Geoffrey West: The surprising math of cities and corporations

171,383 views ใƒป 2011-07-26

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Ido Dekkers
00:16
Cities are the crucible of civilization.
0
16260
3000
ืขืจื™ื ื”ืŸ ื›ื•ืจ ื”ื”ื™ืชื•ืš ืฉืœ ืฆื™ื•ื•ืœื™ื–ืฆื™ื”.
00:19
They have been expanding,
1
19260
2000
ื”ืŸ ืžืชืคืฉื˜ื•ืช,
00:21
urbanization has been expanding,
2
21260
2000
ื”ืขื™ื•ืจ ืžืชืคืฉื˜,
00:23
at an exponential rate in the last 200 years
3
23260
2000
ื‘ืงืฆื‘ ืžืขืจื™ื›ื™ ื‘-200 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
00:25
so that by the second part of this century,
4
25260
3000
ื›ืš ืฉื‘ืžื—ืฆื™ืช ื”ืฉื ื™ื” ืฉืœ ื”ืžืื” ื”ื–ื•,
00:28
the planet will be completely dominated
5
28260
2000
ื›ื•ื›ื‘ื ื• ื›ื•ืœื• ื™ื™ืฉืœื˜
00:30
by cities.
6
30260
3000
ืขืœ-ื™ื“ื™ ืขืจื™ื.
00:33
Cities are the origins of global warming,
7
33260
3000
ืขืจื™ื ื”ืŸ ื”ืžืงื•ืจ ืœื”ืชื—ืžืžื•ืช ื’ืœื•ื‘ืœื™ืช,
00:36
impact on the environment,
8
36260
2000
ืœื”ืฉืคืขื” ืขืœ ื”ืกื‘ื™ื‘ื”,
00:38
health, pollution, disease,
9
38260
3000
ื”ื‘ืจื™ืื•ืช, ื”ื–ื™ื”ื•ื, ืžื—ืœื•ืช,
00:41
finance,
10
41260
2000
ื›ืกืคื™ื,
00:43
economies, energy --
11
43260
3000
ื›ืœื›ืœื”, ืื ืจื’ื™ื” --
00:46
they're all problems
12
46260
2000
ื›ื•ืœื ื‘ืขื™ื•ืช ื”ืžืชืขื•ืจืจื•ืช
00:48
that are confronted by having cities.
13
48260
2000
ื‘ื’ืœืœ ืงื™ื•ื ื”ืขืจื™ื.
00:50
That's where all these problems come from.
14
50260
2000
ืžืฉื ืžื’ื™ืขื•ืช ื›ืœ ื”ื‘ืขื™ื•ืช ื”ืœืœื•.
00:52
And the tsunami of problems that we feel we're facing
15
52260
3000
ื•ื”ืฆื•ื ืžื™ ืฉืœ ื‘ืขื™ื•ืช ืฉืื ื• ืžืชืžื•ื“ื“ื™ื ืื™ืชืŸ
00:55
in terms of sustainability questions
16
55260
2000
ื‘ืžื•ื ื—ื™ื ืฉืœ ืฉืืœื•ืช ืงื™ื•ื,
00:57
are actually a reflection
17
57260
2000
ื”ื•ื ืœืžืขืฉื” ื”ืฉืชืงืคื•ืช
00:59
of the exponential increase
18
59260
2000
ืฉืœ ื”ื’ื™ื“ื•ืœ ื”ืžืขืจื™ื›ื™ ื‘ืขื™ื•ืจ
01:01
in urbanization across the planet.
19
61260
3000
ื‘ื›ืœ ืจื—ื‘ื™ ื”ื’ืœื•ื‘ื•ืก.
01:04
Here's some numbers.
20
64260
2000
ื”ื ื” ื›ืžื” ืžืกืคืจื™ื.
01:06
Two hundred years ago, the United States
21
66260
2000
ืœืคื ื™ 200 ืฉื ื”, ืืจื”"ื‘ ื”ื™ืชื” ืขื™ืจื•ื ื™ืช
01:08
was less than a few percent urbanized.
22
68260
2000
ื‘ืื—ื•ื–ื™ื ื‘ื•ื“ื“ื™ื ื•ืืฃ ืคื—ื•ืช ืžื–ื”.
01:10
It's now more than 82 percent.
23
70260
2000
ื›ื™ื•ื ื”ื™ื ืขื™ืจื•ื ื™ืช ื™ื•ืชืจ ืž-82 ืื—ื•ื–.
01:12
The planet has crossed the halfway mark a few years ago.
24
72260
3000
ื”ืขื•ืœื ื›ื•ืœื• ื—ืฆื” ืืช ืงื• ื”ื—ืฆื™ ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื.
01:15
China's building 300 new cities
25
75260
2000
ืกื™ืŸ ืชื‘ื ื” 300 ืขืจื™ื ื—ื“ืฉื•ืช
01:17
in the next 20 years.
26
77260
2000
ื‘-20 ื”ืฉื ื™ื ื”ื‘ืื•ืช.
01:19
Now listen to this:
27
79260
2000
ื•ืชืงืฉื™ื‘ื• ืœื–ื”:
01:21
Every week for the foreseeable future,
28
81260
3000
ื‘ื›ืœ ืฉื‘ื•ืข ื‘ืขืชื™ื“ ื”ื ืจืื” ืœืขื™ืŸ,
01:24
until 2050,
29
84260
2000
ืขื“ 2050,
01:26
every week more than a million people
30
86260
2000
ื‘ื›ืœ ืฉื‘ื•ืข ื™ืชื•ื•ืกืคื• ื™ื•ืชืจ
01:28
are being added to our cities.
31
88260
2000
ืžืžื™ืœื™ื•ืŸ ืื™ืฉ ืœืขืจื™ื ื•.
01:30
This is going to affect everything.
32
90260
2000
ื–ื” ื”ื•ืœืš ืœื”ืฉืคื™ืข ืขืœ ื”ื›ืœ.
01:32
Everybody in this room, if you stay alive,
33
92260
2000
ื›ืœ ืื—ื“ ื‘ืื•ืœื ื–ื”, ืื ื™ื—ื™ื”,
01:34
is going to be affected
34
94260
2000
ื”ื•ืœืš ืœื”ื™ื•ืช ืžื•ืฉืคืข
01:36
by what's happening in cities
35
96260
2000
ืžืžื” ืฉืงื•ืจื” ื‘ืขืจื™ื
01:38
in this extraordinary phenomenon.
36
98260
2000
ืขื ืชื•ืคืขื” ื™ื•ืฆืืช-ื“ื•ืคืŸ ื–ื•.
01:40
However, cities,
37
100260
3000
ืื‘ืœ, ืขืจื™ื,
01:43
despite having this negative aspect to them,
38
103260
3000
ืœืžืจื•ืช ื”ื™ื•ืชืŸ ื‘ืขืœื•ืช ื”ื™ื‘ื˜ ืฉืœื™ืœื™ ื–ื”,
01:46
are also the solution.
39
106260
2000
ื”ืŸ ื’ื ื”ืคื™ืชืจื•ืŸ.
01:48
Because cities are the vacuum cleaners and the magnets
40
108260
4000
ืžื›ื™ื•ื•ืŸ ืฉืขืจื™ื ื”ืŸ ืฉื•ืื‘ ื”ืื‘ืง ื•ื”ืžื’ื ื˜
01:52
that have sucked up creative people,
41
112260
2000
ืืฉืจ ืžืฉื›ื• ืืœื™ื”ืŸ ืื ืฉื™ื ื™ืฆื™ืจืชื™ื™ื,
01:54
creating ideas, innovation,
42
114260
2000
ื”ื™ื•ืฆืจื™ื ืจืขื™ื•ื ื•ืช, ื—ื™ื“ื•ืฉื™ื,
01:56
wealth and so on.
43
116260
2000
ืขื•ืฉืจ ื•ื›ืš ื”ืœืื”.
01:58
So we have this kind of dual nature.
44
118260
2000
ื›ืš ืฉื™ืฉ ืœื ื• ื›ืืŸ ื˜ื‘ืข ื“ื•-ืžืฉืžืขื™.
02:00
And so there's an urgent need
45
120260
3000
ืœื›ืŸ ื™ืฉ ืฆื•ืจืš ื“ื—ื•ืฃ
02:03
for a scientific theory of cities.
46
123260
4000
ื‘ืชื™ืื•ืจื™ื” ืžื“ืขื™ืช ืฉืœ ืขืจื™ื.
02:07
Now these are my comrades in arms.
47
127260
3000
ืืœื” ื”ื ื—ื‘ืจื™ื™ ืœื ืฉืง.
02:10
This work has been done with an extraordinary group of people,
48
130260
2000
ืขื‘ื•ื“ื” ื–ื• ื ืขืฉืชื” ื‘ื™ื—ื“ ืขื ืงื‘ื•ืฆืช ืื ืฉื™ื ื™ื•ืฆืื™-ื“ื•ืคืŸ,
02:12
and they've done all the work,
49
132260
2000
ื”ื ืขืฉื• ืืช ื›ืœ ื”ืขื‘ื•ื“ื”,
02:14
and I'm the great bullshitter
50
134260
2000
ื•ืื ื™ ืกืชื ื—ืจื˜ื˜ืŸ
02:16
that tries to bring it all together.
51
136260
2000
ื”ืžื ืกื” ืœื”ืจื›ื™ื‘ ืžื–ื” ืžืฉื”ื•.
02:18
(Laughter)
52
138260
2000
(ืฆื—ื•ืง)
02:20
So here's the problem: This is what we all want.
53
140260
2000
ืื– ื”ื ื” ื”ื‘ืขื™ื”: ื–ื” ืžื” ืฉื›ื•ืœื ื• ืจื•ืฆื™ื.
02:22
The 10 billion people on the planet in 2050
54
142260
3000
10 ืžื™ืœื™ืืจื“ ื”ืื ืฉื™ื ื‘ืขื•ืœื ื‘-2050
02:25
want to live in places like this,
55
145260
2000
ืจื•ืฆื™ื ืœื—ื™ื•ืช ื‘ืžืงื•ืžื•ืช ื›ืืœื”,
02:27
having things like this,
56
147260
2000
ืฉื™ื”ื™ื• ืœื”ื ื“ื‘ืจื™ื ื›ืืœื”,
02:29
doing things like this,
57
149260
2000
ืœืขืฉื•ืช ื“ื‘ืจื™ื ื›ืืœื”,
02:31
with economies that are growing like this,
58
151260
3000
ื‘ื›ืœื›ืœื•ืช ื”ืฆื•ืžื—ื•ืช ื›ืš,
02:34
not realizing that entropy
59
154260
2000
ืžื‘ืœื™ ืœื”ื‘ื™ืŸ ืฉืื ื˜ืจื•ืคื™ื”
02:36
produces things like this,
60
156260
2000
ื™ื•ืฆืจืช ื“ื‘ืจื™ื ื›ื’ื•ืŸ ืืœื”,
02:38
this, this
61
158260
4000
ื•ื–ื”, ื•ื–ื”
02:42
and this.
