Bart Weetjens: How I taught rats to sniff out land mines

95,470 views ใƒป 2010-12-02

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Roee Sfaradi ืžื‘ืงืจ: Ido Dekkers
00:16
I'm here today to share with you
0
16260
2000
ืื ื™ ื›ืืŸ ื‘ื›ื“ื™ ืœื—ืœื•ืง ืื™ืชื›ื
00:18
an extraordinary journey -
1
18260
2000
ื‘ืžืกืข ืžื“ื”ื™ื --
00:20
extraordinarily rewarding journey, actually -
2
20260
3000
ื‘ืžืกืข ืžื“ื”ื™ื ื•ืžืชื’ืžืœ, ืœืžืขืŸ ื”ืืžืช
00:23
which brought me into
3
23260
2000
ืืฉืจ ื”ื•ื‘ื™ืœ ืื•ืชื™
00:25
training rats
4
25260
2000
ืœืืžืŸ ื—ื•ืœื“ื•ืช
00:27
to save human lives
5
27260
2000
ืœื”ืฆืœืช ื—ื™ื™ื
00:29
by detecting landmines
6
29260
2000
ื‘ืืžืฆืขื•ืช ื’ื™ืœื•ื™ ืฉืœ ืžื•ืงืฉื™ื
00:31
and tuberculosis.
7
31260
2000
ื•ื’ื™ืœื•ื™ ืฉืœ ืฉื—ืคืช
00:33
As a child, I had two passions.
8
33260
3000
ื›ื™ืœื“, ื”ื™ื• ืฉื ื™ ื ื•ืฉืื™ื ืฉื”ืœื”ื™ื‘ื• ืื•ืชื™
00:36
One was a passion for rodents.
9
36260
3000
ืื—ื“ ื”ื™ื” ืื”ื‘ื” ืœืžื›ืจืกืžื™ื
00:39
I had all kinds of rats,
10
39260
2000
ื”ื™ื• ืœื™ ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ื—ื•ืœื“ื•ืช
00:41
mice, hamsters,
11
41260
2000
ืขื›ื‘ืจื™ื, ืื•ื’ืจื™ื
00:43
gerbils, squirrels.
12
43260
2000
ื’ืจื‘ื™ืœื™ื, ืกื ืื™ื
00:45
You name it, I bred it, and I sold them to pet shops.
13
45260
3000
ืชื ืงื‘ื• ื‘ืฉื ืฉืœ ืžื›ืจืกื, ืื ื™ ื’ื™ื“ืœืชื™ ืื•ืชื•, ื•ืžื›ืจืชื™ ืื•ืชื ืœื—ื ื•ื™ื•ืช ื—ื™ื•ืช ืžื—ืžื“.
00:48
(Laughter)
14
48260
2000
(ืฆื—ื•ืง)
00:50
I also had a passion for Africa.
15
50260
3000
ื”ื™ื™ืชื” ืœื™ ื’ื ืžืฉื™ื›ื” ืœื’ื‘ื™ ืืคืจื™ืงื”
00:53
Growing up in a multicultural environment,
16
53260
2000
ื’ื“ืœื ื• ื‘ืกื‘ื™ื‘ื” ืจื‘ ืชืจื‘ื•ืชื™ืช,
00:55
we had African students in the house,
17
55260
2000
ื•ื”ื™ื• ืœื ื• ืกื˜ื•ื“ื ื˜ื™ื ืืคืจื™ืงืื™ื ื‘ื‘ื™ืช,
00:57
and I learned about their stories,
18
57260
2000
ื•ืื ื™ ืœืžื“ืชื™ ืžื”ืกื™ืคื•ืจื™ื ืฉืœื”ื
00:59
so different backgrounds,
19
59260
2000
[ื›ื’ื•ืŸ] ื”ืจืงืขื™ื ื”ืฉื•ื ื™ื ืฉืžื”ื ื‘ืื•,
01:01
dependency on imported know-how,
20
61260
3000
ืชืœื•ืช ื‘ื™ื“ืข ืžื™ื•ื‘ื,
01:04
goods, services,
21
64260
2000
ื˜ื•ื‘ื™ืŸ, ืฉื™ืจื•ืชื™ื,
01:06
exuberant cultural diversity.
22
66260
3000
ืจื‘-ืชืจื‘ื•ืชื™ืช ื—ื™ื•ื ื™ืช.
01:09
Africa was truly fascinating for me.
23
69260
2000
ืืคืจื™ืงื” ื‘ืืžืช ืจื™ืชืงื” ืื•ืชื™.
01:11
I became an industrial engineer,
24
71260
2000
ืื ื™ ื”ืคื›ืชื™ ืœื”ื™ื•ืช ืžื”ื ื“ืก ืชืขืฉื™ื” ื•ื ื™ื”ื•ืœ --
01:13
engineer in product development,
25
73260
2000
ืžื”ื ื“ืก ื‘ืคื™ืชื•ื— ืžื•ืฆืจ --
01:15
and I focused on appropriate detection technologies,
26
75260
3000
ื•ื”ืชืžืงื“ืชื™ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื’ื™ืœื•ื™ ืžืชืื™ืžื•ืช,
01:18
actually the first appropriate technologies
27
78260
2000
ืœืžืขืฉื” ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืจืืฉื•ื ื•ืช ืฉืžืชืื™ืžื•ืช
01:20
for developing countries.
28
80260
3000
ืœืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช.
01:23
I started working in the industry,
29
83260
2000
ื”ืชื—ืœืชื™ ืœืขื‘ื•ื“ ื‘ืชืขืฉื™ื”,
01:25
but I wasn't really happy to contribute
30
85260
2000
ืื•ืœื ืœื ื‘ืืžืช ืฉืžื—ืชื™ ืœืชืจื•ื
01:27
to a material consumer society
31
87260
3000
ืœื—ื‘ืจื” ื”ืฆืจื›ื ื™ืช ื•ื”ื—ื•ืžืจื™ืช
01:30
in a linear, extracting
32
90260
3000
ื‘ืื•ืคืŸ ืœื™ื ื™ืืจื™, ื•ืžื™ืฆื•ื™
01:33
and manufacturing mode.
33
93260
2000
ืชื”ืœื™ื›ื™ ื”ื™ื™ืฆื•ืจ.
01:35
I quit my job to focus on the real world problem:
34
95260
2000
ืขื–ื‘ืชื™ ืืช ื”ืขื‘ื•ื“ื” ืฉืœื™ ืขืœ ืžื ืช ืœื”ืชืžืงื“ ื‘ื‘ืขื™ื” ืืžื™ืชื™ืช ืฉืœ ื”ืขื•ืœื:
01:37
landmines.
35
97260
3000
ืžื•ืงืฉื™ื ืงืจืงืขื™ื.
01:40
We're talking '95 now.
