elastičan i robustan --
05:09
scalability.
126
309260
2000
skalabilnost.
05:11
We're going to discuss that in a moment more.
127
311260
3000
O tome ćemo raspravljati za par trenutaka.
05:14
But you know, at a local level,
128
314260
2000
Ali znate, na lokalnoj razini,
05:16
you scale; everybody in this room is scaled.
129
316260
2000
skalirate, svi u ovoj sobi su skalirani.
05:18
That's called growth.
130
318260
2000
To se naziva rastom.
05:20
Here's how you grew.
131
320260
2000
Evo kako rastete.
05:22
Rat, that's a rat -- could have been you.
132
322260
2000
Štakor, ovo je štakor -- mogao je biti vi.
05:24
We're all pretty much the same.
133
324260
3000
Svi smo mi prilično jednaki.
05:27
And you see, you're very familiar with this.
134
327260
2000
I vidite, vi ste upoznati s time.
05:29
You grow very quickly and then you stop.
135
329260
2000
Vi rastete jako brzo i onda stanete.
05:31
And that line there
136
331260
2000
A ova linija tamo
05:33
is a prediction from the same theory,
137
333260
2000
jest predviđanje iz iste teorije,
05:35
based on the same principles,
138
335260
2000
bazirano na istim predviđanjima,
05:37
that describes that forest.
139
337260
2000
koja opisuju ovu šumu.
05:39
And here it is for the growth of a rat,
140
339260
2000
A ovdje je rast štakora.
05:41
and those points on there are data points.
141
341260
2000
A ove točke tamo su podatkovne točke.
05:43
This is just the weight versus the age.
142
343260
2000
To je samo težina nasuprot godinama.
05:45
And you see, it stops growing.
143
345260
2000
I vidite, prestaje rasti.
05:47
Very, very good for biology --
144
347260
2000
Jako, jako dobro za biologiju --
05:49
also one of the reasons for its great resilience.
145
349260
2000
također jedan od razloga za njihovu veliku otpornost.
05:51
Very, very bad
146
351260
2000
Jako, jako loše
05:53
for economies and companies and cities
147
353260
2000
za ekonomiju i kompanije i gradove
05:55
in our present paradigm.
148
355260
2000
u sadašnjoj paradigmi.
05:57
This is what we believe.
149
357260
2000
To je ono što vjerujemo.
05:59
This is what our whole economy
150
359260
2000
To je ono što cijelo naše gospodarstvo
06:01
is thrusting upon us,
151
361260
2000
gura prema nama,
06:03
particularly illustrated in that left-hand corner:
152
363260
3000
posebno ilustrirani u tom lijevom korneru:
06:06
hockey sticks.
153
366260
2000
štapovi za hokej.
06:08
This is a bunch of software companies --
154
368260
2000
Ovo je gomila softverskih kompanija --
06:10
and what it is is their revenue versus their age --
155
370260
2000
i što je njihov prihod u odnosu na njihovu dob --
06:12
all zooming away,
156
372260
2000
sve se udaljavaju,
06:14
and everybody making millions and billions of dollars.
157
374260
2000
i svatko zarađuje milijune i milijarde dolara.
06:16
Okay, so how do we understand this?
158
376260
3000
Dobro, kako mi razumijemo ovo?
06:19
So let's first talk about biology.
159
379260
3000
Govorimo prvo o biologiji.
06:22
This is explicitly showing you
160
382260
2000
Ovo eksplicitno pokazuje
06:24
how things scale,
161
384260
2000
kako stvari skaliraju.
06:26
and this is a truly remarkable graph.
162
386260
2000
I ovo je uistinu izvanredan graf.
06:28
What is plotted here is metabolic rate --
163
388260
3000
Ono što je iscrtano ovdje jest matabolična stopa --
06:31
how much energy you need per day to stay alive --
164
391260
3000
koliko vam je energije potrebno dnevno kako biste preživjeli --
06:34
versus your weight, your mass,
165
394260
2000
naspram vaše težine, vaše mase,
06:36
for all of us bunch of organisms.