62
162260
2000
ื•ื’ื ื–ื”.
02:44
And the question is:
63
164260
2000
ื•ื”ืฉืืœื” ื”ื™ื:
02:46
Is that what Edinburgh and London and New York
64
166260
2000
ื”ืื ื›ืš ืชื™ืจืื™ื ื” ืื“ื™ื ื‘ื•ืจื•
02:48
are going to look like in 2050,
65
168260
2000
ื•ืœื•ื ื“ื•ืŸ ื•ื ื™ื•-ื™ื•ืจืง ื‘-2050,
02:50
or is it going to be this?
66
170260
2000
ืื• ืฉื–ื” ื™ื”ื™ื” ื›ืš?
02:52
That's the question.
67
172260
2000
ื–ื• ื”ืฉืืœื”.
02:54
I must say, many of the indicators
68
174260
2000
ืื ื™ ื—ื™ื™ื‘ ืœื•ืžืจ ืฉืกื™ืžื ื™ื ืจื‘ื™ื
02:56
look like this is what it's going to look like,
69
176260
3000
ืžืจืื™ื ืฉื›ืš ื–ื” ื”ื•ืœืš ืœื”ื™ืจืื•ืช,
02:59
but let's talk about it.
70
179260
3000
ืื‘ืœ ื”ื‘ื” ื ื“ื‘ืจ ืขืœ ื–ื”.
03:02
So my provocative statement
71
182260
3000
ื”ื˜ื™ืขื•ืŸ ื”ืžืชื’ืจื” ืฉืœื™ ื”ื•ื
03:05
is that we desperately need a serious scientific theory of cities.
72
185260
3000
ืฉืื ื• ื–ืงื•ืงื™ื ื ื•ืืฉื•ืช ืœืชื™ืื•ืจื™ื” ืžื“ืขื™ืช ืจืฆื™ื ื™ืช ืขืœ ืขืจื™ื.
03:08
And scientific theory means quantifiable --
73
188260
3000
ืชื™ืื•ืจื™ื” ืžื“ืขื™ืช ืคื™ืจื•ืฉื” ืฉืชื”ื™ื” ื‘ืจืช-ืžื“ื™ื“ื” --
03:11
relying on underlying generic principles
74
191260
3000
ื”ื ืกืžื›ืช ืขืœ ืขืงืจื•ื ื•ืช ื™ืกื•ื“ ื›ืœืœื™ื™ื ืฉื ื™ืชืŸ ืœืขืฆื‘ื
03:14
that can be made into a predictive framework.
75
194260
2000
ืœืžืกื’ืจืช ื”ืžืกื•ื’ืœืช ืœืชืช ืชื—ื–ื™ืช.
03:16
That's the quest.
76
196260
2000
ื–ื” ืžื” ืฉืžื—ืคืฉื™ื.
03:18
Is that conceivable?
77
198260
2000
ื”ืื ื–ื” ืžืชืงื‘ืœ ืขืœ ื”ื“ืขืช?
03:20
Are there universal laws?
78
200260
2000
ื”ืื ืงื™ื™ืžื™ื ื—ื•ืงื™ื ืื•ื ื™ื‘ืจืกืœื™ื™ื?
03:22
So here's two questions
79
202260
2000
ืื– ื”ื ื” ืฉืชื™ ืฉืืœื•ืช ืฉืจืฆื•ืช ื‘ืจืืฉื™
03:24
that I have in my head when I think about this problem.
80
204260
2000
ื›ืืฉืจ ืื ื™ ืžื”ืจื”ืจ ื‘ื‘ืขื™ื” ื–ื•.
03:26
The first is:
81
206260
2000
ื”ืจืืฉื•ื ื” ื”ื™ื:
03:28
Are cities part of biology?
82
208260
2000
ื”ืื ืขืจื™ื ื”ืŸ ื—ืœืง ืžื‘ื™ื•ืœื•ื’ื™ื”?
03:30
Is London a great big whale?
83
210260
2000
ื”ืื ืœื•ื ื“ื•ืŸ ื”ื™ื ืœื•ื•ื™ื™ืชืŸ ืขื ืง?
03:32
Is Edinburgh a horse?
84
212260
2000
ื”ืื ืื“ื™ื ื‘ื•ืจื• ื”ื™ื ืกื•ืก?
03:34
Is Microsoft a great big anthill?
85
214260
2000
ื”ืื ืžื™ืงืจื•ืกื•ืคื˜ ื”ื™ื ืชืœ-ื ืžืœื™ื ื’ื“ื•ืœ?
03:36
What do we learn from that?
86
216260
2000
ืžื” ืื ื• ืœืžื“ื™ื ืžื–ื”?
03:38
We use them metaphorically --
87
218260
2000
ืื ื• ืžืฉืชืžืฉื™ื ื‘ื”ื ืžื˜ืคื•ืจื™ืช --
03:40
the DNA of a company, the metabolism of a city, and so on --
88
220260
2000
ื”-DNA ืฉืœ ื—ื‘ืจื”, ื”ื—ื™ืœื•ืฃ-ื—ื•ืžืจื™ื ืฉืœ ืขื™ืจ ื•ื›ืš ื”ืœืื” --
03:42
is that just bullshit, metaphorical bullshit,
89
222260
3000
ื”ืื ื–ื” ืจืง ืฉื˜ื•ื™ื•ืช, ืฉื˜ื•ื™ื•ืช ืžื˜ืคื•ืจื™ื•ืช,
03:45
or is there serious substance to it?
90
225260
3000
ืื• ืฉื™ืฉ ื‘ื–ื” ืžื”ื•ืช ืืžื™ืชื™ืช?
03:48
And if that is the case,
91
228260
2000
ื•ืื ื–ื” ื”ืžืงืจื”,
03:50
how come that it's very hard to kill a city?
92
230260
2000
ืื™ืš ื–ื” ืฉื›ืœ-ื›ืš ืงืฉื” ืœื”ืจื•ื’ ืขื™ืจ?
03:52
You could drop an atom bomb on a city,
93
232260
2000
ืืคืฉืจ ืœื”ื˜ื™ืœ ืคืฆืฆืช ืื˜ื•ื ืขืœ ืขื™ืจ,
03:54
and 30 years later it's surviving.
94
234260
2000
ืื‘ืœ 30 ืฉื ื” ืื—ืจ-ื›ืš ื”ื™ื ื—ื™ื”.
03:56
Very few cities fail.
95
236260
3000
ืขืจื™ื ืžืขื˜ื•ืช ื‘ื™ื•ืชืจ ื ื•ืคืœื•ืช.
03:59
All companies die, all companies.
96
239260
3000
ื›ืœ ื”ื—ื‘ืจื•ืช ื”ืžืกื—ืจื™ื•ืช ืžืชื•ืช ื‘ืกื•ืฃ, ื›ื•ืœืŸ.
04:02
And if you have a serious theory, you should be able to predict
97
242260
2000
ืื ื™ืฉ ืœื ื• ืชื™ืื•ืจื™ื” ืจืฆื™ื ื™ืช, ืขืœื™ื ื• ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื—ื–ื•ืช
04:04
when Google is going to go bust.
98
244260
3000
ืžืชื™ ื’ื•ื’ืœ ื”ื•ืœื›ืช ืœื”ืชืจื•ืฉืฉ.
04:07
So is that just another version
99
247260
3000
ืื– ื”ืื ื–ื” ืจืง ื’ื™ืจืกื” ืื—ืจืช
04:10
of this?
100
250260
2000
ืฉืœ ื–ื”?
04:12
Well we understand this very well.
101
252260
2000
ืืช ื–ื” ืื ื• ืžื‘ื™ื ื™ื ื”ื™ื˜ื‘.
04:14
That is, you ask any generic question about this --
102
254260
2000
ื›ืœื•ืžืจ, ืืคืฉืจ ืœืฉืื•ืœ ื”ืจื‘ื” ืฉืืœื•ืช ื›ืœืœื™ื•ืช ืขืœ ื–ื” --
04:16
how many trees of a given size,
103
256260
2000
ื›ืžื” ืขืฆื™ื ื‘ื’ื•ื“ืœ ืžืกื•ื™ื™ื,
04:18
how many branches of a given size does a tree have,
104
258260
2000
ื›ืžื” ืขื ืคื™ื ื‘ื’ื•ื“ืœ ื ืชื•ืŸ ื™ืฉ ืœืขืฅ,
04:20
how many leaves,
105
260260
2000
ื›ืžื” ืขืœื™ื,
04:22
what is the energy flowing through each branch,
106
262260
2000
ืžื” ื”ืื ืจื’ื™ื” ื”ื–ื•ืจืžืช ื“ืจืš ื›ืœ ืขื ืฃ,
04:24
what is the size of the canopy,
107
264260
2000
ืžื” ื’ื•ื“ืœ ืฆืžืจืช ื”ืขืฅ,
04:26
what is its growth, what is its mortality?
108
266260
2000
ืžื” ืงืฆื‘ ืฆืžื™ื—ืชื•, ืžื” ืฉื™ืขื•ืจ ื”ืชืžื•ืชื” ืืฆืœื•?
04:28
We have a mathematical framework
109
268260
2000
ื™ืฉ ืœื ื• ืžืกื’ืจืช ืžืชืžื˜ื™ืช
04:30
based on generic universal principles
110
270260
3000
ื”ืžื‘ื•ืกืกืช ืขืœ ืขืงืจื•ื ื•ืช ื’ืœื•ื‘ืœื™ื™ื ื›ืœืœื™ื™ื
04:33
that can answer those questions.
111
273260
2000
ืืฉืจ ื™ื›ื•ืœื” ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช ื”ืœืœื•.
04:35
And the idea is can we do the same for this?
112
275260
4000
ื•ื”ืจืขื™ื•ืŸ ื”ื•ื, ื”ืื ื ื™ืชืŸ ืœืขืฉื•ืช ืื•ืชื• ื”ื“ื‘ืจ ื›ืืŸ?
04:40
So the route in is recognizing
113
280260
3000
ื”ื ืชื™ื‘ ืคื ื™ืžื” ื”ื•ื ื‘ื”ื›ืจื” ืฉืœ ืื—ื“ ื”ื“ื‘ืจื™ื
04:43
one of the most extraordinary things about life,
114
283260
2000
ื”ืžืคืœื™ืื™ื ื‘ืงืฉืจ ืœื—ื™ื™ื,
04:45
is that it is scalable,
115
285260
2000
ืฉื”ื ื™ื›ื•ืœื™ื ืœืฉื ื•ืช ืืช ื’ื•ื“ืœื,
04:47
it works over an extraordinary range.