36
100260
3000
ืื ื• ืžื“ื‘ืจื™ื ื›ืขืช ืขืœ ืฉื ืช 95
01:43
Princess Diana is announcing on TV
37
103260
3000
ื”ื ืกื™ื›ื” ื“ื™ืื ื” ื˜ืขื ื” ื‘ื˜ืœื•ื•ื™ื–ื™ื”
01:46
that landmines form a structural barrier
38
106260
2000
ืฉืžื•ืงืฉื™ื ืžื”ื•ื•ื™ื ืžื—ืกื•ื ืชืฉืชื™ืชื™
01:48
to any development, which is really true.
39
108260
3000
ืœื”ืชืคืชื—ื•ืช ื›ืœืฉื”ื™, ื˜ืขื ื” ืฉื”ื™ื™ืชื” ื‘ืืžืช ื ื›ื•ื ื”.
01:51
As long as these devices are there,
40
111260
2000
ื›ืœ ืขื•ื“ ื”ืžืชืงื ื™ื ื”ืืœื” ืงื™ื™ืžื™ื ืฉื,
01:53
or there is suspicion of landmines,
41
113260
2000
ืื• ืฉื™ืฉ ื—ืฉื“ ืœืžื•ืงืฉื™ื,
01:55
you can't really enter into the land.
42
115260
2000
ืœื ืชื•ื›ืœื• ืœื”ื›ื ืก ืœืฉื˜ื—.
01:57
Actually, there was an appeal worldwide
43
117260
2000
ืœืžืขืฉื”, ื”ื™ื™ืชื” ื‘ืงืฉื” ืขื•ืœืžื™ืช
01:59
for new detectors
44
119260
3000
ืœื’ืœืื™ื ื—ื“ืฉื™ื
02:02
sustainable in the environments
45
122260
2000
ื‘ืจื™ ืงื™ื™ืžื
02:04
where they're needed to produce,
46
124260
2000
ื‘ืกื‘ื™ื‘ื•ืช ื‘ื”ืŸ ื”ืŸ ื ื“ืจืฉื• ืœื™ื™ืฆื•ืจ
02:06
which is mainly in the developing world.
47
126260
2000
ืฉื”ืŸ ื‘ืขื™ืงืจ ื”ืขื•ืœื ื”ืžืชืคืชื—.
02:08
We chose rats.
48
128260
2000
ื‘ื—ืจื ื• ื‘ื—ื•ืœื“ื•ืช.
02:10
Why would you choose rats?
49
130260
2000
ืœืžื” ืฉื™ื‘ื—ืจื• ื‘ื—ื•ืœื“ื•ืช?
02:12
Because, aren't they vermin?
50
132260
2000
ื”ื ืœื ืœืžืขืฉื” ืžื–ื™ืงื™ื?
02:14
Well, actually rats are,
51
134260
2000
ืœืžืขืฉื”, ื—ื•ืœื“ื•ืช ื”ืŸ --
02:16
in contrary to what most people think about them,
52
136260
2000
ื‘ืกืชื™ืจื” ืœืžื” ืฉืจื•ื‘ ื”ืื ืฉื™ื ื—ื•ืฉื‘ื™ื ืขืœื™ื”ืŸ --
02:18
rats are highly sociable creatures.
53
138260
4000
ื—ื•ืœื“ื•ืช ื”ื ื™ืฆื•ืจื™ื ืžืื•ื“ ื—ื‘ืจื•ืชื™ื™ื
02:22
And actually, our product -- what you see here.
54
142260
3000
ืœืžืขืฉื”, ื”ืžื•ืฆืจ ืฉืœื ื• -- ืžื” ืฉื ื™ืชืŸ ืœืจืื•ืช ื›ืืŸ.
02:25
There's a target somewhere here.
55
145260
2000
ื™ืฉ ืžื˜ืจื” ื‘ืžืงื•ื ื›ืœืฉื”ื• ื›ืืŸ.
02:27
You see an operator, a trained African
56
147260
2000
ืืชื ืจื•ืื™ื ืžืคืขื™ืœ, ืืคืจื™ืงืื™ ืžืื•ืžืŸ.
02:29
with his rats in front
57
149260
2000
ืขื ื”ื—ื•ืœื“ื•ืช ืฉืœื• ืžืœืคื ื™ื
02:31
who actually are left and right.
58
151260
2000
ืืฉืจ ืœืžืขืฉื” ืžืฉืžืืœ ื•ืžื™ืžื™ืŸ.
02:33
There, the animal finds a mine.
59
153260
2000
ืฉื ื‘ืขืœ ื”ื—ื™ื™ื ืžื•ืฆื ืืช ื”ืžื•ืงืฉ
02:35
It scratches on the soil.
60
155260
2000
ื”ื•ื ืžื’ืจื“ ืืช ื”ืงืจืงืข.
02:37
And the animal comes back for a food reward.
61
157260
3000
ื•ื‘ืขืœ ื”ื—ื™ื™ื ื—ื•ื–ืจ ืœืงื‘ืœ ืชื’ืžื•ืœ.
02:40
Very, very simple.
62
160260
2000
ืžืื•ื“ ืžืื•ื“ ืคืฉื•ื˜.
02:42
Very sustainable in this environment.
63
162260
3000
ืžืื•ื“ ื™ื™ืฉื™ื ื‘ืกื‘ื™ื‘ื” ื”ื–ื•.
02:45
Here, the animal gets its food reward.
64
165260
3000
ื”ื ื” ื‘ืขืœ ื”ื—ื™ื™ื ืžืงื‘ืœ ืื•ื›ืœ ื›ืชื’ืžื•ืœ.
02:48
And that's how it works.
65
168260
2000
ื•ื›ืš ื–ื” ืขื•ื‘ื“.
02:50
Very, very simple.
66
170260
2000
ืžืื•ื“ ืžืื•ื“ ืคืฉื•ื˜.
02:52
Now why would you use rats?
67
172260
2000
ืขื•ืœื” ื”ืฉืืœื”, ืžื“ื•ืข ืœื”ืฉืชืžืฉ ื‘ื—ื•ืœื“ื•ืช?
02:54
Rats have been used since the '50s last century,
68
174260
2000
ื—ื•ืœื“ื•ืช ื”ื™ื• ื‘ืฉื™ืžื•ืฉ ืžืื– ืฉื ื•ืช ื”50 ืฉืœ ื”ืžืื” ื”ืื—ืจื•ื ื”
02:56
in all kinds of experiments.
69
176260
3000
ื‘ื›ืœ ืกื•ื’ื™ ื”ื ื™ืกื•ื™ื™ื
02:59
Rats have more genetic material
70
179260
3000
ืœื—ื•ืœื“ื•ืช ื™ืฉ ื™ื•ืชืจ ื—ื•ืžืจ ื’ื ื˜ื™
03:02
allocated to olfaction
71
182260
2000
ืฉืฉื™ื™ืš ืœื—ื•ืฉ ื”ืจื™ื—
03:04
than any other mammal species.
72
184260
2000
ืžืืฉืจ ื›ืœ ื™ื•ื ืง ืื—ืจ
03:06
They're extremely sensitive to smell.