166
396260
3000
za sve nas, gomilu organizama.
06:39
And it's plotted in this funny way by going up by factors of 10,
167
399260
3000
I iscrtano je na ovaj zabavan način s faktorom 10,
06:42
otherwise you couldn't get everything on the graph.
168
402260
2000
drugačije ne bi sve stalo na graf.
06:44
And what you see if you plot it
169
404260
2000
I vidite da ako iscrtate to
06:46
in this slightly curious way
170
406260
2000
na malo neuobičajan način,
06:48
is that everybody lies on the same line.
171
408260
3000
jest da svi leže na istoj liniji.
06:51
Despite the fact that this is the most complex and diverse system
172
411260
3000
Unatoč činjenici da je to najkompleksniji i raznovrsniji sustav
06:54
in the universe,
173
414260
3000
u svemiru,
06:57
there's an extraordinary simplicity
174
417260
2000
postoji izvanredna jednostavnost
06:59
being expressed by this.
175
419260
2000
koja se ovako prikazuje.
07:01
It's particularly astonishing
176
421260
3000
Posebno je zadivljujuće
07:04
because each one of these organisms,
177
424260
2000
jer svaki od ovih organizama,
07:06
each subsystem, each cell type, each gene,
178
426260
2000
svaki podsustav, svaka vrsta čelije, svaki gen,
07:08
has evolved in its own unique environmental niche
179
428260
4000
se razvio unutar vlastite jedinstvene okolišne niše
07:12
with its own unique history.
180
432260
3000
sa svojom jedinstvenom poviješću.
07:15
And yet, despite all of that Darwinian evolution
181
435260
3000
I opet, unatoč toj darvinovoj evoluciji
07:18
and natural selection,
182
438260
2000
i prirodnoj selekciji,
07:20
they've been constrained to lie on a line.
183
440260
2000
ograničeni su da leže na istoj liniji.
07:22
Something else is going on.
184
442260
2000
Nešto drugo se događa.
07:24
Before I talk about that,
185
444260
2000
Prije nego što počnem o tome pričati,
07:26
I've written down at the bottom there
186
446260
2000
zapisao sam na dnu ovdje
07:28
the slope of this curve, this straight line.
187
448260
2000
nagib ove krivulje, ovu ravnu liniju.
07:30
It's three-quarters, roughly,
188
450260
2000
Otprilike je tri četvrtine
07:32
which is less than one -- and we call that sublinear.
189
452260
3000
što je manje od jedan -- i ja je nazivam sublineranom.
07:35
And here's the point of that.
190
455260
2000
A ovdje je važnost toga.
07:37
It says that, if it were linear,
191
457260
3000
Pokazuje kako, kada bi bila linearna,
07:40
the steepest slope,
192
460260
2000
najstrmiji nagib,
07:42
then doubling the size
193
462260
2000
zatim udvostručenje veličine
07:44
you would require double the amount of energy.
194
464260
2000
bila bi vam potrebna dvostruka količina energije.
07:46
But it's sublinear, and what that translates into
195
466260
3000
Ali ona je sublinearna, i onda se prevodi u
07:49
is that, if you double the size of the organism,
196
469260
2000
ovo, ako udvostručite količinu organizama,
07:51
you actually only need 75 percent more energy.
197
471260
3000
u stvari vam je potrebno samo 75 posto više energije.
07:54
So a wonderful thing about all of biology
198
474260
2000
Prekrasna stvar o svoj biologiji
07:56
is that it expresses an extraordinary economy of scale.
199
476260
3000
jest da ona ukazuje na izvanrednu ekonomiju obujma.
07:59
The bigger you are systematically,
200
479260
2000
Što ste sustavno veći,
08:01
according to very well-defined rules,
201
481260
2000
prema jako dobro definiranim pravilima,
08:03
less energy per capita.