116
287260
2000
ื”ื ืžืชืคืงื“ื™ื ื‘ื˜ื•ื•ื—ื™ ื’ื•ื“ืœ ืžื“ื”ื™ืžื™ื.
04:49
This is just a tiny range actually:
117
289260
2000
ื–ื”ื• ืจืง ื˜ื•ื•ื— ื–ืขื™ืจ;
04:51
It's us mammals;
118
291260
2000
ืืœื” ื”ื ืื ื—ื ื• ื”ื™ื•ื ืงื™ื,
04:53
we're one of these.
119
293260
2000
ืื ื—ื ื• ืื—ื“ ืžืืœื”.
04:55
The same principles, the same dynamics,
120
295260
2000
ืื•ืชื ื”ืขืงืจื•ื ื•ืช, ืื•ืชื” ื“ื™ื ืžื™ืงื”,
04:57
the same organization is at work
121
297260
2000
ืื•ืชื• ืกื“ืจ ื•ืื™ืจื’ื•ืŸ ื‘ืคืขื•ืœื”
04:59
in all of these, including us,
122
299260
2000
ื‘ื›ืœ ืืœื”, ื›ื•ืœืœ ืื•ืชื ื•,
05:01
and it can scale over a range of 100 million in size.
123
301260
3000
ื•ื–ื” ื™ื›ื•ืœ ืœื”ื’ื™ืข ืœื˜ื•ื•ื—ื™ื ืฉืœ ืคื™-100 ืžื™ืœื™ื•ืŸ ื‘ื’ื•ื“ืœ.
05:04
And that is one of the main reasons
124
304260
3000
ื–ื•ื”ื™ ืื—ืช ื”ืกื™ื‘ื•ืช ื”ืขื™ืงืจื™ื•ืช
05:07
life is so resilient and robust --
125
307260
2000
ืฉื”ื—ื™ื™ื ื”ื ื›ื” ืกื’ืœืชื ื™ื™ื ื•ื—ื–ืงื™ื --
05:09
scalability.
126
309260
2000
ื”ื™ื›ื•ืœืช ืœืฉื ื•ืช ื’ื•ื“ืœ.
05:11
We're going to discuss that in a moment more.
127
311260
3000
ื ื“ื•ืŸ ื‘ื–ื” ื‘ืขื•ื“ ืจื’ืข.
05:14
But you know, at a local level,
128
314260
2000
ืื‘ืœ ื›ื™ื“ื•ืข ืœื ื•,
05:16
you scale; everybody in this room is scaled.
129
316260
2000
ื›ืœ ืื—ื“ ื›ืืŸ ืขื‘ืจ ื”ืชืืžืช ื’ื•ื“ืœ.
05:18
That's called growth.
130
318260
2000
ื–ื” ื ืงืจื ื’ื“ื™ืœื”.
05:20
Here's how you grew.
131
320260
2000
ื”ื ื” ืื™ืš ืฉืื ื• ื’ื“ืœื™ื.
05:22
Rat, that's a rat -- could have been you.
132
322260
2000
ื–ื• ื—ื•ืœื“ื” -- ื™ื›ื•ืœื ื• ืœื”ื™ื•ืช ื‘ืžืงื•ืžื”.
05:24
We're all pretty much the same.
133
324260
3000
ืื ื• ื“ื™ ื“ื•ืžื™ื ืœื”.
05:27
And you see, you're very familiar with this.
134
327260
2000
ื•ืืช ื–ื” ืื ื• ืžื›ื™ืจื™ื.
05:29
You grow very quickly and then you stop.
135
329260
2000
ืื ื• ื’ื“ืœื™ื ื‘ืžื”ื™ืจื•ืช ื•ืื– ื ืขืฆืจื™ื.
05:31
And that line there
136
331260
2000
ื”ืงื• ื”ื–ื” ืฉื
05:33
is a prediction from the same theory,
137
333260
2000
ื”ื•ื ื—ื™ื–ื•ื™ ืœืคื™ ืื•ืชื” ืชืื•ืจื™ื”,
05:35
based on the same principles,
138
335260
2000
ื”ืžืชื‘ืกืกืช ืขืœ ืื•ืชื ื”ืขืงืจื•ื ื•ืช,
05:37
that describes that forest.
139
337260
2000
ืืฉืจ ืžืชืืจืช ืืช ื”ื™ืขืจ ื”ื”ื•ื.
05:39
And here it is for the growth of a rat,
140
339260
2000
ื›ืืŸ ื–ื” ืขื‘ื•ืจ ื”ื’ื“ื™ืœื” ืฉืœ ื—ื•ืœื“ื”.
05:41
and those points on there are data points.
141
341260
2000
ื”ื ืงื•ื“ื•ืช ื”ื”ืŸ ืฉื ื–ื” ื ืชื•ื ื™ื.
05:43
This is just the weight versus the age.
142
343260
2000
ื–ื” ืคืฉื•ื˜ ื”ืžืฉืงืœ ื›ื ื’ื“ ื”ื’ื™ืœ.
05:45
And you see, it stops growing.
143
345260
2000
ื•ืจื•ืื™ื ืฉื”ื’ื“ื™ืœื” ื ืขืฆืจืช.
05:47
Very, very good for biology --
144
347260
2000
ื˜ื•ื‘ ืžืื•ื“ ืžื‘ื—ื™ื ื” ื‘ื™ื•ืœื•ื’ื™ืช --
05:49
also one of the reasons for its great resilience.
145
349260
2000
ืขื•ื“ ืกื™ื‘ื” ืœืกื’ืœืชื ื•ืช ื”ื’ื“ื•ืœื” ืฉืœื”ื.
05:51
Very, very bad
146
351260
2000
ืื‘ืœ ื–ื” ืจืข ืžืื•ื“
05:53
for economies and companies and cities
147
353260
2000
ื‘ืฉื‘ื™ืœ ื›ืœื›ืœื•ืช ื•ื—ื‘ืจื•ืช ืžืกื—ืจื™ื•ืช ื•ืขืจื™ื
05:55
in our present paradigm.
148
355260
2000
ื‘ืชื‘ื ื™ืช ื”ืงื™ื™ืžืช ื”ื™ื•ื.
05:57
This is what we believe.
149
357260
2000
ื–ื” ืžื” ืฉืื ื• ืžืืžื™ื ื™ื ื‘ื•.
05:59
This is what our whole economy
150
359260
2000
ื–ื” ืžื” ืฉื”ื›ืœื›ืœื” ืฉืœื ื• ื›ื•ืœื”
06:01
is thrusting upon us,
151
361260
2000
ื›ื•ืคื” ืขืœื™ื ื•,
06:03
particularly illustrated in that left-hand corner:
152
363260
3000
ื‘ืžื™ื•ื—ื“ ืžื” ืฉืžืชื•ืืจ ื‘ืคื™ื ื” ื”ืฉืžืืœื™ืช:
06:06
hockey sticks.
153
366260
2000
ืžืงืœื•ืช ื”ื•ืงื™.
06:08
This is a bunch of software companies --
154
368260
2000
ื–ื• ืงื‘ื•ืฆื” ืฉืœ ื—ื‘ืจื•ืช ืชื•ื›ื ื” --
06:10
and what it is is their revenue versus their age --
155
370260
2000
ืžื” ืฉืจื•ืื™ื ืฉื ื–ื” ื”ื›ื ืกื•ืชื™ื”ืŸ ื›ื ื’ื“ ื’ื™ืœืŸ --
06:12
all zooming away,
156
372260
2000
ื›ื•ืœืŸ ื ื•ืกืงื•ืช,
06:14
and everybody making millions and billions of dollars.
157
374260
2000
ื•ื›ืœ ืื—ืช ืžืจื•ื™ื—ื” ืžื™ืœื™ื•ื ื™ ืื• ืžื™ืœื™ืืจื“ื™ ื“ื•ืœืจื™ื.
06:16
Okay, so how do we understand this?
158
376260
3000
ืžื” ืื ื• ืžื‘ื™ื ื™ื ืžื›ืœ ื–ื”?
06:19
So let's first talk about biology.
159
379260
3000
ืชื—ื™ืœื” ื ื“ื‘ืจ ืขืœ ื‘ื™ื•ืœื•ื’ื™ื”.
06:22
This is explicitly showing you
160
382260
2000
ื–ื” ืžืจืื” ื‘ื‘ื™ืจื•ืจ
06:24
how things scale,
161
384260
2000
ื›ื™ืฆื“ ื“ื‘ืจื™ื ืžืกืชื“ืจื™ื ืœืคื™ ื’ื•ื“ืœ.
06:26
and this is a truly remarkable graph.
162
386260
2000
ื–ื”ื• ื‘ืืžืช ื’ืจืฃ ืจืื•ื™ ืœืฆื™ื•ืŸ.
06:28
What is plotted here is metabolic rate --
163
388260
3000
ืžื” ืฉืžื•ืคื™ืข ื›ืืŸ ื”ื•ื ืงืฆื‘ ืฉืœ ื—ื™ืœื•ืฃ-ื—ื•ืžืจื™ื --
06:31
how much energy you need per day to stay alive --
164
391260
3000
ื›ืžื” ืื ืจื’ื™ื” ื“ืจื•ืฉื” ื‘ื›ืœ ื™ื•ื ื›ื“ื™ ืœื”ืชืงื™ื™ื --
06:34
versus your weight, your mass,
165
394260
2000
ื›ื ื’ื“ ืžืฉืงืœื ื•, ื”ืžืกื” ืฉืœื ื•,
06:36
for all of us bunch of organisms.
166
396260
3000
ืขื‘ื•ืจ ื›ื•ืœื ื• ื‘ืชื•ืจ ื™ืฆื•ืจื™ื ื—ื™ื™ื.
06:39
And it's plotted in this funny way by going up by factors of 10,
167
399260
3000
ื–ื” ืžื•ืฆื’ ื‘ืžืจื•ื•ื—ื™ื ื‘ืžื›ืคืœื•ืช ืฉืœ 10,
06:42
otherwise you couldn't get everything on the graph.
168
402260
2000
ืฉืื ืœื, ื‘ืœืชื™ ืืคืฉืจื™ ืœื”ืฆื™ื’ ื”ื›ืœ ื‘ื’ืจืฃ ื™ื—ื™ื“.
06:44
And what you see if you plot it
169
404260
2000
ืžื” ืฉืจื•ืื™ื ื›ืืฉืจ ืžืฆื™ื’ื™ื ื”ื›ืœ
06:46
in this slightly curious way
170
406260
2000
ื‘ืื•ืคืŸ ื–ื” ืขืœ ื’ืจืฃ,
06:48
is that everybody lies on the same line.