73
186260
3000
ื”ื ืจื’ื™ืฉื™ื ื‘ืžื™ื•ื—ื“ ืœืจื™ื—ื•ืช
03:09
Moreover, they have the mechanisms to map all these smells
74
189260
3000
ืžืขื‘ืจ ืœื›ืš, ื™ืฉ ืœื”ื ืืช ื”ืžื ื’ื ื•ืŸ ืœืžืคื•ืช ืืช ื›ืœ ื”ืจื™ื—ื•ืช ืฉื”ื ืงื•ืœื˜ื™ื
03:12
and to communicate about it.
75
192260
3000
ื•ืœื”ืขื‘ื™ืจ ืืช ื”ืžื™ื“ืข ืขืœ ื”ืจื™ื—ื•ืช
03:15
Now how do we communicate with rats?
76
195260
2000
ืื™ืš ืื ื• ืžืชืงืฉืจื™ื ืขื ื—ื•ืœื“ื•ืช?
03:17
Well don't talk rat,
77
197260
3000
ืื ื• ืœื ื“ื•ื‘ืจื™ื ืืช ืฉืคืช ื”ื—ื•ืœื“ื•ืช
03:20
but we have a clicker,
78
200260
2000
ืืš ื™ืฉ ืœื ื• ืงืœื™ืงืจ
03:22
a standard method for animal training,
79
202260
2000
ืฉื™ื˜ื” ืกื˜ื ื“ืจื˜ื™ืช ืœืื™ืžื•ืŸ ื‘ืขืœื™ ื—ื™ื™ื,
03:24
which you see there.
80
204260
2000
ืืฉืจ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื.
03:26
A clicker, which makes a particular sound
81
206260
3000
ืงืœื™ืงืจ, ืฉืžื™ื™ืฆืจ ืงื•ืœ ืžืกื•ื™ื™ื
03:29
with which you can reinforce particular behaviors.
82
209260
3000
ืื™ืชื• ื ื™ืชืŸ ืœื—ื–ืง ื”ืชื ื”ื’ื•ื™ื•ืช ืžืกื•ื™ื™ืžื•ืช.
03:32
First of all, we associate the click sound with a food reward,
83
212260
3000
ื›ื“ื‘ืจ ืจืืฉื•ืŸ, ืื ื• ืžืงืฉืจื™ื ืืช ื”ืงืœื™ืง ืขื ื’ืžื•ืœ ืฉืœ ืื•ื›ืœ,
03:35
which is smashed banana and peanuts together in a syringe.
84
215260
3000
ืืฉืจ ื”ื•ื ื‘ื ื ื” ืžืขื•ื›ื”, ื•ื‘ื•ื˜ื ื™ื ื™ื—ื“ ื‘ืžื–ืจืง
03:39
Once the animal knows click, food,
85
219260
2000
ื›ืืฉืจ ื‘ืขืœ ื”ื—ื™ื™ื ืžื‘ื™ืŸ ืงืœื™ืง, ืื•ื›ืœ,
03:41
click, food, click, food --
86
221260
2000
ืงืœื™ืง, ืื•ื›ืœ, ืงืœื™ืง, ืื•ื›ืœ --
03:43
so click is food --
87
223260
2000
ืื– ืงืœื™ืง ื–ื” ืื•ื›ืœ --
03:45
we bring it in a cage with a hole,
88
225260
2000
ืื ื• ืžื‘ื™ืื™ื ืืช ื–ื” ืœื›ืœื•ื‘ ืขื ื—ื•ืจ,
03:47
and actually the animal learns
89
227260
2000
ื•ืœืžืขืฉื” ื‘ืขืœ ื”ื—ื™ื™ื ืœื•ืžื“
03:49
to stick the nose in the hole
90
229260
2000
ืœื ืขื•ืฅ ืืช ื”ืืฃ ืฉืœื• ื‘ื—ื•ืจ
03:51
under which a target scent is placed,
91
231260
2000
ืžืชื—ืชื™ื•, ืจื™ื— ื”ืžื˜ืจื” ืžื•ื ื—,
03:53
and to do that for five seconds --
92
233260
2000
ื•ืœืขืฉื•ืช ืืช ื–ื” ืœืžืฉืš ื—ืžืฉ ืฉื ื™ื•ืช --
03:55
five seconds, which is long for a rat.
93
235260
2000
ื—ืžืฉ ืฉื ื™ื•ืช, ืžืฉืš ื–ืžืŸ ืืจื•ืš ื‘ืฉื‘ื™ืœ ื—ื•ืœื“ื”.
03:57
Once the animal knows this, we make the task a bit more difficult.
94
237260
3000
ื›ืืฉืจ ื‘ืขืœ ื”ื—ื™ื™ื ืžื‘ื™ืŸ ืืช ื–ื”, ืื ื• ื”ื•ืคื›ื™ื ืืช ื”ืžืฉื™ืžื” ืœืžืขื˜ ื™ื•ืชืจ ืงืฉื”.
04:00
It learns how to find the target smell
95
240260
3000
ื”ื•ื ืžื‘ื™ืŸ ืื™ืš ืœืžืฆื•ื ืืช ืจื™ื— ื”ืžื˜ืจื”
04:03
in a cage with several holes, up to 10 holes.
96
243260
3000
ื‘ื›ืœื•ื‘ ืขื ืžืกืคืจ ื—ื•ืจื™ื, ืขื“ ืขืฉืจื” ื—ื•ืจื™ื.
04:06
Then the animal learns
97
246260
2000
ืื– ื‘ืขืœ ื”ื—ื™ื™ื ืžื‘ื™ืŸ
04:08
to walk on a leash in the open
98
248260
2000
ืœื”ืœืš ืขื ืจืฆื•ืขื” ื‘ืฉื˜ื—
04:10
and find targets.
99
250260
2000
ื•ืœืžืฆื•ื ืžื˜ืจื•ืช.
04:12
In the next step, animals learn
100
252260
3000
ื‘ืฉืœื‘ ื”ื‘ื, ื‘ืขืœ ื”ื—ื™ื™ื ืœื•ืžื“
04:15
to find real mines in real minefields.
101
255260
2000
ืœืžืฆื•ื ืžื•ืงืฉื™ื ืืžื™ืชื™ื™ื ื‘ืฉื“ื” ืžื•ืงืฉื™ื ืืžื™ืชื™.
04:17
They are tested and accredited
102
257260
3000
ื”ื ื ื‘ื—ื ื™ื ื•ืžื•ืกืžื›ื™ื
04:20
according to International Mine Action Standards,
103
260260
2000
ืœืคื™ ืกื˜ื ื“ืจื˜ื™ื ื‘ื™ื ืœืื•ืžื™ื ืœืขื‘ื•ื“ื” ืขื ืžื•ืงืฉื™ื,
04:22
just like dogs have to pass a test.
104
262260
3000
ืžืžืฉ ื›ืžื• ืฉื›ืœื‘ื™ื ื ื“ืจืฉื™ื ืœืขื‘ื•ืจ ืžื‘ื—ืŸ.
04:25
This consists of 400 square meters.