202
483260
3000
manje energije per capita.
08:06
Now any physiological variable you can think of,
203
486260
3000
Sada bilo koja fiziološka varijabla koje se možete sjetiti,
08:09
any life history event you can think of,
204
489260
2000
svaki život povijesnog događaja kojeg se možete sjetiti,
08:11
if you plot it this way, looks like this.
205
491260
3000
ako ga iscrtate na ovaj način, izgleda ovako.
08:14
There is an extraordinary regularity.
206
494260
2000
Postoji izvanredna pravilnost.
08:16
So you tell me the size of a mammal,
207
496260
2000
Znači kažete mi veličinu sisavca,
08:18
I can tell you at the 90 percent level everything about it
208
498260
3000
a ja vam mogu reći na razini od 90 posto sve o njemu
08:21
in terms of its physiology, life history, etc.
209
501260
4000
u smislu fiziologije, životne povijesti, itd.
08:25
And the reason for this is because of networks.
210
505260
3000
A razlog tome su mreže.
08:28
All of life is controlled by networks --
211
508260
3000
Sav život se kontrolira od strane mreža --
08:31
from the intracellular through the multicellular
212
511260
2000
od intrastaničnih preko multistaničnih
08:33
through the ecosystem level.
213
513260
2000
do razine ekosustava.
08:35
And you're very familiar with these networks.
214
515260
3000
A vi ste jako dobro upoznati s tim mrežama.
08:39
That's a little thing that lives inside an elephant.
215
519260
3000
To je mala stvar koja živi unutar slona.
08:42
And here's the summary of what I'm saying.
216
522260
3000
A ovdje je sažetak onoga što govorim.
08:45
If you take those networks,
217
525260
2000
Ako uzmete te mreže,
08:47
this idea of networks,
218
527260
2000
tu ideju mreža,
08:49
and you apply universal principles,
219
529260
2000
i primjenite univerzalne principe,
08:51
mathematizable, universal principles,
220
531260
2000
matematičke, univerzalne principe,
08:53
all of these scalings
221
533260
2000
sve te skalabilnosti
08:55
and all of these constraints follow,
222
535260
3000
i sva ta ograničenja slijede,
08:58
including the description of the forest,
223
538260
2000
uključujući opis šume,
09:00
the description of your circulatory system,
224
540260
2000
opis vašeg cirkularnog sustava,
09:02
the description within cells.
225
542260
2000
opis unutar čelija.
09:04
One of the things I did not stress in that introduction
226
544260
3000
Jedna od stvari koje nisam dovoljno naglasio u uvodu
09:07
was that, systematically, the pace of life
227
547260
3000
jest da, sustavno, tempo života
09:10
decreases as you get bigger.
228
550260
2000
opada kako se povećavate.
09:12
Heart rates are slower; you live longer;
229
552260
3000
Otkucaji srca su sporiji, duže živite;
09:15
diffusion of oxygen and resources
230
555260
2000
difuzija kisika i resursa
09:17
across membranes is slower, etc.
231
557260
2000
preko membrana je sporija itd.
09:19
The question is: Is any of this true
232
559260
2000
Pitanje je: Je li išta od ovoga istina
09:21
for cities and companies?
233
561260
3000
za gradove i kompanije?
09:24
So is London a scaled up Birmingham,
234
564260
3000
Dakle je li London skalirani Birmingham,
09:27
which is a scaled up Brighton, etc., etc.?
235
567260
3000
koji je skaliran od Brightona, itd., itd.?
09:30
Is New York a scaled up San Francisco,
236
570260
2000
Je li New York skalirani San Francisco,
09:32
which is a scaled up Santa Fe?
237
572260
2000
koji je skaliran od Santa Fea?
09:34
Don't know. We will discuss that.
238
574260
2000
Ne znam. O tome ćemo raspravljati.
09:36
But they are networks,
239
576260
2000
Ali oni su mreže.