171
408260
3000
ืฉื›ื•ืœื ื ืžืฆืื™ื ืขืœ ืื•ืชื• ืงื•.
06:51
Despite the fact that this is the most complex and diverse system
172
411260
3000
ืœืžืจื•ืช ื”ืขื•ื‘ื“ื” ืฉื–ื•ื”ื™ ื”ืžืขืจื›ืช
06:54
in the universe,
173
414260
3000
ื”ื›ื™ ืžื•ืจื›ื‘ืช ื•ืžื’ื•ื•ื ืช ื‘ื™ืงื•ื,
06:57
there's an extraordinary simplicity
174
417260
2000
ื™ืฉ ื‘ื” ืคืฉื˜ื•ืช ืžื“ื”ื™ืžื”
06:59
being expressed by this.
175
419260
2000
ื”ืžื•ื‘ืขืช ื‘ื–ื”.
07:01
It's particularly astonishing
176
421260
3000
ื–ื” ืžืคืœื™ื ื‘ืžื™ื•ื—ื“
07:04
because each one of these organisms,
177
424260
2000
ืžืคื ื™ ืฉื›ืœ ืื—ื“ ืžื”ื™ืฆื•ืจื™ื ื”ืœืœื•,
07:06
each subsystem, each cell type, each gene,
178
426260
2000
ื›ืœ ืชืช-ืžืขืจื›ืช ื›ื–ื•, ื›ืœ ืกื•ื’ ืฉืœ ืชื,
07:08
has evolved in its own unique environmental niche
179
428260
4000
ื›ืœ ื’ืŸ, ื”ืชืคืชื— ื‘ืชื•ืš ื ื™ืฉื” ืกื‘ื™ื‘ืชื™ืช ืžื™ื•ื—ื“ืช ืžืฉืœื•
07:12
with its own unique history.
180
432260
3000
ืขื ื”ื™ืกื˜ื•ืจื™ื” ื™ื™ื—ื•ื“ื™ืช ืžืฉืœื•.
07:15
And yet, despite all of that Darwinian evolution
181
435260
3000
ืื‘ืœ, ืœืžืจื•ืช ื›ืœ ื”ืื‘ื•ืœื•ืฆื™ื” ื”ื“ืจื•ื•ื™ื ื™ืกื˜ื™ืช
07:18
and natural selection,
182
438260
2000
ื•ื”ื‘ืจื™ืจื” ื”ื˜ื‘ืขื™ืช,
07:20
they've been constrained to lie on a line.
183
440260
2000
ื”ื ื ืืœืฆื™ื ืœื”ืฆื˜ื•ืคืฃ ืขืœ ืงื• ืื—ื“.
07:22
Something else is going on.
184
442260
2000
ืžืฉื”ื• ืื—ืจ ืงื•ืจื” ื›ืืŸ.
07:24
Before I talk about that,
185
444260
2000
ืœืคื ื™ ืฉืื“ื‘ืจ ืขืœ ื–ื”,
07:26
I've written down at the bottom there
186
446260
2000
ื›ืชื‘ืชื™ ื‘ืชื—ืชื™ืช ืฉื
07:28
the slope of this curve, this straight line.
187
448260
2000
ืืช ืฉื™ืคื•ืข ื”ืขืžื•ื“ื”, ืฉืœ ืงื• ื™ืฉืจ ื–ื”.
07:30
It's three-quarters, roughly,
188
450260
2000
ื”ื•ื ื‘ืงื™ืจื•ื‘ ืฉืœื•ืฉืช-ืจื‘ืขื™ื,
07:32
which is less than one -- and we call that sublinear.
189
452260
3000
ืฉื–ื” ืคื—ื•ืช ืžืื—ื“ -- ื•ืื ื• ืžื›ื ื™ื ื–ืืช ืชืช-ืœื™ื ืืจื™.
07:35
And here's the point of that.
190
455260
2000
ื•ื–ื• ื”ื ืงื•ื“ื” ืฉืœื”.
07:37
It says that, if it were linear,
191
457260
3000
ื”ื™ื ืื•ืžืจืช ืฉืื ื–ื” ื”ื™ื” ืœื™ื ืืจื™,
07:40
the steepest slope,
192
460260
2000
ื”ืฉื™ืคื•ืข ื”ืชืœื•ืœ ื‘ื™ื•ืชืจ,
07:42
then doubling the size
193
462260
2000
ืื– ื”ื›ืคืœื” ื‘ื’ื•ื“ืœ
07:44
you would require double the amount of energy.
194
464260
2000
ื”ื™ืชื” ื“ื•ืจืฉืช ื”ื›ืคืœื” ื’ื ื‘ืื ืจื’ื™ื”.
07:46
But it's sublinear, and what that translates into
195
466260
3000
ืื‘ืœ ื–ื” ืชืช-ืœื™ื ืืจื™, ื•ื–ื” ืื•ืžืจ
07:49
is that, if you double the size of the organism,
196
469260
2000
ืฉืื ืžื›ืคื™ืœื™ื ืืช ื”ื’ื•ื“ืœ
07:51
you actually only need 75 percent more energy.
197
471260
3000
ืฆืจื™ืš ืจืง 75 ืื—ื•ื– ื™ื•ืชืจ ืื ืจื’ื™ื”.
07:54
So a wonderful thing about all of biology
198
474260
2000
ืื– ื™ืฉ ื›ืืŸ ืžืฉื”ื• ื ื”ื“ืจ ื‘ืงืฉืจ ืœื‘ื™ื•ืœื•ื’ื™ื”
07:56
is that it expresses an extraordinary economy of scale.
199
476260
3000
ื•ื–ื” ืฉื”ื™ื ืžื‘ื˜ืืช ื›ืœื›ืœื” ื™ื•ืฆืืช-ื“ื•ืคืŸ ืฉืœ ื’ื•ื“ืœ.
07:59
The bigger you are systematically,
200
479260
2000
ื›ื›ืœ ืฉืขื•ืœื™ื ื‘ื’ื•ื“ืœ,
08:01
according to very well-defined rules,
201
481260
2000
ืœืคื™ ื›ืœืœื™ื ื”ืžื•ื’ื“ืจื™ื ื”ื™ื˜ื‘,
08:03
less energy per capita.
202
483260
3000
ืคื—ื•ืช ืื ืจื’ื™ื” ืœื ืคืฉ.
08:06
Now any physiological variable you can think of,
203
486260
3000
ืžืฉืชื ื” ืคื™ื–ื™ื•ืœื•ื’ื™ ื›ืœืฉื”ื• ืฉื ื™ืชืŸ ืœื”ืขืœื•ืช ื‘ื“ืขืชื ื•,
08:09
any life history event you can think of,
204
489260
2000
ืื™ืจื•ืข ื›ืœืฉื”ื• ืžื”ื™ืกื˜ื•ืจื™ื™ืช ื—ื™ื™ื ืฉื ื™ืชืŸ ืœื—ืฉื•ื‘ ืขืœื™ื•,
08:11
if you plot it this way, looks like this.
205
491260
3000
ืื ืžืฆื™ื‘ื™ื ืื•ืชื ื›ืš, ื–ื” ื™ื™ืจืื” ื›ื›ื”.
08:14
There is an extraordinary regularity.
206
494260
2000
ื™ืฉ ื›ืืŸ ื—ื•ืงื™ื•ืช ื™ื•ืฆืืช-ื“ื•ืคืŸ.
08:16
So you tell me the size of a mammal,
207
496260
2000
ืชื’ื™ื“ื• ืœื™ ืืช ื’ื•ื“ืœ ื”ื™ื•ื ืง,
08:18
I can tell you at the 90 percent level everything about it
208
498260
3000
ื•ืืกืคืจ ืœื›ื ื‘ืจืžืช ื“ื™ื•ืง ืฉืœ 90 ืื—ื•ื–,
08:21
in terms of its physiology, life history, etc.
209
501260
4000
ื”ื›ืœ ืขืœื™ื•, ื‘ืžื•ื ื—ื™ื ืฉืœ ื”ืคื™ื–ื™ื•ืœื•ื’ื™ื” ืฉืœื•, ื”ื™ืกื˜ื•ืจื™ื™ืช ื—ื™ื™ื ื•ื›ื•'.
08:25
And the reason for this is because of networks.
210
505260
3000
ื”ืกื™ื‘ื” ืฉื‘ื’ืœืœื” ื–ื” ืงื•ืจื” ื”ื™ื ืจืฉืชื•ืช ืงืฉืจื™ื.
08:28
All of life is controlled by networks --
211
508260
3000
ื›ืœ ืฆื•ืจื•ืช ื”ื—ื™ื™ื ื ืฉืœื˜ื•ืช ืขืœ-ื™ื“ื™ ืจืฉืชื•ืช ืงืฉืจื™ื --
08:31
from the intracellular through the multicellular
212
511260
2000
ืžื”ื—ื“-ืชืื™ื™ื ืœืจื‘-ืชืื™ื™ื
08:33
through the ecosystem level.
213
513260
2000
ื‘ืจืžืช ื”ืžืขืจื›ืช ื”ืืงื•ืœื•ื’ื™ืช.
08:35
And you're very familiar with these networks.
214
515260
3000
ืื ื• ืžื›ื™ืจื™ื ืžืงืจื•ื‘ ืจืฉืชื•ืช ืืœื•.
08:39
That's a little thing that lives inside an elephant.
215
519260
3000
ื–ื” ื”ื“ื‘ืจ ื”ืงื˜ืŸ ืฉื—ื™ ื‘ืชื•ืš ืคื™ืœ.
08:42
And here's the summary of what I'm saying.
216
522260
3000
ืขื›ืฉื™ื• ื”ืชืžืฆื™ืช ืฉืœ ืžื” ืฉืื ื™ ืื•ืžืจ.
08:45
If you take those networks,
217
525260
2000
ืื ื ื•ื˜ืœื™ื ืจืฉืชื•ืช ืืœื•,
08:47
this idea of networks,
218
527260
2000
ืืช ื”ืจืขื™ื•ืŸ ืฉืœ ืจืฉืชื•ืช,
08:49
and you apply universal principles,
219
529260
2000
ื•ืžื—ื™ืœื™ื ืขืœื™ื• ืขืงืจื•ื ื•ืช ืื•ื ื™ื‘ืจืกืœื™ื™ื,
08:51
mathematizable, universal principles,
220
531260
2000
ืฉื ื™ืชื ื™ื ืœื—ื™ืฉื•ื‘,
08:53
all of these scalings
221
533260
2000
ืื– ื›ืœ ื”ื’ื“ืœื™ื ื”ืœืœื•
08:55
and all of these constraints follow,
222
535260
3000
ื•ื›ืœ ื”ืื™ืœื•ืฆื™ื ื”ืืœื”, ื‘ืื™ื ื‘ืขืงื‘ื•ืชื™ื”ื,
08:58
including the description of the forest,
223
538260
2000
ื›ื•ืœืœ ืชื™ืื•ืจ ื”ื™ืขืจ,
09:00
the description of your circulatory system,
224
540260
2000
ื›ื•ืœืœ ืชื™ืื•ืจ ืžื—ื–ื•ืจ ื”ื“ื ืฉืœื ื•,
09:02
the description within cells.