105
265260
2000
ื–ื” ืžื•ืจื›ื‘ ืž400 ืžื˜ืจ ืžืจื•ื‘ืข
04:27
There's a number of mines
106
267260
3000
ื™ืฉ ืžืกืคืจ ืฉืœ ืžื•ืงืฉื™ื
04:30
placed blindly,
107
270260
2000
ื”ืžืžื•ืงืžื™ื ื‘ืื•ืคืŸ ืืงืจืื™.
04:32
and the team of trainer and their rat
108
272260
3000
ื•ื”ืฆื•ื•ืช ืฉืœ ื”ืžืืžืŸ ื•ื”ื—ื•ืœื“ื” ืฉืœื•
04:35
have to find all the targets.
109
275260
3000
ื ื“ืจืฉื™ื ืœืžืฆื•ื ืืช ื›ืœ ื”ืžื˜ืจื•ืช.
04:39
If the animal does that, it gets a license
110
279260
3000
ืื ื‘ืขืœ ื”ื—ื™ื™ื ืžื‘ืฆืข ื–ืืช, ื”ื•ื ืžืงื‘ืœ ืจืฉื™ื•ืŸ
04:42
as an accredited animal
111
282260
2000
ืœื”ื™ื•ืช ื‘ืขืœ ื—ื™ื™ื ืžื•ืกืžืš
04:44
to be operational in the field --
112
284260
2000
ืœื”ื™ื•ืช ืžื‘ืฆืขื™ ื‘ืฉื˜ื— --
04:46
just like dogs, by the way.
113
286260
2000
ืžืžืฉ ื›ืžื• ื›ืœื‘ื™ื, ื“ืจืš ืื’ื‘.
04:48
Maybe one slight difference:
114
288260
2000
ืื•ืœื™ ืขื ืฉื™ื ื•ื™ ืงื˜ืŸ:
04:50
we can train rats at a fifth of the price
115
290260
3000
ืื ื• ื™ื›ื•ืœื™ื ืœืืžืŸ ื—ื•ืœื“ื•ืช ื‘ื—ืžื™ืฉื™ืช ืžื”ืžื—ื™ืจ
04:53
of training the mining dog.
116
293260
2000
ืฉืœ ืื™ืžื•ืŸ ื›ืœื‘ ื’ื™ืฉื•ืฉ.
04:55
This is our team in Mozambique:
117
295260
2000
ื–ื” ื”ืฆื•ื•ืช ืฉืœื ื• ื‘ืžื–ืžื‘ื™ืง.
04:57
one Tanzanian trainer,
118
297260
2000
ืžืืžืŸ ื˜ื ื–ื ื™ ืื—ื“,
04:59
who transfers the skills
119
299260
2000
ืฉืžืขื‘ื™ืจ ืืช ื”ืžื™ื•ืžื ื•ื™ื•ืช
05:01
to these three Mozambican fellows.
120
301260
2000
ืœืฉืœื•ืฉื” ืžื•ื–ืžื‘ื™ืงื ื™ื
05:03
And you should see the pride in the eyes of these people.
121
303260
3000
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื”ื’ืื•ื•ื” ื‘ืขื™ื ื™ื™ื ืฉืœ ื”ืื ืฉื™ื ื”ืืœื•.
05:06
They have a skill,
122
306260
2000
ื™ืฉ ืœื”ื ืืช ื”ืžื™ื•ืžื ื•ืช
05:08
which makes them much less dependent
123
308260
2000
ืืฉืจ ื”ื•ืคื›ืช ืื•ืชื ืœื”ืจื‘ื” ืคื—ื•ืช ืชืœื•ืชื™ื™ื
05:10
on foreign aid.
124
310260
2000
ื‘ืขื–ืจื” ื—ื™ืฆื•ื ื™ืช
05:12
Moreover, this small team
125
312260
3000
ืžืขื‘ืจ ืœื›ืš, ืงื‘ื•ืฆื” ืงื˜ื ื” ื–ื•
05:15
together with, of course, you need the heavy vehicles
126
315260
3000
ื™ื—ื“ ืขื, ื›ืžื•ื‘ืŸ, ื”ื›ืœื™ื ื”ื›ื‘ื“ื™ื
05:18
and the manual de-miners to follow-up.
127
318260
3000
ื•ืฉื•ืœื™ ื”ืžื•ืงืฉื™ื ืฉืขื•ืงื‘ื™ื ืื—ืจื™ื”ื.
05:21
But with this small investment in a rat capacity,
128
321260
3000
ืืš ืขื ื”ืฉืงืขื” ืงื˜ื ื” ื–ื• ื‘ืงื™ื‘ื•ืœืช ื”ื—ื•ืœื“ื•ืช
05:24
we have demonstrated in Mozambique
129
324260
3000
ื”ื“ื’ืžื ื• ื‘ืžื•ื–ืžื‘ื™ืง
05:27
that we can reduce the cost-price per square meter
130
327260
3000
ืฉื ื•ื›ืœ ืœื”ืงื˜ื™ืŸ ืืช ื”ืขืœื•ืช ืœืžื˜ืจ ืžืจื•ื‘ืข
05:30
up to 60 percent
131
330260
2000
ืขื“ ืœืฉื™ืฉื™ื ืื—ื•ื–ื™ื.
05:32
of what is currently normal --
132
332260
2000
ืžืžื” ืฉืžื”ื•ื•ื” ื›ืจื’ืข ืขืœื•ืช ื ื•ืจืžืœื™ืช --
05:34
two dollars per square meter, we do it at $1.18,
133
334260
2000
ืฉื ื™ ื“ื•ืœืจื™ื ืœืžื˜ืจ ืžืจื•ื‘ืข, ืื ื• ื ื‘ืฆืข ื–ืืช ื‘1.18,
05:36
and we can still bring that price down.
134
336260
2000
ื•ืืฃ ื ื•ื›ืœ ืœื”ื•ืจื™ื“ ืืช ื”ืžื—ื™ืจ ืžืขื‘ืจ ืœื›ืš.
05:38
Question of scale.
135
338260
2000
ืฉืืœื” ืฉืœ ื›ืžื•ืช.
05:40
If you can bring in more rats,
136
340260
2000
ืื ืชื•ื›ืœ ืœื”ื‘ื™ื ื™ื•ืชืจ ื—ื•ืœื“ื•ืช,
05:42
we can actually make the output even bigger.
137
342260
2000
ื ื•ื›ืœ ืืฃ ืœื”ื’ื‘ื™ืจ ืืช ื”ืชืคื•ืงื”.
05:44
We have a demonstration site in Mozambique.
138
344260
3000
ื”ื“ื’ืžื ื• ื‘ืืชืจ ื‘ืžื•ื–ืžื‘ื™ืง.
05:47
Eleven African governments
139
347260
3000
11 ืžืžืฉืœื™ื ืืคืจื™ืงืื™ื
05:50
have seen that they can become less dependent
140
350260
3000
ืจืื• ืฉื”ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืคื—ื•ืช ืชืœื•ืชื™ื™ื
05:53
by using this technology.
141
353260
2000
ื‘ืืžืฆืขื•ืช ืฉื™ืžื•ืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื•.