09:38
and the most important network of cities
240
578260
2000
I najvažnija mreža gradova
09:40
is you.
241
580260
2000
ste vi.
09:42
Cities are just a physical manifestation
242
582260
3000
Gradovi su samo fizička manifestacija
09:45
of your interactions,
243
585260
2000
vaših međuveza,
09:47
our interactions,
244
587260
2000
naših međuveza,
09:49
and the clustering and grouping of individuals.
245
589260
2000
i klastriranja i grupiranja pojedinaca.
09:51
Here's just a symbolic picture of that.
246
591260
3000
Ovdje je samo simbolična slika toga.
09:54
And here's scaling of cities.
247
594260
2000
A ovdje je skaliranje gradova.
09:56
This shows that in this very simple example,
248
596260
3000
Ovo pokazuje kako je ovo jako jednostavan primjer,
09:59
which happens to be a mundane example
249
599260
2000
koji je ujedno i svjetski primjer
10:01
of number of petrol stations
250
601260
2000
broja benzinskih stanica
10:03
as a function of size --
251
603260
2000
kao funkcije veličine --
10:05
plotted in the same way as the biology --
252
605260
2000
iscrtanih na isti način kao biologija --
10:07
you see exactly the same kind of thing.
253
607260
2000
vidite potpuno jednaku stvar.
10:09
There is a scaling.
254
609260
2000
Postoji skaliranje.
10:11
That is that the number of petrol stations in the city
255
611260
4000
Što znači da je broj benzinskih stanica u gradu
10:15
is now given to you
256
615260
2000
jednostavno izračunati
10:17
when you tell me its size.
257
617260
2000
kada mi kažete njegovu veličinu.
10:19
The slope of that is less than linear.
258
619260
3000
Nagib toga je manje linearan.
10:22
There is an economy of scale.
259
622260
2000
Postoji ekonomija obujma.
10:24
Less petrol stations per capita the bigger you are -- not surprising.
260
624260
3000
Manji broj benzinskih stanica što ste veći -- nikakvo iznenađenje.
10:27
But here's what's surprising.
261
627260
2000
Ali evo onoga što iznenađuje.
10:29
It scales in the same way everywhere.
262
629260
2000
Skalira na isti način svugdje.
10:31
This is just European countries,
263
631260
2000
Ovo su samo europske zemlje,
10:33
but you do it in Japan or China or Colombia,
264
633260
3000
ali ako to napravite u Japanu ili Kini ili Kolumbiji
10:36
always the same
265
636260
2000
uvijek će biti jednako
10:38
with the same kind of economy of scale
266
638260
2000
s istom vrstom ekonomije obujma
10:40
to the same degree.
267
640260
2000
do istog stupnja.
10:42
And any infrastructure you look at --
268
642260
3000
I svaka infrastruktura koju gledate --
10:45
whether it's the length of roads, length of electrical lines --
269
645260
3000
bilo da se radi o dužini cesta, dužini električnih linija --
10:48
anything you look at
270
648260
2000
sve što gledate
10:50
has the same economy of scale scaling in the same way.
271
650260
3000
ima istu ekonomiju obujma skaliranu na jednak način.
10:53
It's an integrated system
272
653260
2000
To je integrirani sustav
10:55
that has evolved despite all the planning and so on.
273
655260
3000
koji je evoluirao unatoč svom planiranju i tako dalje.
10:58
But even more surprising
274
658260
2000
Ali ono što još više iznenađuje
11:00
is if you look at socio-economic quantities,
275
660260
2000
jest ako pogledate socio-ekonomske količine,
11:02
quantities that have no analog in biology,
276
662260
3000
količine koje nemaju analogiju u biologiji,
11:05
that have evolved when we started forming communities
277
665260
3000
koje su nastale kada smo započeli formirati zajednice
11:08
eight to 10,000 years ago.
278
668260
2000
prije osam do 10.000 godina.
11:10
The top one is wages as a function of size
279
670260
2000
One na vrhu su plaće kao funkcija veličine
11:12
plotted in the same way.