225
542260
2000
ืชื™ืื•ืจ ื”ืชื•ื›ืŸ ื‘ืชื•ืš ื”ืชืื™ื.
09:04
One of the things I did not stress in that introduction
226
544260
3000
ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืœื ื”ื“ื’ืฉืชื™ ื‘ื”ืงื“ืžื” ื”ื™ื”
09:07
was that, systematically, the pace of life
227
547260
3000
ืฉื‘ืื•ืคืŸ ืฉื™ื˜ืชื™, ื”ืงืฆื‘ ืฉืœ ื”ื—ื™ื™ื
09:10
decreases as you get bigger.
228
550260
2000
ื™ื•ืจื“ ื›ื›ืœ ืฉื”ื’ื•ื“ืœ ืขื•ืœื”.
09:12
Heart rates are slower; you live longer;
229
552260
3000
ื”ืœื‘ ืคื•ืขื ื™ื•ืชืจ ืœืื˜;
09:15
diffusion of oxygen and resources
230
555260
2000
ื“ื™ืคื•ื–ื™ื” ืฉืœ ื—ืžืฆืŸ ื•ื’ื•ืจืžื™ื ืื—ืจื™ื
09:17
across membranes is slower, etc.
231
557260
2000
ื“ืจืš ื”ืงืจื•ืžื™ื ื”ื™ื ื™ื•ืชืจ ืื™ื˜ื™ืช ื•ื›ื•'.
09:19
The question is: Is any of this true
232
559260
2000
ื”ืฉืืœื” ื”ื™ื: ื”ืื ืžืฉื”ื• ืžื–ื” ื ื›ื•ืŸ
09:21
for cities and companies?
233
561260
3000
ืœื’ื‘ื™ ืขืจื™ื ื•ื—ื‘ืจื•ืช ืžืกื—ืจื™ื•ืช?
09:24
So is London a scaled up Birmingham,
234
564260
3000
ื”ืื ื‘ืื•ืชื• ืื•ืคืŸ, ืœื•ื ื“ื•ืŸ ื”ื™ื ื”ื’ื“ืœื” ืฉืœ ื‘ื™ืจืžื™ื ื’ื”ื,
09:27
which is a scaled up Brighton, etc., etc.?
235
567260
3000
ืฉื”ื™ื ื”ื’ื“ืœื” ืฉืœ ื‘ืจื™ื™ื˜ื•ืŸ, ื•ื›ืš ื”ืœืื”?
09:30
Is New York a scaled up San Francisco,
236
570260
2000
ื”ืื ื ื™ื•-ื™ื•ืจืง ื”ื™ื ื”ื’ื“ืœื” ืฉืœ ืกืŸ-ืคืจื ืกื™ืกืงื•,
09:32
which is a scaled up Santa Fe?
237
572260
2000
ืฉื”ื™ื ื”ื’ื“ืœื” ืฉืœ ืกื ื˜ื”-ืคื™ื™?
09:34
Don't know. We will discuss that.
238
574260
2000
ืœื ื™ื•ื“ืข. ื ื“ื•ืŸ ื‘ื–ื”.
09:36
But they are networks,
239
576260
2000
ืื‘ืœ ื”ืŸ ืจืฉืชื•ืช ืฉืœ ืงืฉืจื™ื.
09:38
and the most important network of cities
240
578260
2000
ื•ื”ืจืฉืช ื”ื—ืฉื•ื‘ื” ื‘ื™ื•ืชืจ ืฉืœ ืขืจื™ื
09:40
is you.
241
580260
2000
ื–ื” ืืชื.
09:42
Cities are just a physical manifestation
242
582260
3000
ืขืจื™ื ื”ืŸ ืคืฉื•ื˜ ื‘ื™ื˜ื•ื™ ืคื™ื–ื™
09:45
of your interactions,
243
585260
2000
ืฉืœ ื”ืื™ื ื˜ืจืืงืฆื™ื•ืช ื‘ื™ื ื™ื ื•,
09:47
our interactions,
244
587260
2000
ื”ืื™ื ื˜ืจืืงืฆื™ื•ืช ืฉืœื ื•,
09:49
and the clustering and grouping of individuals.
245
589260
2000
ื•ื”ื”ืชืงื‘ืฆื•ืช ื‘ื™ื—ื“ ืฉืœ ืื™ื ื“ื™ื‘ื™ื“ื•ืืœื™ื.
09:51
Here's just a symbolic picture of that.
246
591260
3000
ื”ื ื” ืจืง ืชืžื•ื ื” ืกืžืœื™ืช ืฉืœ ื–ื”.
09:54
And here's scaling of cities.
247
594260
2000
ื•ื”ื ื” ื’ืจืคื™ื ืฉืœ ืขืจื™ื.
09:56
This shows that in this very simple example,
248
596260
3000
ื–ื” ืžืจืื” ืฉื‘ื“ื•ื’ืžื ืคืฉื•ื˜ื” ื–ื•,
09:59
which happens to be a mundane example
249
599260
2000
ืฉื”ื™ื ื“ื•ื’ืžื ืžืื•ื“ ืฉื’ืจืชื™ืช
10:01
of number of petrol stations
250
601260
2000
ืฉืœ ืžืกืคืจ ืชื—ื ื•ืช ื“ืœืง
10:03
as a function of size --
251
603260
2000
ื‘ืคื•ื ืงืฆื™ื” ืฉืœ ื’ื•ื“ืœ --
10:05
plotted in the same way as the biology --
252
605260
2000
ืžื•ื ื—ื•ืช ื›ืืŸ ื‘ืื•ืชื• ืื•ืคืŸ ื›ืžื• ืขื ื‘ื™ื•ืœื•ื’ื™ื” --
10:07
you see exactly the same kind of thing.
253
607260
2000
ืจื•ืื™ื ื‘ื“ื™ื•ืง ืื•ืชื” ืฆื•ืจื” ืฉืœ ื“ื‘ืจื™ื.
10:09
There is a scaling.
254
609260
2000
ื”ื ื” ื”ื’ืจืฃ.
10:11
That is that the number of petrol stations in the city
255
611260
4000
ืฉื–ื” ืื•ืžืจ ืฉืžืกืคืจ ืชื—ื ื•ืช ื”ื“ืœืง ื‘ืขื™ืจ
10:15
is now given to you
256
615260
2000
ื™ื“ื•ืข ืœื ื•
10:17
when you tell me its size.
257
617260
2000
ืื ืื ื• ื™ื•ื“ืขื™ื ืืช ื’ื•ื“ืœื”.
10:19
The slope of that is less than linear.
258
619260
3000
ื”ืฉื™ืคื•ืข ืฉืœ ื”ื’ืจืฃ ื”ื•ื ืคื—ื•ืช ืžืœื™ื ืืจื™.
10:22
There is an economy of scale.
259
622260
2000
ื™ืฉ ื—ื™ืกื›ื•ืŸ ืœืคื™ ื’ื•ื“ืœ.
10:24
Less petrol stations per capita the bigger you are -- not surprising.
260
624260
3000
ืคื—ื•ืช ืชื—ื ื•ืช ื“ืœืง ืœื ืคืฉ ื›ื›ืœ ืฉื”ื’ื•ื“ืœ ืขื•ืœื” -- ืœื ืžืคืชื™ืข.
10:27
But here's what's surprising.
261
627260
2000
ืื‘ืœ ื”ื ื” ื“ื‘ืจ ืžืคืชื™ืข.
10:29
It scales in the same way everywhere.
262
629260
2000
ื–ื” ืื•ืชื• ื’ืจืฃ ื‘ื›ืœ ืžืงื•ื.
10:31
This is just European countries,
263
631260
2000
ืืœื• ืคืฉื•ื˜ ืขืจื™ื ืื™ืจื•ืคืื™ื•ืช,
10:33
but you do it in Japan or China or Colombia,
264
633260
3000
ืื‘ืœ ืื ื ื‘ื“ื•ืง ื‘ื™ืคืŸ ืื• ืกื™ืŸ ืื• ืงื•ืœื•ืžื‘ื™ื”,
10:36
always the same
265
636260
2000
ื–ื” ืชืžื™ื“ ืื•ืชื• ื”ื“ื‘ืจ
10:38
with the same kind of economy of scale
266
638260
2000
ืขื ืื•ืชื” ืฆื•ืจืช ื—ืกื›ื ื•ืช ืœืคื™ ื’ื•ื“ืœ
10:40
to the same degree.
267
640260
2000
ื•ื‘ืื•ืชื” ืžื™ื“ื”.
10:42
And any infrastructure you look at --
268
642260
3000
ื›ืœ ืฆื•ืจืช ืชืฉืชื™ืช ืฉื ืกืชื›ืœ ืขืœื™ื” --
10:45
whether it's the length of roads, length of electrical lines --
269
645260
3000
ื‘ื™ืŸ ืื ื–ื” ืื•ืจืš ื”ื›ื‘ื™ืฉื™ื, ืื• ืื•ืจืš ืงื•ื•ื™ ื—ืฉืžืœ --
10:48
anything you look at
270
648260
2000
ืœื ืžืฉื ื” ืขืœ ืžื” ืžืกืชื›ืœื™ื --
10:50
has the same economy of scale scaling in the same way.
271
650260
3000
ื™ืฉ ืฉื ืืช ืื•ืชื” ื—ืกื›ื ื•ืช ืฉืœ ื’ื•ื“ืœ ื›ืืฉืจ ืžืฆื™ื’ื™ื ืืช ื–ื” ื‘ืื•ืคืŸ ื”ื "ืœ.
10:53
It's an integrated system
272
653260
2000
ื–ื•ื”ื™ ืžืขืจื›ืช ืฉืœืžื” ืื—ืช
10:55
that has evolved despite all the planning and so on.
273
655260
3000
ืฉื”ืชืคืชื—ื” ืœืžืจื•ืช ื›ืœ ื”ืชื›ื ื•ืŸ ื•ื›ื•'.