05:55
They have signed the pact for peace
142
355260
2000
ื”ื ื—ืชื ื• ืขืœ ื”ื”ืกื›ื ืœืฉืœื•ื
05:57
and treaty in the Great Lakes region,
143
357260
3000
ื•ื—ื•ื–ื” ื‘ืื™ื–ื•ืจ ื”ืื’ืžื™ื ื”ื’ื“ื•ืœื™ื.
06:00
and they endorse hero rats
144
360260
3000
ื•ื”ื ืชื•ืžื›ื™ื ื‘ื—ื•ืœื“ื•ืช ื’ื™ื‘ื•ืจื•ืช
06:03
to clear their common borders of landmines.
145
363260
3000
ืœื ืงื•ืช ืืช ื”ื’ื‘ื•ืœื•ืช ื”ืžืฉื•ืชืคื™ื ื‘ื™ื ื”ื ืžืžื•ืงืฉื™ื.
06:06
But let me bring you to a very different problem.
146
366260
3000
ืืš ืชืจืฉื• ืœื™ ืœื”ื‘ื™ื ื‘ืคื ื™ื›ื ื‘ืขื™ื” ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ.
06:09
And there's about 6,000 people last year
147
369260
2000
ื•ื™ืฉ ื‘ืขืจืš 6000 ื‘ื ื™ ืื“ื ื‘ืฉื ื” ื”ืื—ืจื•ื ื”
06:11
that walked on a landmine,
148
371260
2000
ืฉื”ืœื›ื• ื‘ืฉื“ื” ืžื•ืงืฉื™ื,
06:13
but worldwide last year,
149
373260
2000
ืืš ื‘ื›ืœ ื”ืขื•ืœื ื•ืจืง ื‘ืฉื ื” ื”ืื—ืจื•ื ื”
06:15
almost 1.9 million died from tuberculosis
150
375260
2000
ื›ืžืขื˜ 1.9 ืžืœื™ื•ืŸ ืžืชื• ืžืฉื—ืคืช
06:17
as a first cause of infection.
151
377260
3000
ื›ื’ื•ืจื ืจืืฉื•ืŸ ืฉืœ ื”ื“ื‘ืงื”.
06:21
Especially in Africa
152
381260
2000
ื‘ืžื™ื•ื—ื“ ื‘ืืคืจื™ืงื”
06:23
where T.B. and HIV are strongly linked,
153
383260
3000
ืฉื ืฉื—ืคืช ื•ืื™ื™ื“ืก ืžืงื•ืฉืจื™ื ื‘ืื•ืคืŸ ื—ื–ืง,
06:26
there is a huge common problem.
154
386260
4000
ื–ื• ื‘ืขื™ื” ื’ื“ื•ืœื” ื•ืžืฉื•ืชืคืช.
06:31
Microscopy, the standard WHO procedure,
155
391260
3000
ืชื”ืœื™ืš ืžื™ืงืจื•ืกืงื•ืคื™, ื”ืคืจื•ืฆื“ื•ืจื” ื”ืกื˜ื ื“ืจื˜ื™ืช ืฉืœ ืืจื’ื•ืŸ ื”ื‘ืจื™ืื•ืช ื”ืขื•ืœืžื™,
06:34
reaches from 40 to 60 percent reliability.
156
394260
3000
ื”ื’ื™ืข ืž-40 ืœ-60 ืื—ื•ื– ืฉืœ ืืžื™ื ื•ืช.
06:38
In Tanzania -- the numbers don't lie --
157
398260
3000
ื‘ื˜ื ื–ื ื™ื” -- ื”ืžืกืคืจื™ื ืœื ืžืฉืงืจื™ื --
06:41
45 percent of people -- T.B. patients --
158
401260
3000
45 ืื—ื•ื– ืฉืœ ื‘ื ื™ ืื“ื -- ื—ื•ืœื™ ืฉื—ืคืช --
06:44
get diagnosed with T.B. before they die.
159
404260
3000
ืžืื•ื‘ื—ื ื™ื ื‘ืฉื—ืคืช ืœืคื ื™ ืฉื”ื ืžืชื™ื.
06:48
It means that, if you have T.B.,
160
408260
3000
ื–ืืช ืื•ืžืจืช ืฉืื ื™ืฉ ืœืš ืฉื—ืคืช,
06:51
you have more chance that you won't be detected,
161
411260
2000
ื™ืฉ ื™ื•ืชืจ ืกื™ื›ื•ื™ ืฉืœื ืชืื•ื‘ื—ืŸ ื›ื—ื•ืœื” ืฉื—ืคืช,
06:53
but will just die from T.B. secondary infections and so on.
162
413260
3000
ืืš ืชืžื•ืช ืžื”ื”ื“ื‘ืงื•ืช ื”ืžืฉื ื™ื•ืช ืฉืœ ืฉื—ืคืช ื•ื›ืš ื”ืœืื”.
07:00
And if, however,
163
420260
2000
ื•ืื, ื‘ื›ืœ ืžืงืจื”,
07:02
you are detected very early, diagnosed early,
164
422260
2000
ืืชื” ืชื–ื•ื”ื” ื‘ืฉืœื‘ ืžื•ืงื“ื, ืชืื•ื‘ื—ืŸ ืžื•ืงื“ื,
07:04
treatment can start,
165
424260
2000
ื˜ื™ืคื•ืœ ื™ื•ื›ืœ ืœื”ืชื—ื™ืœ.
07:06
and even in HIV-positives, it makes sense.
166
426260
3000
ื•ืืคื™ืœื• ื‘ื ืฉืื™ ืื™ื™ื“ืก, ื–ื” ืขื•ืฉื” ืฉื›ืœ.
07:09
You can actually cure T.B.,
167
429260
2000
ื ื™ืชืŸ ืœืจืคื ืฉื—ืคืช,
07:11
even in HIV-positives.
168
431260
3000
ื•ืืคื™ืœื• ื‘ื ืฉืื™ ืื™ื™ื“ืก.
07:14
So in our common language, Dutch,
169
434260
3000
ืื– ื‘ืฉืคื” ื”ืžื“ื•ื‘ืจืช ืฉืœื ื•, ื”ื•ืœื ื“ื™ืช,
07:17
the name for T.B.
170
437260
2000
ื”ืฉื ืฉืœ ืฉื—ืคืช,
07:19
is "tering,"
171
439260
2000
ื”ื•ื ื˜ืจื™ื ื’,
07:21
which, etymologically,
172
441260
2000
ืืฉืจ, ื‘ืื•ืคืŸ ืื˜ื™ืžื•ืœื•ื’ื™,
07:23
refers to the smell of tar.
173
443260
3000
ืžืชืงืฉืจ ืœืจื™ื— ืฉืœ ื–ืคื˜.