280
672260
2000
iscrtane na isti način.
11:14
And the bottom one is you lot --
281
674260
2000
A na dnu je vas puno --
11:16
super-creatives plotted in the same way.
282
676260
3000
super-kreativni iscrtani na isti način.
11:19
And what you see
283
679260
2000
I ono što vidite
11:21
is a scaling phenomenon.
284
681260
2000
jest fenomen skaliranja.
11:23
But most important in this,
285
683260
2000
Ali najvažnije u ovome je,
11:25
the exponent, the analog to that three-quarters
286
685260
2000
eksponent, analogija na te tri četvrtine
11:27
for the metabolic rate,
287
687260
2000
za metaboličnu stopu,
11:29
is bigger than one -- it's about 1.15 to 1.2.
288
689260
2000
je veći od jedan -- on je oko 1,15 do 1,2.
11:31
Here it is,
289
691260
2000
Tu je,
11:33
which says that the bigger you are
290
693260
3000
što nam govori što ste veći
11:36
the more you have per capita, unlike biology --
291
696260
3000
više imate per capita, za razliku od biologije --
11:39
higher wages, more super-creative people per capita as you get bigger,
292
699260
4000
više plaće, više super-kreativnih ljudi per capita što ste veći,
11:43
more patents per capita, more crime per capita.
293
703260
3000
više patenata per capita, više kriminala per capita.
11:46
And we've looked at everything:
294
706260
2000
A mi smo gledali na sve:
11:48
more AIDS cases, flu, etc.
295
708260
3000
slučajeve SIDE, gripe, itd.
11:51
And here, they're all plotted together.
296
711260
2000
I ovdje, su svi grafički prikazani zajedno.
11:53
Just to show you what we plotted,
297
713260
2000
Samo da vam pokažem što smo prikazali,
11:55
here is income, GDP --
298
715260
3000
ovdje je prihod, BDP --
11:58
GDP of the city --
299
718260
2000
BDP grada --
12:00
crime and patents all on one graph.
300
720260
2000
kriminal i patenti svi na jednom grafu.
12:02
And you can see, they all follow the same line.
301
722260
2000
I možete vidjeti, svi prate istu liniju.
12:04
And here's the statement.
302
724260
2000
I ovdje je izjava.
12:06
If you double the size of a city from 100,000 to 200,000,
303
726260
3000
Ako udvostručite veličinu grada sa 100.000 na 200.000,
12:09
from a million to two million, 10 to 20 million,
304
729260
2000
s milijun na dva milijuna, 10 na 20 milijuna,
12:11
it doesn't matter,
305
731260
2000
nema veze,
12:13
then systematically
306
733260
2000
onda sustavno
12:15
you get a 15 percent increase
307
735260
2000
dobivate 15 postotno povećanje
12:17
in wages, wealth, number of AIDS cases,
308
737260
2000
u plaćama, bogatstvu, broju slučajeva SIDE,
12:19
number of police,
309
739260
2000
broju policajaca,
12:21
anything you can think of.
310
741260
2000
svega čega se možete sjetiti.
12:23
It goes up by 15 percent,
311
743260
2000
Ide gore 15 posto.
12:25
and you have a 15 percent savings
312
745260
3000
I imate 15 posto uštede
12:28
on the infrastructure.
313
748260
3000
na infrastrukturi.
12:31
This, no doubt, is the reason
314
751260
3000
To je, nema sumnje, razlog
12:34
why a million people a week are gathering in cities.
315
754260
3000
zašto milijun ljudi tjedno odlazi u gradove.
12:37
Because they think that all those wonderful things --
316
757260
3000
Zato jer misle kako sve te krasne stvari,
12:40
like creative people, wealth, income --
317
760260
2000
poput kreativnih ljudi, bogatstva, prihoda,
12:42
is what attracts them,
318
762260
2000
jest ono što ih privlači,
12:44
forgetting about the ugly and the bad.