10:58
But even more surprising
274
658260
2000
ืื‘ืœ ืžื” ืฉืขื•ื“ ื™ื•ืชืจ ืžืคืชื™ืข
11:00
is if you look at socio-economic quantities,
275
660260
2000
ืื ืžืกืชื›ืœื™ื ืขืœ ื”ื’ื“ืœื™ื ื”ืกื•ืฆื™ื•-ืืงื•ื ื•ืžื™ื™ื,
11:02
quantities that have no analog in biology,
276
662260
3000
ื’ื“ืœื™ื ืฉืื™ืŸ ืœื”ื ืžืงื‘ื™ืœื” ื‘ื‘ื™ื•ืœื•ื’ื™ื”,
11:05
that have evolved when we started forming communities
277
665260
3000
ืืฉืจ ื”ืชืคืชื—ื• ื›ืืฉืจ ื”ืชื—ืœื ื• ืœื™ืฆื•ืจ ืงื•ืžื•ื ื•ืช
11:08
eight to 10,000 years ago.
278
668260
2000
ืœืคื ื™ 8 ืขื“ 10 ืืœืฃ ืฉื ื™ื.
11:10
The top one is wages as a function of size
279
670260
2000
ื”ื›ื™ ืœืžืขืœื” ื–ื” ืžืฉื›ื•ืจื•ืช ื›ืชืœื•ืช ื‘ื’ื•ื“ืœ
11:12
plotted in the same way.
280
672260
2000
ื”ืžื•ืฆื’ื•ืช ื‘ื’ืจืฃ ื‘ืื•ืชื• ืื•ืคืŸ.
11:14
And the bottom one is you lot --
281
674260
2000
ื•ื‘ืชื—ืชื™ืช ื–ื” --
11:16
super-creatives plotted in the same way.
282
676260
3000
ืื ืฉื™ื ื™ืฆื™ืจืชื™ื™ื ื”ืžื•ืฆื’ื™ื ื‘ื’ืจืฃ ื‘ืื•ืชื• ืื•ืคืŸ
11:19
And what you see
283
679260
2000
ื•ืžื” ืฉืจื•ืื™ื
11:21
is a scaling phenomenon.
284
681260
2000
ื”ื™ื ืชื•ืคืขืช ื”ื™ืขืจื›ื•ืช ืœืคื™ ืงื•.
11:23
But most important in this,
285
683260
2000
ืื‘ืœ ืžื” ืฉื”ื›ื™ ื—ืฉื•ื‘ ื‘ื–ื”,
11:25
the exponent, the analog to that three-quarters
286
685260
2000
ื”ืžืกืคืจ ื‘ื—ื–ืงื”, ื”ืื ืœื•ื’ื™ื” ืœืื•ืชื ืฉืœื•ืฉืช-ืจื‘ืขื™ื
11:27
for the metabolic rate,
287
687260
2000
ื‘ืงืฆื‘ ืฉืœ ื”ื—ื™ืœื•ืฃ-ื—ื•ืžืจื™ื,
11:29
is bigger than one -- it's about 1.15 to 1.2.
288
689260
2000
ื”ื•ื ื™ื•ืชืจ ื’ื“ื•ืœ ืžืื—ื“ -- ื›-1.15 ืขื“ 1.2.
11:31
Here it is,
289
691260
2000
ื”ื ื” ื–ื”,
11:33
which says that the bigger you are
290
693260
3000
ื“ื‘ืจ ื”ืื•ืžืจ ืฉื›ื›ืœ ืฉืืชื” ื™ื•ืชืจ ื’ื“ื•ืœ
11:36
the more you have per capita, unlike biology --
291
696260
3000
ื™ืฉ ืœืš ื™ื•ืชืจ ืœื›ืœ ื ืคืฉ, ืฉืœื ื›ืžื• ื‘ื‘ื™ื•ืœื•ื’ื™ื” --
11:39
higher wages, more super-creative people per capita as you get bigger,
292
699260
4000
ืžืฉื›ื•ืจื•ืช ื™ื•ืชืจ ื’ื‘ื•ื”ื•ืช, ื™ื•ืชืจ ืื ืฉื™ื ื™ืฆื™ืจืชื™ื™ื ืœื›ืœ ื ืคืฉ ื›ื›ืœ ืฉืืชื” ื’ื“ืœ,
11:43
more patents per capita, more crime per capita.
293
703260
3000
ื™ื•ืชืจ ืคื˜ื ื˜ื™ื ืœื›ืœ ื ืคืฉ, ื™ื•ืชืจ ืคืฉื™ืขื” ืœื›ืœ ื ืคืฉ.
11:46
And we've looked at everything:
294
706260
2000
ื‘ื“ืงื ื• ื”ื›ืœ:
11:48
more AIDS cases, flu, etc.
295
708260
3000
ืžืงืจื™ ืื™ื™ื“ืก, ืฉืคืขืช ื•ื›ื•'.
11:51
And here, they're all plotted together.
296
711260
2000
ื›ื•ืœื ืžื•ืฆื’ื™ื ื›ืืŸ ื‘ื™ื—ื“ ื‘ื’ืจืฃ.
11:53
Just to show you what we plotted,
297
713260
2000
ืจืง ื›ื“ื™ ืœื”ืจืื•ืช ืœื›ื ืžื” ื”ื›ื ืกื ื• ืœื’ืจืฃ,
11:55
here is income, GDP --
298
715260
3000
ื›ืืŸ ื–ื” ื”ื›ื ืกื”, ืชื•ืฆืจ ืžืงื•ืžื™ ื’ื•ืœืžื™ --
11:58
GDP of the city --
299
718260
2000
ืชื•ืฆืจ ื’ื•ืœืžื™ ืฉืœ ืขื™ืจ --
12:00
crime and patents all on one graph.
300
720260
2000
ืคืฉืขื™ื ื•ืคื˜ื ื˜ื™ื, ื›ื•ืœื ื‘ืื•ืชื• ื’ืจืฃ.
12:02
And you can see, they all follow the same line.
301
722260
2000
ื ื™ืชืŸ ืœืจืื•ืช ืฉื›ื•ืœื ื”ื•ืœื›ื™ื ืœืคื™ ืื•ืชื• ืงื•.
12:04
And here's the statement.
302
724260
2000
ื•ืขื›ืฉื™ื• ื”ืืžื™ืจื”.
12:06
If you double the size of a city from 100,000 to 200,000,
303
726260
3000
ืื ืžื’ื“ื™ืœื™ื ืคื™-2 ืืช ื’ื•ื“ืœ ื”ืขื™ืจ ืž-100 ืืœืฃ ืœ-200 ืืœืฃ,
12:09
from a million to two million, 10 to 20 million,
304
729260
2000
ืžืžื™ืœื™ื•ืŸ ืœืฉื ื™ ืžื™ืœื™ื•ืŸ, ืž-10 ืœ-20 ืžื™ืœื™ื•ืŸ,
12:11
it doesn't matter,
305
731260
2000
ื–ื” ืœื ืžืฉื ื”,
12:13
then systematically
306
733260
2000
ืžืงื‘ืœื™ื ื‘ืฉื™ื˜ืชื™ื•ืช
12:15
you get a 15 percent increase
307
735260
2000
ืขืœื™ื” ืฉืœ 15 ืื—ื•ื–
12:17
in wages, wealth, number of AIDS cases,
308
737260
2000
ื‘ืžืฉื›ื•ืจื•ืช, ืขื•ืฉืจ, ืžืก' ืžืงืจื™ ืื™ื™ื“ืก,
12:19
number of police,
309
739260
2000
ืžืกืคืจ ืฉื•ื˜ืจื™ื,
12:21
anything you can think of.
310
741260
2000
ื›ืœ ืžื” ืฉืชืขืœื• ืขืœ ื“ืขืชื›ื.
12:23
It goes up by 15 percent,
311
743260
2000
ื–ื” ืขื•ืœื” ื‘-15 ืื—ื•ื–.
12:25
and you have a 15 percent savings
312
745260
3000
ื™ืฉ ืœื ื• ื—ื™ืกื›ื•ืŸ ืฉืœ 15 ืื—ื•ื–
12:28
on the infrastructure.
313
748260
3000
ืขืœ ืชืฉืชื™ืช.
12:31
This, no doubt, is the reason
314
751260
3000
ื–ื•, ืœืœื ืกืคืง, ื”ืกื™ื‘ื”
12:34
why a million people a week are gathering in cities.
315
754260
3000
ืžื“ื•ืข ืžื™ืœื™ื•ืŸ ืื ืฉื™ื ื‘ื›ืœ ืฉื‘ื•ืข ืขื•ื‘ืจื™ื ืœืขืจื™ื.
12:37
Because they think that all those wonderful things --
316
757260
3000
ืžื›ื™ื•ื•ืŸ ืฉื”ื ื—ื•ืฉื‘ื™ื ืฉื›ืœ ืื•ืชื ื“ื‘ืจื™ื ื ืคืœืื™ื,
12:40
like creative people, wealth, income --
317
760260
2000
ื›ืžื• ืื ืฉื™ื ื™ืฆื™ืจืชื™ื™ื, ืขื•ืฉืจ, ื”ื›ื ืกื”,
12:42
is what attracts them,
318
762260
2000
ื–ื” ืžื” ืฉืžื•ืฉืš ืื•ืชื,
12:44
forgetting about the ugly and the bad.
319
764260
2000
ื‘ืขื•ื“ื ืฉื•ื›ื—ื™ื ืืช ื”ืžื›ื•ืขืจ ื•ื”ืจืข.
12:46
What is the reason for this?
320
766260
2000
ืžื” ื”ืกื™ื‘ื” ืœื›ืš?
12:48
Well I don't have time to tell you about all the mathematics,
321
768260
3000
ืื™ืŸ ืœื™ ื–ืžืŸ ืœื”ื™ื›ื ืก ืœื›ืœ ื”ืžืชืžื˜ื™ืงื”,
12:51
but underlying this is the social networks,
322
771260
3000
ืื‘ืœ ื‘ื™ืกื•ื“ ืฉืœ ื–ื” ืžื•ื ื—ื•ืช ืจืฉืชื•ืช ื—ื‘ืจืชื™ื•ืช,
12:54
because this is a universal phenomenon.
323
774260
3000
ืžืคื ื™ ืฉื–ื• ืชื•ืคืขื” ืื•ื ื™ื‘ืจืกืœื™ืช.
12:57
This 15 percent rule
324
777260
3000
ื”ื›ืœืœ ื”ื–ื” ืฉืœ 15 ืื—ื•ื–
13:00
is true
325
780260
2000
ื”ื•ื ื ื›ื•ืŸ,
13:02
no matter where you are on the planet --
326
782260
2000
ืœื ืžืฉื ื” ื”ื™ื›ืŸ ืื ื• ื ืžืฆืื™ื ื‘ืขื•ืœื --
13:04
Japan, Chile,
327
784260
2000
ื™ืคืŸ, ืฆื™ืœื™,
13:06
Portugal, Scotland, doesn't matter.