07:26
Already the old Chinese
174
446260
2000
ื’ื ื”ืกื™ื ื™ื ื”ื–ืงื ื™ื,
07:28
and the Greek, Hippocrates,
175
448260
3000
ื•ื”ื™ื•ื•ื ื™ื, ื”ื™ืคื•ืงืจื˜ืก,
07:31
have actually published,
176
451260
2000
ืœืžืขืฉื” ืคื™ืจืกืžื•,
07:33
documented, that T.B. can be diagnosed
177
453260
3000
ื•ืชื™ืขื“ื•, ืฉืฉื—ืคืช ื ื™ืชื ืช ืœืื™ืคื—ื•ืŸ
07:36
based on the volatiles
178
456260
2000
ื‘ื”ืชื‘ืกืก ืขืœ ื—ื•ืžืจื™ื ื ื“ื™ืคื™ื
07:38
exuding from patients.
179
458260
3000
ืฉืžืคืจื™ืฉื™ื ื”ื—ื•ืœื™ื.
07:41
So what we did is we collected some samples --
180
461260
2000
ืื– ืžื” ืฉื‘ื™ืฆืขื ื• ื–ื” ืœืืกื•ืฃ ืžืกืคืจ ื“ื’ื™ืžื•ืช --
07:43
just as a way of testing --
181
463260
2000
ืจืง ื›ื“ืจืš ืฉืœ ื‘ื“ื™ืงื” --
07:45
from hospitals,
182
465260
2000
ืžื‘ืชื™ ื—ื•ืœื™ื,
07:47
trained rats on them
183
467260
3000
ืื™ืžื ื• ื—ื•ืœื“ื•ืช ืขืœ ื”ื“ื’ื™ืžื•ืช
07:50
and see if this works,
184
470260
2000
ื•ื‘ื“ืงื ื• ืื ื–ื” ืขื•ื‘ื“,
07:52
and wonder, well,
185
472260
2000
ื•ืœืžืจื‘ื” ื”ืคืœื, ืืžื ื,
07:54
we can reach 89 percent sensitivity,
186
474260
2000
ื”ื’ืขื ื• ืœ 89 ืื—ื•ื–ื™ื ืฉืœ ืจื’ื™ืฉื•ืช,
07:56
86 percent specificity
187
476260
2000
86 ืื—ื•ื–ื™ ืกื™ื•ื•ื’
07:58
using multiple rats in a row.
188
478260
2000
ื‘ืฉื™ืžื•ืฉ ื‘ืžืกืคืจ ื—ื•ืœื“ื•ืช ื‘ืฉื•ืจื”.
08:00
This is how it works,
189
480260
2000
ื›ืš ื–ื” ืขื•ื‘ื“.
08:03
and really, this is a generic technology.
190
483260
3000
ื•ืœืžืขืฉื”, ื–ื•ื”ื™ ื˜ื›ื ื•ืœื•ื’ื™ื” ื’ื ืจื™ืช.
08:06
We're talking now explosives, tuberculosis,
191
486260
3000
ืื ื• ืžื“ื‘ืจื™ื ืขื›ืฉื™ื• ืขืœ ื—ื•ืžืจื™ื ื ืคื™ืฆื™ื ื•ืฉื—ืคืช.
08:09
but can you imagine,
192
489260
2000
ืืš ืืชื ื™ื›ื•ืœื™ื ืจืง ืœื“ืžื™ื™ืŸ
08:11
you can actually put anything under there.
193
491260
2000
ืืคืฉืจ ืœืฉื™ื ืœืžืขืฉื” ื”ื›ืœ ืžืชื—ืช ืœืฉื.
08:13
So how does it work?
194
493260
2000
ืื– ืื™ืš ื–ื” ืขื•ื‘ื“?
08:15
You have a cassette with 10 samples.
195
495260
2000
ื™ืฉ ืžื—ืกื ื™ืช ืขื 10 ื“ื’ื™ืžื•ืช.
08:17
You put these 10 samples at once in the cage.
196
497260
3000
ืฉืžื™ื ืืช ืขืฉืจ ื”ื“ื’ื™ืžื•ืช ื”ืืœื• ื‘ื‘ืช ืื—ืช ื‘ื›ืœื•ื‘.
08:20
An animal only needs two hundredths of a second
197
500260
2000
ื‘ืขืœ ื”ื—ื™ื™ื ื–ืงื•ืง ืจืง ืœืฉืชื™ ืžืื™ื•ืช ื”ืฉื ื™ื”
08:22
to discriminate the scent, so it goes extremely fast.
198
502260
3000
ืœืกื•ื•ื’ ืืช ื”ืจื™ื—, ืื– ื”ื•ื ืขื•ื‘ื“ ื‘ืฆื•ืจื” ืžืื•ื“ ืžื”ื™ืจื”
08:25
Here it's already at the third sample.
199
505260
3000
ื”ื ื” ื”ื•ื ื›ื‘ืจ ื‘ื“ื’ื™ืžื” ื”ืฉืœื™ืฉื™ืช
08:28
This is a positive sample.
200
508260
3000
ื–ื•ื”ื™ ื“ื’ื™ืžื” ื—ื™ื•ื‘ื™ืช.
08:32
It gets a click sound and comes for the food reward.
201
512260
3000
ื”ื•ื ืžืงื‘ืœ ืฆืœื™ืœ ืฉืœ ืงืœื™ืง ื•ื‘ื ืœืงื‘ืœ ืืช ื”ืชื’ืžื•ืœ ืฉืœื•.
08:37
And by doing so, very fast,
202
517260
2000
ื•ื›ืฉืขื•ืฉื™ื ื–ืืช, ืžืื•ื“ ืžื”ืจ,
08:39
we can have like a second-line opinion
203
519260
3000
ืื ื• ื™ื›ื•ืœื™ื ืœืงื‘ืœ ืกื•ื’ ืฉืœ ื“ืขื” ืฉื ื™ื™ื”
08:42
to see which patients are positive,
204
522260
2000
ืœื‘ื“ื•ืง ืื™ืœื• ืžื˜ื•ืคืœื™ื ื ืฉืื™ื
08:44
which are negative.
205
524260
3000
ื•ืื™ืœื• ืžื˜ื•ืคืœื™ื ืœื.
08:47
Just as an indication,
206
527260
2000
ืจืง ื›ืื™ื ื“ื™ืงืฆื™ื”,
08:49
whereas a microscopist can process
207
529260
2000
ืื™ืฉ ืžืขื‘ื“ื” ื™ื›ื•ืœ ืœืขื‘ื“
08:51
40 samples in a day,
208
531260
2000
40 ื“ื’ื™ืžื•ืช ื‘ื™ื•ื,
08:53
a rat can process
209
533260
2000
ื—ื•ืœื“ื” ื™ื›ื•ืœื” ืœืขื‘ื“
08:55
the same amount of samples
210
535260
2000
ืืช ืื•ืชื” ื›ืžื•ืช ืฉืœ ื“ื’ื™ืžื•ืช
08:57
in seven minutes only.
211
537260
2000
ื‘ืฉื‘ืข ื“ืงื•ืช ื‘ืœื‘ื“.