319
764260
2000
zaboravljajući na ružno i loše.
12:46
What is the reason for this?
320
766260
2000
Koji je razlog tome?
12:48
Well I don't have time to tell you about all the mathematics,
321
768260
3000
Nemam dovoljno vremena za objasniti vam cijelu matematiku,
12:51
but underlying this is the social networks,
322
771260
3000
ali u ishodištu svega su društvene mreže,
12:54
because this is a universal phenomenon.
323
774260
3000
jer je to univerzalni problem.
12:57
This 15 percent rule
324
777260
3000
To pravilo 15 posto
13:00
is true
325
780260
2000
je istinito
13:02
no matter where you are on the planet --
326
782260
2000
bez obzira gdje se nalazite na Planetu --
13:04
Japan, Chile,
327
784260
2000
Japan, Čile,
13:06
Portugal, Scotland, doesn't matter.
328
786260
3000
Portugal, Škotska, nema veze.
13:09
Always, all the data shows it's the same,
329
789260
3000
Uvijek, svi podaci pokazuju isto,
13:12
despite the fact that these cities have evolved independently.
330
792260
3000
unatoč činjenici da su se ti gradovi razvijali neovisno.
13:15
Something universal is going on.
331
795260
2000
Nešto univerzalno se događa.
13:17
The universality, to repeat, is us --
332
797260
3000
Ta univerzalnost, da ponovim, smo mi --
13:20
that we are the city.
333
800260
2000
mi smo grad.
13:22
And it is our interactions and the clustering of those interactions.
334
802260
3000
I naše interakcije i klasteriranje tih informacija.
13:25
So there it is, I've said it again.
335
805260
2000
Dakle tu je, rekao sam ponovno.
13:27
So if it is those networks and their mathematical structure,
336
807260
3000
Dakle, zbog tih mreža i njihovih matematičkih struktura,
13:30
unlike biology, which had sublinear scaling,
337
810260
3000
za razliku od biologije, koja ima sublinearno skaliranje,
13:33
economies of scale,
338
813260
2000
ekonomijama veličine,
13:35
you had the slowing of the pace of life
339
815260
2000
imali biste usporavanje ritma života
13:37
as you get bigger.
340
817260
2000
kako rastete.
13:39
If it's social networks with super-linear scaling --
341
819260
2000
Ako je to društvena mreža sa super-linearnim skaliranjem --
13:41
more per capita --
342
821260
2000
više per capita --
13:43
then the theory says
343
823260
2000
onda teorija kaže
13:45
that you increase the pace of life.
344
825260
2000
da povećavate tempo života.
13:47
The bigger you are, life gets faster.
345
827260
2000
Što ste veći, život postaje brži.
13:49
On the left is the heart rate showing biology.
346
829260
2000
S lijeve strane su otkucaji srca koji pokazuju biologiju.
13:51
On the right is the speed of walking
347
831260
2000
S desne strane je brzina hodanja
13:53
in a bunch of European cities,
348
833260
2000
u grupi europskih gradova,
13:55
showing that increase.
349
835260
2000
koja pokazuje to povećanje.
13:57
Lastly, I want to talk about growth.
350
837260
3000
Konačno, želim pričati o rastu.
14:00
This is what we had in biology, just to repeat.
351
840260
3000
To je ono što smo imali u biologiji, samo se ponavlja.
14:03
Economies of scale
352
843260
3000
Ekonomije obujma
14:06
gave rise to this sigmoidal behavior.
353
846260
3000
stvara to sigmoidalno ponašanje.
14:09
You grow fast and then stop --
354
849260
3000
Rastete brzo i onda stanete --
14:12
part of our resilience.
355
852260
2000
dio naše elastičnosti.
14:14
That would be bad for economies and cities.
356
854260
3000
To bi bilo loše za ekonomije i gradove.