328
786260
3000
ืคื•ืจื˜ื•ื’ืœ, ืกืงื•ื˜ืœื ื“, ืœื ื—ืฉื•ื‘.
13:09
Always, all the data shows it's the same,
329
789260
3000
ืชืžื™ื“, ื›ืœ ื”ื ืชื•ื ื™ื ืžืฆื‘ื™ืขื™ื ืขืœ ืื•ืชื• ื”ื“ื‘ืจ,
13:12
despite the fact that these cities have evolved independently.
330
792260
3000
ืœืžืจื•ืช ื”ืขื•ื‘ื“ื” ืฉืขืจื™ื ืืœื• ื”ืชืคืชื—ื• ื‘ื ืคืจื“ ื–ื• ืžื–ื•.
13:15
Something universal is going on.
331
795260
2000
ืงื•ืจื” ื›ืืŸ ืžืฉื”ื• ืื•ื ื™ื‘ืจืกืœื™.
13:17
The universality, to repeat, is us --
332
797260
3000
ื”ืื•ื ื™ื‘ืจืกืœื™ื•ืช, ืื–ื›ื™ืจ, ื–ื” ืื ื—ื ื• --
13:20
that we are the city.
333
800260
2000
ืฉืื ื—ื ื• ื”ื ื”ืขืจื™ื.
13:22
And it is our interactions and the clustering of those interactions.
334
802260
3000
ื•ื”ืŸ ื”ืื™ื ื˜ืจืืงืฆื™ื•ืช ืฉืœื ื• ื•ื”ื”ืฆื˜ื‘ืจื•ืช ืฉืœ ืื•ืชืŸ ืื™ื ื˜ืจืืงืฆื™ื•ืช.
13:25
So there it is, I've said it again.
335
805260
2000
ื”ื ื” ืืžืจืชื™ ื–ืืช ืฉื•ื‘.
13:27
So if it is those networks and their mathematical structure,
336
807260
3000
ืื– ืื ื–ื” ื”ืจืฉืชื•ืช ื•ื”ืžื‘ื ื” ื”ืžืชืžื˜ื™ ืฉืœื”ืŸ,
13:30
unlike biology, which had sublinear scaling,
337
810260
3000
ืฉืœื ื›ืžื• ื‘ื™ื•ืœื•ื’ื™ื”, ืฉื”ื™ื™ืชื” ืฉื ื”ื™ืขืจื›ื•ืช ืชืช-ืœื™ื ืืจื™ืช,
13:33
economies of scale,
338
813260
2000
ื—ื™ืกื›ื•ืŸ ืฉืœ ื’ื•ื“ืœ,
13:35
you had the slowing of the pace of life
339
815260
2000
ืฉืงื™ื‘ืœื ื• ื”ืื˜ืช ืงืฆื‘ ื”ื—ื™ื™ื
13:37
as you get bigger.
340
817260
2000
ื›ื›ืœ ืฉื”ื’ื•ื“ืœ ืขื•ืœื”.
13:39
If it's social networks with super-linear scaling --
341
819260
2000
ืื ื–ื” ื”ืจืฉืชื•ืช ื”ื—ื‘ืจืชื™ื•ืช ืขื ื”ื”ื™ืขืจื›ื•ืช ื”ืขืœ-ืœื™ื ืืจื™ืช --
13:41
more per capita --
342
821260
2000
ื™ื•ืชืจ ืœื›ืœ ื ืคืฉ --
13:43
then the theory says
343
823260
2000
ืื– ื”ืชืื•ืจื™ื” ืื•ืžืจืช
13:45
that you increase the pace of life.
344
825260
2000
ืฉืžื’ื‘ื™ืจื™ื ืืช ืงืฆื‘ ื”ื—ื™ื™ื.
13:47
The bigger you are, life gets faster.
345
827260
2000
ื›ื›ืœ ืฉืืชื” ื™ื•ืชืจ ื’ื“ื•ืœ, ื”ื—ื™ื™ื ื”ื•ืคื›ื™ื ืœืžื”ื™ืจื™ื ื™ื•ืชืจ.
13:49
On the left is the heart rate showing biology.
346
829260
2000
ืžืฉืžืืœ ื–ื” ืงืฆื‘ ืคืขื™ืžื•ืช ื”ืœื‘ ื”ืงืฉื•ืจ ืœื‘ื™ื•ืœื•ื’ื™ื”.
13:51
On the right is the speed of walking
347
831260
2000
ืžื™ืžื™ืŸ ื–ื• ืžื”ื™ืจื•ืช ื”ื”ืœื™ื›ื”
13:53
in a bunch of European cities,
348
833260
2000
ื‘ืงื‘ื•ืฆื” ืฉืœ ืขืจื™ื ืื™ืจื•ืคืื™ื•ืช,
13:55
showing that increase.
349
835260
2000
ื”ืžืจืื•ืช ืืช ืขืœื™ื™ืช ื”ืžื”ื™ืจื•ืช.
13:57
Lastly, I want to talk about growth.
350
837260
3000
ืœื‘ืกื•ืฃ, ื‘ืจืฆื•ื ื™ ืœื“ื‘ืจ ืขืœ ื’ื“ื™ืœื”.
14:00
This is what we had in biology, just to repeat.
351
840260
3000
ื–ื” ืžื” ืฉื”ื™ื” ืœื ื• ื‘ื‘ื™ื•ืœื•ื’ื™ื”, ืจืง ืœื”ื–ื›ื™ืจ.
14:03
Economies of scale
352
843260
3000
ื—ื™ืกื›ื•ืŸ ืฉืœ ื’ื•ื“ืœ
14:06
gave rise to this sigmoidal behavior.
353
846260
3000
ื”ืขืœื” ืืช ื”ื”ืชื ื”ื’ื•ืช ื“ืžื•ื™ื™ืช ื”ืื•ืช S.
14:09
You grow fast and then stop --
354
849260
3000
ืื ื• ื’ื“ืœื™ื ื‘ืžื”ื™ืจื•ืช ื•ืื– ื ืขืฆืจื™ื --
14:12
part of our resilience.
355
852260
2000
ื–ื” ื—ืœืง ืžื™ื›ื•ืœืชื ื• ืœื”ืกืชื’ืœ.
14:14
That would be bad for economies and cities.
356
854260
3000
ื–ื” ืจืข ืขื‘ื•ืจ ื›ืœื›ืœื•ืช ื•ืขืจื™ื.
14:17
And indeed, one of the wonderful things about the theory
357
857260
2000
ื•ืื›ืŸ, ืžื” ืฉื™ืคื” ื‘ืชืื•ืจื™ื” ื–ื•
14:19
is that if you have super-linear scaling
358
859260
3000
ื”ื•ื ืฉื™ืฉ ื”ื™ืขืจื›ื•ืช ืขืœ-ืœื™ื ืืจื™ืช
14:22
from wealth creation and innovation,
359
862260
2000
ืžื™ืฆื™ืจืช ืขื•ืฉืจ ื•ื—ื“ืฉื ื•ืช,
14:24
then indeed you get, from the same theory,
360
864260
3000
ื•ืื– ืื›ืŸ ืžืงื‘ืœื™ื, ืžืื•ืชื” ืชืื•ืจื™ื”,
14:27
a beautiful rising exponential curve -- lovely.
361
867260
2000
ืขืงื•ืžื” ืขื•ืœื” ื™ืคื”ืคื™ื™ื” -- ืžืงืกื™ื.
14:29
And in fact, if you compare it to data,
362
869260
2000
ืื ืžืฉื•ื•ื™ื ืื•ืชื” ืœื ืชื•ื ื™ื,
14:31
it fits very well
363
871260
2000
ื”ื™ื ืžืชืื™ืžื” ืžืื•ื“ ื™ืคื”
14:33
with the development of cities and economies.
364
873260
2000
ืœื”ืชืคืชื—ื•ืช ื”ืขืจื™ื ื•ื”ื›ืœื›ืœื•ืช.
14:35
But it has a terrible catch,
365
875260
2000
ืื‘ืœ ื™ืฉื ื• ืžื™ืœื›ื•ื“ ื ื•ืจืื™.
14:37
and the catch
366
877260
2000
ื”ืžื™ืœื›ื•ื“ ื”ื•ื
14:39
is that this system is destined to collapse.
367
879260
3000
ืฉื”ืชืื•ืจื™ื” ื ื•ืขื“ื” ืœืงืจื•ืก.
14:42
And it's destined to collapse for many reasons --
368
882260
2000
ื”ื™ื ื ื•ืขื“ื” ืœืงืจื•ืก ื‘ื’ืœืœ ื”ืจื‘ื” ืกื™ื‘ื•ืช --
14:44
kind of Malthusian reasons -- that you run out of resources.
369
884260
3000
ืžื™ืŸ ืชืื•ืจื™ื” ืžืœืชื•ืกื™ืช (ืฆื™ืžืฆื•ื ื”ื™ืœื•ื“ื”) -- ื‘ื’ืœืœ ืฉื ื’ืžืจื™ื ื”ืžืฉืื‘ื™ื.
14:47
And how do you avoid that? Well we've done it before.
370
887260
3000
ื›ื™ืฆื“ ืžื•ื ืขื™ื ื–ืืช? ื›ื‘ืจ ืขืฉื™ื ื• ื–ืืช ื‘ืขื‘ืจ.
14:50
What we do is,
371
890260
2000
ืžื” ืฉืขื•ืฉื™ื ื–ื”,
14:52
as we grow and we approach the collapse,
372
892260
3000
ื›ื›ืœ ืฉื’ื“ืœื™ื ื•ืžืชืงืจื‘ื™ื ืœืงืจื™ืกื”,
14:55
a major innovation takes place
373
895260
3000
ืžื’ื™ืขื” ื”ืžืฆืื” ื—ืฉื•ื‘ื”
14:58
and we start over again,
374
898260
2000
ื•ืื– ืฉื•ื‘ ืžืชื—ื™ืœื™ื ืžื—ื“ืฉ.
15:00
and we start over again as we approach the next one, and so on.
375
900260
3000
ื›ืืฉืจ ืžืชืงืจื‘ื™ื ืœืงืจื™ืกื” ื”ื‘ืื” ืฉื•ื‘ ืžืชื—ื™ืœื™ื ืžื—ื“ืฉ ื•ื›ืš ื”ืœืื”.
15:03
So there's this continuous cycle of innovation
376
903260
2000
ื™ืฉื ื• ืžืขื’ืœ ืžืชืžืฉืš ืฉืœ ื—ื“ืฉื ื•ืช
15:05
that is necessary
377
905260
2000
ื”ื—ื™ื•ื ื™
15:07
in order to sustain growth and avoid collapse.
378
907260
3000
ื›ื“ื™ ืœืงื™ื™ื ื’ื“ื™ืœื” ื•ืœืžื ื•ืข ืงืจื™ืกื”.