08:59
A cage like this --
212
539260
2000
ื•ื›ืœื•ื‘ ื›ื–ื” --
09:01
(Applause)
213
541260
5000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
09:06
A cage like this -- provided that you have rats,
214
546260
3000
ื›ืœื•ื‘ ื›ื–ื” -- ื‘ื”ื ืชืŸ ืฉื™ืฉ ืœื›ื ื—ื•ืœื“ื•ืช,
09:09
and we have now currently
215
549260
2000
ื•ื™ืฉ ืœื ื• ื›ืจื’ืข
09:11
25 tuberculosis rats --
216
551260
2000
25 ื—ื•ืœื“ื•ืช ืžืชืžื—ื•ืช ื‘ืฉื—ืคืช --
09:13
a cage like this, operating throughout the day,
217
553260
3000
ื›ืœื•ื‘ ื›ื–ื”, ื”ืžื•ืคืขืœ ื‘ืžื”ืœืš ื”ื™ื•ื,
09:16
can process 1,680 samples.
218
556260
3000
ื™ื›ื•ืœ ืœืขื‘ื“ 1,680 ื“ื’ื™ืžื•ืช.
09:21
Can you imagine the potential offspring applications --
219
561260
3000
ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ืฉืœ ื™ื™ืฉื•ืžื™ื ื ื’ื–ืจื™ื --
09:24
environmental detection
220
564260
2000
ื–ื™ื”ื•ื™ ืกื‘ื™ื‘ืชื™
09:26
of pollutants in soils,
221
566260
2000
ืฉืœ ืžื–ื”ืžื™ื ื‘ืื“ืžื”,
09:28
customs applications,
222
568260
2000
ื™ื™ืฉื•ืžื™ื ื™ื™ื—ื•ื“ื™ื™ื,
09:30
detection of illicit goods in containers and so on.
223
570260
3000
ื’ื™ืœื•ื™ ืฉืœ ืกื—ื•ืจื” ืืกื•ืจื” ื‘ืงื•ื ื˜ื™ื™ื ืจ ื•ื›ืŸ ื”ืœืื”.
09:34
But let's stick first to tuberculosis.
224
574260
2000
ืืš ื”ื‘ื” ื ืฆืžื“ ืงื•ื“ื ืœืฉื—ืคืช.
09:36
I just want to briefly highlight,
225
576260
2000
ืื ื™ ืจื•ืฆื” ืœืกืงื•ืจ ื‘ืงืฆืจื”,
09:38
the blue rods
226
578260
2000
ื”ืžืงืœื•ืช ื”ื›ื—ื•ืœื™ื
09:40
are the scores of microscopy only
227
580260
2000
ื”ื ื”ืฆื™ื•ื ื™ื ืฉืœ ืžื™ืงืจื•ืกืงื•ืคื™ื” ื‘ืœื‘ื“
09:42
at the five clinics in Dar es Salaam
228
582260
3000
ื‘ื—ืžืฉ ืžืจืคืื•ืช ื‘ื“ืจ-ื-ืกืœืื
09:45
on a population of 500,000 people,
229
585260
2000
ื‘ืื•ื›ืœื•ืกื™ื” ืฉืœ 500,000 ื‘ื ื™ ืื“ื,
09:47
where 15,000 reported to get a test done.
230
587260
3000
ื”ื™ื›ืŸ ืฉ 15,000 ืžืงื‘ืœื™ื ื”ื•ื“ืขื” ืœื‘ืฆืข ื‘ื“ื™ืงื”.
09:50
Microscopy for 1,800 patients.
231
590260
3000
ืžื™ืงืจื•ืกืงื•ืคื™ื” ืฉืœ 1800 ื—ื•ืœื™ื.
09:53
And by just presenting the samples once more to the rats
232
593260
4000
ื•ืจืง ืข"ื™ ื”ืฆื’ืช ื”ื“ื’ื™ืžื•ืช ืคืขื ื ื•ืกืคืช ืœื—ื•ืœื“ื•ืช
09:57
and looping those results back,
233
597260
3000
ื•ืœื—ื–ื•ืจ ืฉื•ื‘ ืขืœ ื”ืชื•ืฆืื•ืช,
10:00
we were able to increase case detection rates
234
600260
2000
ืื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื“ื™ืœ ืืช ื”ืกืชื‘ืจื•ืช ื”ื’ื™ืœื•ื™
10:02
by over 30 percent.
235
602260
2000
ื‘ื™ื•ืชืจ ืž-30 ืื—ื•ื–ื™ื.
10:04
Throughout last year,
236
604260
2000
ื‘ืžื”ืœืš ื”ืฉื ื” ื”ืื—ืจื•ื ื”
10:06
we've been -- depending on which intervals you take --
237
606260
2000
ื”ื’ื“ืœื ื•, ื‘ืชืœื•ืช ื‘ืžืงื˜ืขื™ ื”ื–ืžืŸ ืฉื ืงื—,
10:08
we've been consistently
238
608260
2000
ื”ื’ื“ืœื ื• ื‘ืื•ืคืŸ ืขืงื‘ื™
10:10
increasing case detection rates
239
610260
2000
ืืช ื”ืกื™ื›ื•ื™ ืœื’ื™ืœื•ื™
10:12
in five hospitals in Dar es Salaam
240
612260
2000
ื‘ื—ืžื™ืฉื” ื‘ืชื™ ื—ื•ืœื™ื ื‘ื“ืืจ ื ืกืœืื
10:14
between 30 and 40 percent.
241
614260
3000
ื‘ื™ืŸ 30 ืœ40 ืื—ื•ื–ื™ื.
10:17
So this is really considerable.
242
617260
2000
ืื– ื–ื” ื‘ื”ื—ืœื˜ ื‘ื•ืœื˜.
10:19
Knowing that a missed patient by microscopy
243
619260
2000
ื›ืืฉืจ ืื ื• ืžื‘ื™ื ื™ื ืฉื—ื•ืœื” ืฉืคื•ืกืคืก ื‘ืชื”ืœื™ืš ืฉืœ ืžื™ืงืจื•ืกืงื•ืคื™ื”
10:21
infects up to 15 people,
244
621260
2000
ืžื“ื‘ื™ืง ืขื“ 15 ื‘ื ื™ ืื“ื --
10:23
healthy people, per year,
245
623260
2000
ื‘ื ื™ ืื“ื ื‘ืจื™ืื™ื -- ื‘ืฉื ื”,
10:25
you can be sure
246
625260
2000
ืื ื• ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื‘ื˜ื•ื—ื™ื
10:27
that we have saved lots of lives.
247
627260
2000
ืฉื”ืฆืœื ื• ื”ืจื‘ื” ื—ื™ื™ื.
10:29
At least our hero rats have saved lots of lives.
248
629260
3000
ื”ื—ื•ืœื“ื•ืช ื”ื’ื™ื‘ื•ืจื•ืช ื”ืื—ืจื•ื ื•ืช ืฉืœื ื• ื”ืฆื™ืœื• ื”ืจื‘ื” ื—ื™ื™ื
10:32
The way forward for us
249
632260
2000
ื”ื“ืจืš ื”ื‘ืื” ืžื‘ื—ื™ื ืชื ื•
10:34
is now to standardize this technology.
250
634260
2000
ื”ื™ื ืœืขืฉื•ืช ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื• ืกื˜ื ื“ืจื˜ื™ืช.