14:17
And indeed, one of the wonderful things about the theory
357
857260
2000
I stvarno, jedna od divnih stvari o teoriji
14:19
is that if you have super-linear scaling
358
859260
3000
jest da kada imate super-linerano skaliranje
14:22
from wealth creation and innovation,
359
862260
2000
od stvaranja bogatstva i inovacije,
14:24
then indeed you get, from the same theory,
360
864260
3000
onda stvarno dobijete, od iste teorije,
14:27
a beautiful rising exponential curve -- lovely.
361
867260
2000
prekrasno rastuću eksponencijalnu krivulju -- lijepo.
14:29
And in fact, if you compare it to data,
362
869260
2000
I u stvari, ako to usporedite s podatcima
14:31
it fits very well
363
871260
2000
jako se dobro poklapa
14:33
with the development of cities and economies.
364
873260
2000
s razvojem gradova i ekonomija.
14:35
But it has a terrible catch,
365
875260
2000
Ali ima groznu caku.
14:37
and the catch
366
877260
2000
A caka je
14:39
is that this system is destined to collapse.
367
879260
3000
da je sustav osuđen na propast.
14:42
And it's destined to collapse for many reasons --
368
882260
2000
A osuđen je na propast zbog puno razloga --
14:44
kind of Malthusian reasons -- that you run out of resources.
369
884260
3000
na neki način Malthusianski razlozi -- ostanete bez resursa.
14:47
And how do you avoid that? Well we've done it before.
370
887260
3000
I kako da izbjegnete to? Uspjeli smo prije.
14:50
What we do is,
371
890260
2000
Ono što napravimo je,
14:52
as we grow and we approach the collapse,
372
892260
3000
dok rastemo i približavamo se kolapsu,
14:55
a major innovation takes place
373
895260
3000
velika inovacija se dogodi
14:58
and we start over again,
374
898260
2000
i krenemo iz početka.
15:00
and we start over again as we approach the next one, and so on.
375
900260
3000
I krenemo iz početka kada se približimo slijedećoj, i tako dalje.
15:03
So there's this continuous cycle of innovation
376
903260
2000
Dakle postoji kontinuirani ciklus inovacije
15:05
that is necessary
377
905260
2000
koji je nužan
15:07
in order to sustain growth and avoid collapse.
378
907260
3000
kako bi se održao rast i izbjegao kolaps.
15:10
The catch, however, to this
379
910260
2000
Caka je, kako bilo, kako bi to radilo
15:12
is that you have to innovate
380
912260
2000
morate inovirati
15:14
faster and faster and faster.
381
914260
3000
brže i brže i brže.
15:17
So the image
382
917260
2000
Dakle slika
15:19
is that we're not only on a treadmill that's going faster,
383
919260
3000
je da nismo samo na pokretnoj traci koja ide sve brže
15:22
but we have to change the treadmill faster and faster.
384
922260
3000
već moramo mijenjati pokretne trake sve brže i brže.
15:25
We have to accelerate on a continuous basis.
385
925260
3000
Moramo ubrzavati stalno.
15:28
And the question is: Can we, as socio-economic beings,
386
928260
3000
A pitanje je: Možemo li, kao socio-ekonomska bića,
15:31
avoid a heart attack?
387
931260
3000
izbječi srčani udar?
15:34
So lastly, I'm going to finish up in this last minute or two
388
934260
3000
Na kraju, završiti ću u zadnjoj minuti ili dvije
15:37
asking about companies.
389
937260
2000
pitajući se za kompanije.
15:39
See companies, they scale.
390
939260
2000
Vidite kompanije, one skaliraju.
15:41
The top one, in fact, is Walmart on the right.
391
941260
2000
Onaj na vrhu, u stvari, to je Walmart na desno.
15:43
It's the same plot.
392
943260
2000
To je isti grafički podatak.
15:45
This happens to be income and assets
393
945260
2000
To ispada da je prihod i imovina
15:47
versus the size of the company as denoted by its number of employees.
394
947260
2000
nasuprot veličine kompanije prikazane brojem zaposlenika.