15:10
The catch, however, to this
379
910260
2000
ื”ืžื™ืœื›ื•ื“ ื‘ื–ื”
15:12
is that you have to innovate
380
912260
2000
ื”ื•ื ืฉืฆืจื™ืš ืœื”ืžืฆื™ื
15:14
faster and faster and faster.
381
914260
3000
ื‘ืงืฆื‘ ื’ื•ื‘ืจ.
15:17
So the image
382
917260
2000
ื›ืš ืฉื”ื“ื™ืžื•ื™ ื”ื•ื
15:19
is that we're not only on a treadmill that's going faster,
383
919260
3000
ืฉืœื ืจืง ืฉืื ื• ืฆื•ืขื“ื™ื ืขืœ ื”ืœื™ื›ื•ืŸ ื”ืžืกืชื•ื‘ื‘ ื‘ืงืฆื‘ ื’ื•ื‘ืจ,
15:22
but we have to change the treadmill faster and faster.
384
922260
3000
ืืœื ืฉืขืœื™ื ื• ืœื”ื—ืœื™ืฃ ืืช ื”ื”ืœื™ื›ื•ืŸ ื‘ืงืฆื‘ ื”ื•ืœืš ื•ื’ื•ื‘ืจ.
15:25
We have to accelerate on a continuous basis.
385
925260
3000
ืขืœื™ื ื• ืœื”ืื™ืฅ ื‘ืื•ืคืŸ ืงื‘ื•ืข.
15:28
And the question is: Can we, as socio-economic beings,
386
928260
3000
ื•ื”ืฉืืœื” ื”ื™ื: ื”ืื ื ื•ื›ืœ ื‘ืชื•ืจ ื™ืฆื•ืจื™ื ืกื•ืฆื™ื•-ืืงื•ื ื•ืžื™ื™ื,
15:31
avoid a heart attack?
387
931260
3000
ืœื”ื™ืžื ืข ืžื”ืชืงืฃ ืœื‘?
15:34
So lastly, I'm going to finish up in this last minute or two
388
934260
3000
ืœื›ืŸ ืœืกื™ื•ื, ืืฉืืœ ื‘ื“ืงื” ืื• ืฉืชื™ื™ื ืฉื ื•ืชืจื•
15:37
asking about companies.
389
937260
2000
ืœื’ื‘ื™ ื—ื‘ืจื•ืช ืžืกื—ืจื™ื•ืช.
15:39
See companies, they scale.
390
939260
2000
ื—ื‘ืจื•ืช, ื”ืŸ ื’ื“ืœื•ืช ื‘ื”ืชืืžื”.
15:41
The top one, in fact, is Walmart on the right.
391
941260
2000
ื”ืขืœื™ื•ื ื” ื–ื• ื•ื•ืœืžืจื˜ ืžื™ืžื™ืŸ.
15:43
It's the same plot.
392
943260
2000
ื–ื” ืื•ืชื• ื’ืจืฃ.
15:45
This happens to be income and assets
393
945260
2000
ืืœื” ื”ื ื”ื›ื ืกื•ืช ื•ื ื›ืกื™ื
15:47
versus the size of the company as denoted by its number of employees.
394
947260
2000
ื›ื ื’ื“ ื’ื•ื“ืœ ื”ื—ื‘ืจื” ื”ืžื™ื•ืฆื’ ื‘ืืžืฆืขื•ืช ืžืกื™ ืขื•ื‘ื“ื™ื”.
15:49
We could use sales, anything you like.
395
949260
3000
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืžื›ื™ืจื•ืช, ืžื” ืฉืจื•ืฆื™ื.
15:52
There it is: after some little fluctuations at the beginning,
396
952260
3000
ืœืื—ืจ ื›ืžื” ืชื ื•ื“ื•ืช ืงืœื•ืช ื‘ื”ืชื—ืœื”,
15:55
when companies are innovating,
397
955260
2000
ื›ืืฉืจ ื—ื‘ืจื•ืช ืžืžืฆื™ืื•ืช ื•ืžื—ื“ืฉื•ืช,
15:57
they scale beautifully.
398
957260
2000
ื”ืŸ ืžืกืชื“ืจื•ืช ื™ืคื” ืขืœ ื”ื’ืจืฃ.
15:59
And we've looked at 23,000 companies
399
959260
3000
ื‘ื“ืงื ื• 23 ืืœืฃ ื—ื‘ืจื•ืช,
16:02
in the United States, may I say.
400
962260
2000
ื‘ืืจื”"ื‘, ืฆืจื™ืš ืœื•ืžืจ.
16:04
And I'm only showing you a little bit of this.
401
964260
3000
ืื ื™ ืžืจืื” ืœื›ื ืžืขื˜ ืžื–ื”.
16:07
What is astonishing about companies
402
967260
2000
ืžื” ืฉืžื“ื”ื™ื ืœื’ื‘ื™ ื—ื‘ืจื•ืช
16:09
is that they scale sublinearly
403
969260
3000
ื”ื•ื ืฉื”ืŸ ืžืกืชื“ืจื•ืช ื‘ื’ืจืฃ ื‘ืื•ืคืŸ ืชืช-ืœื™ื ืืจื™
16:12
like biology,
404
972260
2000
ื›ืžื• ื‘ื™ื•ืœื•ื’ื™ื”,
16:14
indicating that they're dominated,
405
974260
2000
ื“ื‘ืจ ื”ืžืฆื‘ื™ืข ืขืœ ื›ืš ืฉื”ืŸ ื ืฉืœื˜ื•ืช,
16:16
not by super-linear
406
976260
2000
ืœื ืขืœ-ื™ื“ื™ ื—ื™ื“ื•ืฉื™ื ื•ืจืขื™ื•ื ื•ืช
16:18
innovation and ideas;
407
978260
3000
ืขืœ-ืœื™ื ืืจื™ื™ื;
16:21
they become dominated
408
981260
2000
ื”ืŸ ื ืฉืœื˜ื•ืช
16:23
by economies of scale.
409
983260
2000
ืขืœ-ื™ื“ื™ ื›ืœื›ืœื” ืฉืœ ื’ื•ื“ืœ.
16:25
In that interpretation,
410
985260
2000
ืœืคื™ ืคืจืฉื ื•ืช ื–ื•,
16:27
by bureaucracy and administration,
411
987260
2000
ืขืœ-ื™ื“ื™ ื‘ื™ืจื•ืงืจื˜ื™ื” ื•ื ื™ื™ืจืช,
16:29
and they do it beautifully, may I say.
412
989260
2000
ื•ื”ืŸ ืขื•ืฉื•ืช ื–ืืช ื‘ืฆื•ืจื” ื™ืคื”.
16:31
So if you tell me the size of some company, some small company,
413
991260
3000
ืื– ืื ื”ื™ื• ืื•ืžืจื™ื ืœื™ ืืช ื”ื’ื•ื“ืœ ืฉืœ ื—ื‘ืจื” ื›ืœืฉื”ื™, ื—ื‘ืจื” ืงื˜ื ื”,
16:34
I could have predicted the size of Walmart.
414
994260
3000
ื”ื™ื™ืชื™ ื™ื›ื•ืœ ืœื—ื–ื•ืช ืืช ื”ื’ื•ื“ืœ ืฉืœ ื•ื•ืœืžืจื˜.
16:37
If it has this sublinear scaling,
415
997260
2000
ืื ื™ืฉ ืœื” ืืช ื”ื’ื“ื™ืœื” ื”ืชืช-ืœื™ื ืืจื™ืช,
16:39
the theory says
416
999260
2000
ื”ืชื™ืื•ืจื™ื” ืื•ืžืจืช
16:41
we should have sigmoidal growth.
417
1001260
3000
ืฉืชื”ื™ื” ืœื ื• ื’ื“ื™ืœื” ื“ืžื•ื™ื™ืช ืื•ืช S.
16:44
There's Walmart. Doesn't look very sigmoidal.
418
1004260
2000
ื”ื ื” ื•ื•ืœืžืจื˜. ืœื ื ืจืื™ืช ื›ืžื• ืื•ืช S.
16:46
That's what we like, hockey sticks.
419
1006260
3000
ื–ื” ืžื” ืฉืื ื• ืื•ื”ื‘ื™ื, ืžืงืœื•ืช ื”ื•ืงื™.
16:49
But you notice, I've cheated,
420
1009260
2000
ืื‘ืœ ืชืฉื™ืžื• ืœื‘ ืฉืจื™ืžื™ืชื™,
16:51
because I've only gone up to '94.
421
1011260
2000
ืžื›ื™ื•ื•ืŸ ืฉื”ื’ืขืชื™ ืจืง ืขื“ 1994.
16:53
Let's go up to 2008.
422
1013260
2000
ื”ื‘ื” ื ืขืœื” ืœ-2008.
16:55
That red line is from the theory.
423
1015260
3000
ื”ืงื• ื”ืื“ื•ื ื”ื•ื ืžื”ืชื™ืื•ืจื™ื”.
16:58
So if I'd have done this in 1994,
424
1018260
2000
ื›ืš ืฉืื ื”ื™ื™ืชื™ ืขื•ืฉื” ื–ืืช ื‘-1994,
17:00
I could have predicted what Walmart would be now.
425
1020260
3000
ื”ื™ื™ืชื™ ื™ื›ื•ืœ ืœื—ื–ื•ืช ืžื” ืชื”ื™ื” ื•ื•ืœืžืจื˜ ื”ื™ื•ื.
17:03
And then this is repeated
426
1023260
2000
ื–ื” ื—ื•ื–ืจ ืขืœ ืขืฆืžื•
17:05
across the entire spectrum of companies.
427
1025260
2000
ืœืื•ืจืš ื›ืœ ืžื’ื•ื•ืŸ ื”ื—ื‘ืจื•ืช ืžืกื—ืจื™ื•ืช.
17:07
There they are. That's 23,000 companies.
428
1027260
3000
ื”ื ื” ื”ืŸ. ืืœื” 23 ืืœืฃ ื—ื‘ืจื•ืช.
17:10
They all start looking like hockey sticks,
429
1030260
2000
ื”ืŸ ื›ื•ืœืŸ ืžืชื—ื™ืœื•ืช ื›ืžืงืœื•ืช ื”ื•ืงื™,
17:12
they all bend over,
430
1032260
2000
ื”ืŸ ื›ื•ืœืŸ ืžืชืขืงืœื•ืช,
17:14
and they all die like you and me.
431
1034260
2000
ื•ื”ืŸ ื›ื•ืœืŸ ืžืชื•ืช ื›ืžื•ื ื™ ื•ื›ืžื•ื›ื.
17:16
Thank you.
432
1036260
2000
ืชื•ื“ื” ืœื›ื
17:18
(Applause)
433
1038260
9000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7