10:36
And there are simple things
251
636260
2000
ื•ื™ืฉ ื“ื‘ืจื™ื ืคืฉื•ื˜ื™ื
10:38
like, for instance, we have a small laser in the sniffer hole
252
638260
4000
ืœื“ื•ื’ืžื, ื™ืฉ ืœื ื• ืœื™ื™ื–ืจ ืงื˜ืŸ ื‘ื—ื•ืจ ื”ืจื—ื”
10:42
where the animal has to stick for five seconds.
253
642260
2000
ื”ื™ื›ืŸ ืฉื‘ืขืœ ื”ื—ื™ื™ื ื ื“ืจืฉ ืœื”ืฉืืจ ืœืžืฉืš ื—ืžืฉ ืฉื ื™ื•ืช.
10:44
So, to standardize this.
254
644260
2000
ื›ืš, ืœืขืฉื•ืช ืืช ื–ื” ืกื˜ื ื“ืจื˜ื™.
10:46
Also, to standardize the pellets,
255
646260
2000
ื›ืžื•-ื›ืŸ, ืขืœ ืžื ืช ืœืชืงื ืŸ ืืช ื”ื˜ื‘ืœื™ื•ืช
10:48
the food rewards,
256
648260
2000
ืืช ื”ืชื’ืžื•ืœื™ื ืฉืœ ื”ืื•ื›ืœ,
10:50
and to semi-automate this
257
650260
2000
ื•ืœื”ืคื•ืš ืืช ื”ืชื”ืœื™ืš ืœื—ืฆื™ ืื•ื˜ื•ืžื˜ื™
10:52
in order to replicate this on a much larger scale
258
652260
3000
ืขืœ ืžื ืช ืœืฉื›ืคืœ ืื•ืชื• ื‘ืกืงืืœื•ืช ื’ื“ื•ืœื•ืช ื‘ื”ืจื‘ื”
10:55
and affect the lives of many more people.
259
655260
3000
ื•ืœื”ืฉืคื™ืข ืขืœ ื”ื—ื™ื™ื ืฉืœ ื”ืจื‘ื” ื™ื•ืชืจ ืื ืฉื™ื.
10:58
To conclude, there are also other applications at the horizon.
260
658260
3000
ืœืกื™ื›ื•ื, ื™ืฉ ื’ื ื™ืฉื•ืžื™ื ืื—ืจื™ื ื‘ืื•ืคืง.
11:01
Here is a first prototype
261
661260
2000
ื”ื ื” ืื‘ื˜ื™ืคื•ืก ืจืืฉื•ื ื™
11:03
of our camera rat,
262
663260
2000
ืฉืœ ื—ื•ืœื“ืช ื”ืฆื™ืœื•ื ืฉืœื ื•,
11:05
which is a rat with a rat backpack
263
665260
2000
ืฉื”ื™ื ื—ื•ืœื“ื” ืขื ืชื™ืง-ื’ื‘ ืœื—ื•ืœื“ื•ืช
11:07
with a camera that can go under rubble
264
667260
2000
ืขื ืžืฆืœืžื” ืฉื™ื›ื•ืœื” ืœื ื•ืข ืžืชื—ืช ืœื”ืจื™ืกื•ืช
11:09
to detect for victims
265
669260
2000
ืขืœ ืžื ืช ืœื–ื”ื•ืช ืงื•ืจื‘ื ื•ืช
11:11
after earthquake and so on.
266
671260
2000
ืื—ืจื™ ืจืขื™ื“ืช ืื“ืžื” ื•ื›ืŸ ื”ืœืื”.
11:13
This is in a prototype stage.
267
673260
2000
ื–ื” ื‘ืฉืœื‘ ืฉืœ ืื‘ื˜ื™ืคื•ืก
11:15
We don't have a working system here yet.
268
675260
2000
ืื™ืŸ ืœื ื• ื›ืืŸ ืžืขืจื›ืช ืขื•ื‘ื“ืช ืขื“ื™ื™ืŸ.
11:18
To conclude, I would actually like to say,
269
678260
3000
ืœืกื™ื›ื•ื, ืื ื™ ื‘ืืžืช ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื•ืžืจ,
11:21
you may think this is about rats, these projects,
270
681260
2000
ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืฉื–ื” ืขืœ ื—ื•ืœื“ื•ืช, ื”ืคืจื•ื™ื™ืงื˜ื™ื ื”ืืœื”,
11:23
but in the end it is about people.
271
683260
2000
ืืš ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ื”ื ืขืœ ื‘ื ื™-ืื“ื.
11:25
It is about empowering vulnerable communities
272
685260
2000
ื–ื” ืื•ื“ื•ืช ื—ื™ื–ื•ืง ืื•ื›ืœื•ืกื™ื•ืช ืžื•ื—ืœืฉื•ืช
11:27
to tackle difficult, expensive
273
687260
3000
ืœื”ืชืžื•ื“ื“ ืขื ื”ืงื•ืฉื™, ื”ืขืœื•ืช
11:30
and dangerous humanitarian detection tasks,
274
690260
3000
ื•ื”ืกื™ื›ื•ืŸ ื‘ืžืฉื™ืžื•ืช ื’ื™ืœื•ื™ ื”ื•ืžื ื˜ืจื™ื•ืช,
11:33
and doing that with a local resource,
275
693260
3000
ื•ืœืขืฉื•ืช ื–ืืช ื‘ืืžืฆืขื•ืช ืžืฉืื‘ ืžืงื•ืžื™ --
11:36
plenty available.
276
696260
2000
ืฉื–ืžื™ืŸ ื‘ืฉืคืข.
11:38
So something completely different
277
698260
3000
ืื– ืžืฉื”ื• ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ
11:41
is to keep on challenging your perception
278
701260
3000
ื”ื•ื ืœื”ืžืฉื™ืš ื•ืœืงืจื•ื ืชื™ื’ืจ ืขืœ ื”ืชืคื™ืกื” ืฉืœื ื•
11:44
about the resources surrounding you,
279
704260
3000
ืื•ื“ื•ืช ื”ืžืฉืื‘ื™ื ื”ืžืงื™ืคื™ื ืื•ืชื ื•,
11:47
whether they are environmental,
280
707260
3000
ืื ื”ื ืกื‘ื™ื‘ืชื™ื™ื,
11:50
technological, animal, or human.
281
710260
3000
ื˜ื›ื ื•ืœื•ื’ื™ื, ื‘ืขืœื™-ื—ื™ื™ื ืื• ื‘ื ื™ ืื“ื.
11:55
And to respectfully harmonize with them
282
715260
3000
ื•ืœื”ื™ื•ืช ื‘ื”ืจืžื•ื ื™ื” ื•ื‘ื›ื‘ื•ื“ ืื™ืชื
11:58
in order to foster a sustainable world.
283
718260
3000
ืขืœ ืžื ืช ืœืขื•ื“ื“ ืขื‘ื•ื“ื” ื‘ืช-ืงื™ื™ืžื
12:01
Thank you very much.
284
721260
2000
ืชื•ื“ื” ืจื‘ื”.
12:03
(Applause)
285
723260
2000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7