15:49
We could use sales, anything you like.
395
949260
3000
Mogli bi upotrijebiti prodaju, što god želite.
15:52
There it is: after some little fluctuations at the beginning,
396
952260
3000
Ovdje je: poslije malenih fluktuacija na početku,
15:55
when companies are innovating,
397
955260
2000
kada kompanije inoviraju
15:57
they scale beautifully.
398
957260
2000
one skaliraju prekrasno.
15:59
And we've looked at 23,000 companies
399
959260
3000
A mi smo gledali 23.000 kompanija,
16:02
in the United States, may I say.
400
962260
2000
u Sjedinjenim Državama, ako mogu reći.
16:04
And I'm only showing you a little bit of this.
401
964260
3000
A ja vam pokazujem samo maleni dio toga.
16:07
What is astonishing about companies
402
967260
2000
Ono što je zadivljujuće o kompanijama
16:09
is that they scale sublinearly
403
969260
3000
jest da one skaliraju sublinerano
16:12
like biology,
404
972260
2000
poput biologije,
16:14
indicating that they're dominated,
405
974260
2000
indicirajući da su dominantne,
16:16
not by super-linear
406
976260
2000
ne po super-linearnim
16:18
innovation and ideas;
407
978260
3000
inovacijama i idejama;
16:21
they become dominated
408
981260
2000
one postaju dominantne
16:23
by economies of scale.
409
983260
2000
ekonomijom obujma.
16:25
In that interpretation,
410
985260
2000
U toj interpretaciji,
16:27
by bureaucracy and administration,
411
987260
2000
od birokracije i administracije,
16:29
and they do it beautifully, may I say.
412
989260
2000
i one to rade prekrasno, ako mogu reći.
16:31
So if you tell me the size of some company, some small company,
413
991260
3000
Ako mi kažete veličinu neke kompanije, neke male kompanije,
16:34
I could have predicted the size of Walmart.
414
994260
3000
mogao bih predvidjeti veličinu Walmarta.
16:37
If it has this sublinear scaling,
415
997260
2000
Ako ima to sublinerano skaliranje,
16:39
the theory says
416
999260
2000
teorija kaže
16:41
we should have sigmoidal growth.
417
1001260
3000
trebali bismo imati sigmoidalni rast.
16:44
There's Walmart. Doesn't look very sigmoidal.
418
1004260
2000
Tu je Walmart. Ne izgleda jako sigmoidalno.
16:46
That's what we like, hockey sticks.
419
1006260
3000
To je ono što volimo. Štapovi za hokej.
16:49
But you notice, I've cheated,
420
1009260
2000
Ali primjetiti ćete, varao sam,
16:51
because I've only gone up to '94.
421
1011260
2000
jer sam otišao samo do '94.
16:53
Let's go up to 2008.
422
1013260
2000
Idemo do 2008.
16:55
That red line is from the theory.
423
1015260
3000
Ova crvena linija je iz teorije.
16:58
So if I'd have done this in 1994,
424
1018260
2000
Dakle da ste ovo napravili 1994.,
17:00
I could have predicted what Walmart would be now.
425
1020260
3000
mogao sam predvidjeti kakav će Walmart biti sada.
17:03
And then this is repeated
426
1023260
2000
I onda se ovo ponavlja
17:05
across the entire spectrum of companies.
427
1025260
2000
po cijelom spektrumu kompanija.
17:07
There they are. That's 23,000 companies.
428
1027260
3000
Tu su. To je 23.000 kompanija.
17:10
They all start looking like hockey sticks,
429
1030260
2000
Sve počinju izgledati kao štapovi za hokej,
17:12
they all bend over,
430
1032260
2000
sve se savijaju,
17:14
and they all die like you and me.
431
1034260
2000
i sve umiru kao vi i ja.
17:16
Thank you.
432
1036260
2000
Hvala vam.
17:18
(Applause)
433
1038260
9000
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7